CN107188235B - 一种Bi2WO6纳米球的制备方法 - Google Patents

一种Bi2WO6纳米球的制备方法 Download PDF

Info

Publication number
CN107188235B
CN107188235B CN201710444143.5A CN201710444143A CN107188235B CN 107188235 B CN107188235 B CN 107188235B CN 201710444143 A CN201710444143 A CN 201710444143A CN 107188235 B CN107188235 B CN 107188235B
Authority
CN
China
Prior art keywords
solution
nanosphere
molar concentration
bismuth nitrate
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710444143.5A
Other languages
English (en)
Other versions
CN107188235A (zh
Inventor
徐刚
皇甫统帅
孙小磊
沈鸽
韩高荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710444143.5A priority Critical patent/CN107188235B/zh
Publication of CN107188235A publication Critical patent/CN107188235A/zh
Application granted granted Critical
Publication of CN107188235B publication Critical patent/CN107188235B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种Bi2WO6纳米球的制备方法,包括以下步骤:1)将硝酸铋溶液滴加到钨酸钠溶液中;所述硝酸铋溶液的摩尔浓度0.20~0.60mol/L,所述钨酸钠溶液的摩尔浓度0.10~0.30mol/L;2)继续滴加四甲基氢氧化铵溶液,混合后进行水热反应,过滤,清洗,得到Bi2WO6纳米球;所述四甲基氢氧化铵溶液的摩尔浓度0.01~0.05mol/L。该方法制备过程简单,自组装型结构的形貌易于调控,尺寸均一。

Description

一种Bi2WO6纳米球的制备方法
技术领域
本发明涉及Bi2WO6的合成领域,具体涉及一种Bi2WO6纳米球的制备方法。
背景技术
近年来的研究发现,纳米材料的性能不仅受其尺寸影响,也受其形貌巨大地影响。因此纳米结构的制备引起了人们极大的关注,不仅有零维纳米颗粒、一维纳米棒、纳米纤维、三维枝杈晶等形貌的大量报道,也制备出了许多自组装介孔球、纳米管等。
Bi2WO6是由(Bi2O2)2+层和WO6层互相交替排列的钙钛矿片层组成的层状结构。Bi2WO6中W原子的5d轨道形成导带,Bi原子的6s和原子的2p杂化轨道形成价带,二者组成Bi2WO6的能带结构,由于Bi 6s轨道和O 2p轨道杂化,导致其价带电位升高,禁带宽度变窄。
因此,Bi2WO6可吸收利用近紫外光(300~400nm)甚至是部分可见光。这也使得Bi2WO6光催化剂具有如下特点:(1)良好的紫外和可见光响应;(2) 热稳定;(3)光催化稳定;(4)成本相对较低;(5)环境友好。因此,研究开发Bi2WO6光催化材料,将会增加太阳能的利用率,在环境污染问题的治理和新能源的开发应用方面有着重大的意义。由于Bi2WO6具有特殊的层状结构,使得其与其它光催化剂相比在表面催化上的应用具有明显的优势地位。通过对Bi2WO6晶体的合成和表征进行研究分析,改变合成的反应条件来获取复杂的多级结构,可以改善其光催化活性,并且将对这一系列氧化物纳米晶体的生长机理具有指导作用。
当今中国正处于工业化和城镇化高速发展的阶段,对高效利用太阳能的技术研发尤为紧迫。而随着Bi2WO6光催化剂研究的不断深入,利用光催化氧化分解有机污染物和光解水制氢的新途径将会被逐步开辟出来,这在治理环境问题和解决能源短缺方面具有巨大的经济效益和重要的实用价值。
发明内容
本发明的目的在于针对现有技术的不足,提供一种Bi2WO6纳米球的制备方法,该方法制备过程简单,自组装型结构的形貌易于调控,尺寸均一。
本发明所提供的技术方案为:
一种Bi2WO6纳米球的制备方法,包括以下步骤:
1)将硝酸铋溶液滴加到钨酸钠溶液中;所述硝酸铋溶液的摩尔浓度 0.20~0.60mol/L,所述钨酸钠溶液的摩尔浓度0.10~0.30mol/L;
2)继续滴加四甲基氢氧化铵溶液,混合后进行水热反应,过滤,清洗,得到Bi2WO6纳米球;所述四甲基氢氧化铵溶液的摩尔浓度0.01~0.05mol/L。
上述技术方案中,以钨酸钠和硝酸铋为反应物料,以四甲基氢氧化铵为表面活性剂,最终实现了Bi2WO6纳米球的制备。钨酸钠为强碱弱酸盐,硝酸铋为强酸弱碱盐,其混合溶液显示一定的弱酸性,并且四甲基氢氧化铵显碱性,OH-离子较多。在较多的OH-离子作用下,形核点数量增加,有利于形核并且得到尺寸较小的纳米片。为减小系统表面能,纳米片进行自组装,最终形成Bi2WO6纳米球。
优选的,所述硝酸铋溶液、钨酸钠溶液与四甲基氢氧化铵溶液的体积比为13~17:13~17:10。
优选的,所述硝酸铋溶液的摩尔浓度0.30~0.40mol/L。
优选的,所述钨酸钠溶液的摩尔浓度0.15~0.20mol/L。
优选的,所述四甲基氢氧化铵溶液的摩尔浓度0.02~0.03mol/L。
优选的,所述水热反应的反应温度为180~250℃,反应时间为12~32h。
优选的,所述水热反应的反应温度为190~200℃,反应时间为20~24h。
优选的,所述清洗为:将过滤得到的产物依次用稀醋酸、去离子水和乙醇反复清洗。进一步优选为三次。用稀醋酸对水热合成产物的清洗是为了将前驱体中混入二氧化碳所形成的CO3 2-、HCO3 -去除,用去离子水清洗是为了将反应物料引入的钠离子、硝酸根离子、铵根离子及有机成分与合成的Bi2WO6纳米粉体充分分离,得到纯相的Bi2WO6自组装纳米球。
优选的,所述步骤1)和步骤2)中的滴加速度1~2滴/秒。
作为优选,所述钨酸钠溶液的摩尔浓度0.19~0.20mol/L,硝酸铋溶液的摩尔浓度0.39~0.40mol/L,四甲基氢氧化铵溶液的摩尔浓度0.02~0.03mol/L;所述硝酸铋溶液、钨酸钠溶液与四甲基氢氧化铵溶液的体积比为 14~16:14~16:10;所述水热反应的反应温度为195~200℃,反应时间为19~21h。在上述的条件下,所得Bi2WO6纳米球的形貌最好,质量稳定,粉体颗粒分散性好。
同现有技术相比,本发明的有益效果体现在:
(1)本发明中的制备工艺过程简单,易于控制,无环境污染,成本低,易于规模化生产。
(2)本发明制备得到的Bi2WO6纳米球的尺寸为2~4μm,纳米片厚度为 10~20nm,产物质量稳定,粉体颗粒分散性好,且具有优异的光催化性能。
附图说明
图1为实施例2合成的Bi2WO6纳米球的X射线衍射图;
图2为实施例2合成的Bi2WO6纳米球的扫描电子显微镜图;
图3为对比例1合成的片状Bi2WO6的X射线衍射图;
图4为对比例1合成的片状Bi2WO6的扫描电子显微镜图;
图5为实施例2合成的Bi2WO6纳米球降解罗丹明B的降解图;
图6为罗丹明B的自降解图。
具体实施方式
以下结合具体的实施例对本发明作进一步说明。
实施例1
1)将1.5mmol二水钨酸钠溶解于15ml去离子水中,使得二水钨酸钠溶液的摩尔浓度0.10mol/L;
2)将3mmol五水硝酸铋溶解于15ml去离子水中,使得五水硝酸铋溶液的摩尔浓度0.20mol/L,将0.10mmol四甲基氢氧化铵溶于10ml去离子水中;
再将五水硝酸铋溶液以1~2滴/秒的速度滴加到钨酸钠溶液中,并将四甲基氢氧化铵溶液以相同的滴加速率滴加到上述混合溶液中,搅拌30min后,在180℃下保温12小时进行热处理。然后,降至室温,取出反应产物,过滤,依次用稀醋酸、去离子水和乙醇清洗,60℃温度下烘干,得到Bi2WO6纳米球。
实施例2
1)将3mmol二水钨酸钠溶解于15ml去离子水中,使得二水钨酸钠溶液的摩尔浓度0.20mol/L;
2)将6mmol五水硝酸铋溶解于15ml去离子水中,使得五水硝酸铋溶液的摩尔浓度0.40mol/L,将0.25mmol四甲基氢氧化铵溶于10ml去离子水中;
再将五水硝酸铋溶液以1~2滴/秒的速度滴加到钨酸钠溶液中,并将四甲基氢氧化铵溶液以相同的滴加速率滴加到上述混合溶液中,搅拌30min后,在200℃下保温20小时进行热处理。然后,降至室温,取出反应产物,过滤,依次用稀醋酸、去离子水和乙醇清洗,60℃温度下烘干,得到Bi2WO6纳米球。
所合成的Bi2WO6纳米球的X射线衍射图,如图1所示,产物为Bi2WO6纳米球,没有其他杂质峰,说明产物为纯相的Bi2WO6;扫描电子显微镜SEM 照片如图2所示,制得的Bi2WO6纳米球的尺寸为2~4μm,纳米片厚度为 10~20nm,形貌为球状。
实施例3
1)将4.5mmol二水钨酸钠溶解于15ml去离子水中,使得二水钨酸钠溶液的摩尔浓度0.30mol/L;
2)将9mmol五水硝酸铋溶解于15ml去离子水中,使得五水硝酸铋溶液的摩尔浓度0.60mol/L,再将0.5mmol四甲基氢氧化铵溶于10ml去离子水中;
将五水硝酸铋溶液以1~2滴/秒的速度滴加到钨酸钠溶液中,并将四甲基氢氧化铵溶液以相同的滴加速率滴加到上述混合溶液中,搅拌30min后,在 250℃下保温32小时进行热处理。然后,降至室温,取出反应产物,过滤,依次用稀醋酸、去离子水和乙醇清洗,60℃温度下烘干,得到Bi2WO6纳米球。
对比例1
1)将3mmol二水钨酸钠溶解于15ml去离子水中,使得二水钨酸钠溶液的摩尔浓度0.20mol/L;
2)将6mmol五水硝酸铋溶解于15ml去离子水中,使得五水硝酸铋溶液的摩尔浓度0.40mol/L,将一定量的KOH片剂溶于10ml去离子水中,使得氢氧化钾溶液摩尔浓度为0.8mol/L;
将五水硝酸铋溶液以1~2滴/秒的速度滴加到钨酸钠溶液中,并将氢氧化钾溶液以相同的滴加速率滴加到上述混合溶液中,搅拌30min后,在200℃下保温20小时进行热处理。然后,降至室温,取出反应产物,过滤,依次用稀醋酸、去离子水和乙醇清洗三次,60℃温度下烘干,得到片状Bi2WO6
所合成的片状Bi2WO6的X射线衍射图,如图3所示;扫描电子显微镜 SEM照片如图4所示,制得的片状Bi2WO6厚度约为20nm。
降解罗丹明B性能实验:
在10-5mol/L的60mL的罗丹明B溶液中加入0.2g实施例2所制备的 Bi2WO6纳米球,暗搅拌60min后在可见光下照射,每隔一定时间取一次样,所得紫外-可见吸收光谱如图5所示。
另一组作为空白组,不添加任何催化剂,进行罗丹明B可见光自降解,所得紫外-可见吸收光谱如图6所示。
通过对比可知,本方法所制备的Bi2WO6纳米球具有优异的可见光光催化性能。

Claims (3)

1.一种Bi2WO6纳米球的制备方法,其特征在于,包括以下步骤:
1)将硝酸铋溶液滴加到钨酸钠溶液中;所述硝酸铋溶液的摩尔浓度0.39~0.40mol/L,所述钨酸钠溶液的摩尔浓度0.19~0.20mol/L;
2)继续滴加四甲基氢氧化铵溶液,混合后进行水热反应,过滤,清洗,得到Bi2WO6纳米球;所述四甲基氢氧化铵溶液的摩尔浓度0.02~0.03mol/L;所述水热反应的反应温度为195~200℃,反应时间为20~21h;
所述硝酸铋溶液、钨酸钠溶液与四甲基氢氧化铵溶液的体积比为14~16:14~16:10。
2.根据权利要求1所述的Bi2WO6纳米球的制备方法,其特征在于,所述清洗为:将过滤得到的产物依次用稀醋酸、去离子水和乙醇反复清洗。
3.根据权利要求1所述的Bi2WO6纳米球的制备方法,其特征在于,所述步骤1)和步骤2)中的滴加速度1~2滴/秒。
CN201710444143.5A 2017-06-13 2017-06-13 一种Bi2WO6纳米球的制备方法 Expired - Fee Related CN107188235B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710444143.5A CN107188235B (zh) 2017-06-13 2017-06-13 一种Bi2WO6纳米球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710444143.5A CN107188235B (zh) 2017-06-13 2017-06-13 一种Bi2WO6纳米球的制备方法

Publications (2)

Publication Number Publication Date
CN107188235A CN107188235A (zh) 2017-09-22
CN107188235B true CN107188235B (zh) 2019-07-09

Family

ID=59878093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710444143.5A Expired - Fee Related CN107188235B (zh) 2017-06-13 2017-06-13 一种Bi2WO6纳米球的制备方法

Country Status (1)

Country Link
CN (1) CN107188235B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108339989B (zh) * 2018-02-13 2021-05-28 河南科技大学 一种纳米级钨铜前驱粉体的简易制备方法
CN111994957A (zh) * 2020-08-20 2020-11-27 临沂大学 一种wo3气敏材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103950985A (zh) * 2014-04-29 2014-07-30 西南科技大学 一种中空方球结构的纳米钨酸铋及其制备方法
CN104226212A (zh) * 2014-09-30 2014-12-24 天津大学 暴露{010}晶面族的Bi2WO6球形团簇的制备
CN105854870A (zh) * 2016-05-11 2016-08-17 福州大学 一种Bi2WO6分级凹槽微米球光催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103950985A (zh) * 2014-04-29 2014-07-30 西南科技大学 一种中空方球结构的纳米钨酸铋及其制备方法
CN104226212A (zh) * 2014-09-30 2014-12-24 天津大学 暴露{010}晶面族的Bi2WO6球形团簇的制备
CN105854870A (zh) * 2016-05-11 2016-08-17 福州大学 一种Bi2WO6分级凹槽微米球光催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Highly efficient visible-light-induced photocatalytic activity of Bi2WO6/BiVO4 heterojunction photocatalysts;Saranyoo Chaiwichian等;《Materials Research Bulletin》;20140515;第29页2.1. Photocatalyst synthesis
水热法合成Bi2WO6微球及其应用研究;武斌等;《广东化工》;20151231;278-279页

Also Published As

Publication number Publication date
CN107188235A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
Zinatloo-Ajabshir et al. Facile synthesis of Nd2Sn2O7-SnO2 nanostructures by novel and environment-friendly approach for the photodegradation and removal of organic pollutants in water
CN106732524B (zh) 一种α/β-氧化铋相异质结光催化剂及其制法和用途
Attia et al. Metal clusters: New era of hydrogen production
CN101811044B (zh) 铌酸钾纳米管光催化剂及其制备方法和应用
Wu et al. CeO2/Co3O4 porous nanosheet prepared using rose petal as biotemplate for photo-catalytic degradation of organic contaminants
CN102080262B (zh) 一种可见光催化材料及其制备方法与应用
Qin et al. Construction of multi-shelled Bi2WO6 hollow microspheres with enhanced visible light photo-catalytic performance
CN104772136B (zh) 一种钒酸铋及其制备方法与应用
CN102500388A (zh) 铜、铋共掺杂的纳米二氧化钛光催化剂及其制备、应用
CN103599772A (zh) 一种钛酸盐纳米管复合型光催化剂及其制备方法和应用
Jerome et al. Layered double hydroxide (LDH) nanomaterials with engineering aspects for photocatalytic CO2 conversion to energy efficient fuels: Fundamentals, recent advances, and challenges
CN105921149A (zh) 一种溶剂热制备铜修饰二氧化钛纳米棒的方法
CN103754837A (zh) 利用多孔氧化铋为模板制备含铋纳米空心球的方法
CN108993538A (zh) 一种二硫化铼纳米片/二氧化钛纳米纤维复合光催化材料的制备方法
CN108262041B (zh) 一种室温一锅制备高活性金/氧化锌复合纳米簇的方法
CN109433229A (zh) 一种CdS/CoO纳米异质结构的制备方法
CN107188235B (zh) 一种Bi2WO6纳米球的制备方法
CN103480395A (zh) 一种核壳结构硫化铋@氧化铋复合物微球的制备与应用
CN102125831B (zh) 介孔Bi2O3/TiO2纳米光催化剂的制备方法
CN113856702B (zh) 一种硫化镉纳米棒/硫化亚铜纳米壳异质结构光催化剂及制备方法与应用
CN107188234A (zh) 一种片状Bi2WO6的制备方法
CN107162059A (zh) 一种制备片状Bi2WO6的方法
CN107935043A (zh) 光催化活性的钨酸铋空心微球的制备方法
Xue et al. Construction of Cu 2+-doped CeO 2 nanocrystals hierarchical hollow structure and its enhanced photocatalytic performance
CN102786080A (zh) 氧化铟锡化合物及其制备方法与光催化应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190709

Termination date: 20210613