CN107196541A - 用于闭环应用的三相中压功率转换系统 - Google Patents
用于闭环应用的三相中压功率转换系统 Download PDFInfo
- Publication number
- CN107196541A CN107196541A CN201710148828.5A CN201710148828A CN107196541A CN 107196541 A CN107196541 A CN 107196541A CN 201710148828 A CN201710148828 A CN 201710148828A CN 107196541 A CN107196541 A CN 107196541A
- Authority
- CN
- China
- Prior art keywords
- controller
- power conversion
- switching system
- voltage reference
- reference sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/487—Neutral point clamped inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/084—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0012—Control circuits using digital or numerical techniques
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M5/4585—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Inverter Devices (AREA)
Abstract
本发明提供了一种用于闭环应用的三相中压功率变换系统(13),包括3L‑NPC变换器(23)。3L‑NPC转换器(23)的开关系统(27)基于SHE‑PWM模式。3L‑NPC转换器(23)的调节系统(25)包括控制器(21)和在控制器(21)和开关系统(27)之间的接口模块(29),其配置为以比由控制器(21)管理的电压参考样本的速率快L倍的速率向开关系统(27)提供电压参考样本。
Description
技术领域
本发明涉及用于闭环应用的功率转换系统。
背景技术
当前,用于中压(Medium Voltage,MV)功率转换器(>1000v)的可用硬件技术与低电压(Low Voltage,LV)电平相比严重地限制了转换频率,从而降低电力质量。
为了以最小的转换频率优化电力质量并且满足MV功率转换器的现有标准,现有技术建议将高阶滤波器、多电平转换器技术和特定谐波消除脉宽调制(Selective HarmonicElimination-Pulse Width Modulation,SHE-PWM)组合起来。
特别地,三电平中性点钳位(three level Neutral-Point-Clamped,3L-NPC)转换器被认为是用于MV功率转换器的合适拓扑,其中三个电压电平通过被分成两个串联连接的电容器的DC总线实现。
虽然用于开环应用的MV功率转换系统是已知的,但是电气工业越来越需要用于闭环应用的MV功率转换系统。
本发明致力于满足该需求。
发明内容
本发明提供了一种三相中压功率转换系统,包括用于在闭环模式中将功率消耗装置耦接到电源的3L-NPC转换器。
3L-NPC转换器的开关系统(switching system)基于SHE-PWM模式(patron),用于以最小开关频率优化电力质量。
3L-NPC转换器的调节系统包括控制器和在控制器与开关系统之间的接口模块,该接口模块配置为以比由控制器管理的电压参考样本的速率快L倍的速率向开关系统提供电压参考样本。
控制器相应地配置为具有SHE-PWM模式的3L-NPC转换器的新型均衡模型(Equalization Model,EM)。
从随后的本发明的详细描述和所附权利要求书中并结合附图,本发明的其它期望的特征和优点将变得显而易见。
附图说明
图1是根据本发明的用于在闭环模式中将电力消耗装置耦接到电源的MV三相功率转换系统的框图。
图2示出了本发明的接口模块的工作原理。
具体实施方式
本发明的三相中压功率转换系统13包括:
-功率消耗装置15(例如公用电网或电动机);
-电源11(例如风力涡轮机或公用电网);
-具有调节系统25的3L-NPC转换器23,包括控制器21和接口模块29、以及开关系统27。
开关系统27基于SHE-PWM模式以最小开关频率优化电力质量。
在闭环应用中,SHE-PWM解决了开环应用中不存在的一些技术困难。
首先,谐波消除能力取决于开关的精度,并且这受控于控制器21的致动速率。增加闭环系统中的致动速率(actuation rate)导致更高的模数转换和执行速率。通常,数字控制平台中的可用资源不允许存在这种额外的计算负担。在开环应用的情况下,直接获得电压参考,并且不需要控制器,因此不存在计算负载。
其次,3L-NPC转换器23的两个直流电容器应以类似的电压充电,否则预期开关装置会过早失效、设备跳闸并且降低电力质量。SHE-PWM的非线性性质不允许应用常规均衡技术。
为了打破谐波消除和高计算权重之间的权衡,功率转换系统13包括在开关系统27和控制器21之间的接口模块29,其预测从控制器21接收的每个样本的电压参考的L-1个样本,这样,开关系统27提供L倍快的采样速率,而控制器21只被执行一次。从而执行负载减轻L倍,并且谐波消除性能不仅不降低还得到提高。
图2示出了接口模块29的工作原理,其执行基于历史信息的预测算法,其中通过对控制器21提供的给定数量M个先前样本进行外插(extrapolation)来计算电压参考的额外L-1个样本,L和M是自然数。L的值由预测准确度(prediction accuracy)限制上限,这与谐波消除直接相关。M的值由系统动力性能(system dynamics)限制上限。
在图2的左侧示出了由控制器21在时间(k-M+1)×Ts,...,(k-2)×Ts,(k-1)×Ts,k×Ts处向接口模块29提供的M个样本的电压参考值,k是时间测量,Ts是控制器21的采样间隔。
在图2的右侧示出了针对从时间(k-1)×Ts和k×Ts(当前时刻)开始的时间间隔的由接口模块29预测的L-1个样本的电压参考值,对于每个时间间隔,考虑先前M个样本的电压参考值的演变。
L-1个样本沿控制器的采样间隔Ts均匀分布。
接口模块29还处理在过采样过程中常见的不期望的成像现象,并且将其对调节的影响完全建模以便保证正确的性能。
接口模块29允许几乎以开关系统27中的模拟采样速率工作,同时以公共的共同速率在控制器21中执行控制例程,因此典型的数字控制板就足够了。这样,谐波消除能力达到由3L-NPC转换器23施加的最大值,并且实际上以低开关频率优化电力质量。
关于具有基于SHE-PWM模式的开关系统27的3L-NPC转换器23的DC电容器电压的均衡,控制器21根据均衡模型(EM)方法来配置。通过研究二阶负序(Second Order NegativeSequence,SONS)的注入和反馈来构造EM。每次发生电压不平衡时,通过3L-NPC转换器23自身注入SONS电流。控制器21检测它并插入SONS电压以修改先前电流。具有SHE-PWM开关模式的SONS电流的迭代对DC电容器之间的电压差具有直接影响。在EM的帮助下,可以配置控制器21以确保稳定的均衡、增加过程动态并控制额外序列的瞬时注入。
本发明的应用覆盖基于分布式发电系统和其它领域的MV,例如采矿、电泵或MV驱动。
本发明的主要优点是,不仅可以使得在闭环应用中使用基于具有3L-NPC转换器23的SHE-PWM模式的开关系统27可行,而且可以使性能达到最佳极限。因此,所提出的功率转换系统13在成本和效率方面具有高度竞争力。
虽然已经结合各种实施例描述了本发明,但是从说明书将理解,可以进行元件的各种组合、变化或改进,并且这些组合在本发明的范围内。
Claims (4)
1.一种三相中压功率转换系统(13),用于在闭环模式下通过3L-NPC转换器(23)将电力消耗装置(15)耦接到电源(11),所述3L-NPC转换器(23)包括开关系统(27)和具有控制器(21)的调节系统(25),其特征在于:
-所述开关系统(27)基于SHE-PWM模式;
-所述调节系统(25)还包括所述控制器(21)和所述开关系统(27)之间的接口模块(29),所述接口模块(29)配置为以比由所述控制器(21)管理的电压参考样本的速率快L倍的速率向所述开关系统(27)提供电压参考样本。
2.根据权利要求1所述的三相中压功率转换系统(13),其中,所述接口模块(29),对于从所述控制器(21)接收的每个电压参考样本,向所述开关系统(27)提供L-1个电压参考样本,所述L-1个电压参考样本根据基于历史信息的预测模型生成。
3.根据权利要求2所述的三相中压功率转换系统(13),其中,用于每组L-1个样本的所述预测模型基于从所述控制器(21)接收的给定数量M个先前采样的值。
4.根据权利要求1-3中任一项所述的三相中压功率转换系统(13),其中,当所述3L-NPC变换器(23)的两个DC电容器的电压不平衡时,所述控制器(21)相应地配置为以均衡模型EM方法,在所述3L-NPC变换器(23)中注入SONS电流,其以迭代方式进行直到所述电压被平衡。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201600194A ES2632890B1 (es) | 2016-03-15 | 2016-03-15 | Un sistema de conversión de energía trifásica de media tensión para aplicaciones de lazo cerrado |
ESES201600194 | 2016-03-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107196541A true CN107196541A (zh) | 2017-09-22 |
CN107196541B CN107196541B (zh) | 2021-04-30 |
Family
ID=58266808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710148828.5A Active CN107196541B (zh) | 2016-03-15 | 2017-03-14 | 用于闭环应用的三相中压功率转换系统 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10404185B2 (zh) |
EP (1) | EP3220530A1 (zh) |
CN (1) | CN107196541B (zh) |
BR (1) | BR102017005213A2 (zh) |
ES (1) | ES2632890B1 (zh) |
MX (1) | MX365629B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018157912A1 (de) * | 2017-02-28 | 2018-09-07 | Siemens Aktiengesellschaft | Verfahren und anordnung zum betreiben einer elektrischen einrichtung |
CN110176868A (zh) * | 2019-05-31 | 2019-08-27 | 西安理工大学 | 基于shepwm策略的三电平变流器中点电位平衡方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1937379A (zh) * | 2006-09-18 | 2007-03-28 | 崇贸科技股份有限公司 | 用于测量变压器的消磁电压的线性预测取样电路和装置 |
EP2546979A1 (en) * | 2011-07-15 | 2013-01-16 | ABB Research Ltd. | Method for controlling harmonics and resonances in an inverter |
CN103036460A (zh) * | 2012-11-26 | 2013-04-10 | 天津大学 | 一种三电平电压源型变换器模型预测控制方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2910616B2 (ja) * | 1995-04-27 | 1999-06-23 | 三菱電機株式会社 | 電圧源型電力変換装置 |
CA2822593A1 (en) * | 2010-12-22 | 2012-06-28 | Ge Energy Power Conversion Technology Limited | Mechanical arrangement of a multilevel power converter circuit |
US9214861B2 (en) * | 2013-06-28 | 2015-12-15 | Toyota Jidosha Kabushiki Kaisha | Loss optimization control for DC-to-DC converter |
EP2978122A1 (en) * | 2014-07-22 | 2016-01-27 | ABB Technology AG | Model predictive control of a modular multilevel converter |
CN107750426B (zh) * | 2015-04-24 | 2019-06-04 | Epc动力公司 | 具有可控dc偏移的电力转换器 |
BR112018004887A2 (pt) * | 2015-09-13 | 2018-10-09 | Alpha Tech Inc | sistemas e métodos de controle de potência. |
-
2016
- 2016-03-15 ES ES201600194A patent/ES2632890B1/es active Active
-
2017
- 2017-03-09 US US15/454,044 patent/US10404185B2/en active Active
- 2017-03-10 EP EP17000396.6A patent/EP3220530A1/en not_active Withdrawn
- 2017-03-14 CN CN201710148828.5A patent/CN107196541B/zh active Active
- 2017-03-14 MX MX2017003340A patent/MX365629B/es active IP Right Grant
- 2017-03-15 BR BR102017005213-3A patent/BR102017005213A2/pt not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1937379A (zh) * | 2006-09-18 | 2007-03-28 | 崇贸科技股份有限公司 | 用于测量变压器的消磁电压的线性预测取样电路和装置 |
EP2546979A1 (en) * | 2011-07-15 | 2013-01-16 | ABB Research Ltd. | Method for controlling harmonics and resonances in an inverter |
CN103036460A (zh) * | 2012-11-26 | 2013-04-10 | 天津大学 | 一种三电平电压源型变换器模型预测控制方法 |
Non-Patent Citations (2)
Title |
---|
J. DIONÍSIO BARROS,ET AL: ""Optimal Predictive Control of Three-Phase NPC Multilevel Converter for Power Quality Applications"", 《 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 》 * |
SAMIR KOURO,ET AL: ""Predictive control based selective harmonic elimination with low switching frequency for multilevel converters"", 《2009 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION》 * |
Also Published As
Publication number | Publication date |
---|---|
ES2632890A1 (es) | 2017-09-15 |
CN107196541B (zh) | 2021-04-30 |
ES2632890A8 (es) | 2018-03-15 |
US20170272004A1 (en) | 2017-09-21 |
US10404185B2 (en) | 2019-09-03 |
MX365629B (es) | 2019-06-07 |
EP3220530A1 (en) | 2017-09-20 |
ES2632890B1 (es) | 2018-06-27 |
BR102017005213A2 (pt) | 2018-03-20 |
MX2017003340A (es) | 2018-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111226371B (zh) | 电动车电池充电器 | |
Sun et al. | A multifunctional and wireless droop control for distributed energy storage units in islanded AC microgrid applications | |
Acuna et al. | Improved active power filter performance for renewable power generation systems | |
US9712084B2 (en) | Electric power conversion device | |
DK178625B1 (en) | Effektomformningssystem og fremgangsmåde | |
KR101300354B1 (ko) | 계통 연계형 전력변환장치 | |
KR101786904B1 (ko) | 마이크로그리드 제어를 위한 bess에의 모델 예측 제어 장치 및 방법 | |
Kumar et al. | Seamless transition of three phase microgrid with load compensation capabilities | |
JP2010178495A (ja) | 電力変換装置、及び電力変換システム | |
JP2007280358A (ja) | 自励式無効電力補償装置および自励式無効電力補償装置におけるコンデンサ電圧制御方法ならびに電力蓄積装置および電力蓄積装置制御方法 | |
Yaramasu et al. | Enhanced model predictive voltage control of four-leg inverters with switching frequency reduction for standalone power systems | |
Srdic et al. | Predictive fast DSP-based current controller for thyristor converters | |
WO2017062109A1 (en) | Solar power conversion system and method | |
CN109639153B (zh) | 一种Quasi-Z源间接矩阵变换器的模型预测控制方法 | |
Guazzelli et al. | Dual predictive current control of grid connected nine-switch converter applied to induction generator | |
CN107196541A (zh) | 用于闭环应用的三相中压功率转换系统 | |
Rodriguez-Rodrıguez et al. | Current-sensorless control of an SPWM H-Bridge-based PFC rectifier designed considering voltage sag condition | |
Nallusamy et al. | Power quality improvement in a low‐voltage DC ceiling grid powered system | |
Leon et al. | Exponentially convergent estimator to improve performance of voltage source converters | |
EP3063866A2 (en) | A controller for a power converter | |
Acuña et al. | Simple and robust multi-objective predictive control method for a single-phase three-level NPC converter based active power filter | |
Sun et al. | An improved DC capacitor voltage balancing strategy for PWM cascaded H-bridge converter-based STATCOM | |
Salomonsson et al. | Comparative design and analysis of DC-link-voltage controllers for grid-connected voltage-source converter | |
Kalla | Sliding reinforced competitive learning scheme for voltage and frequency regulation of diesel engine driven standalone single-phase generators | |
Patel et al. | A novel control method for UPS battery charging using Active Front End (AFE) PWM rectifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |