CN107179694A - 一种并网逆变器Narendra自适应控制算法 - Google Patents

一种并网逆变器Narendra自适应控制算法 Download PDF

Info

Publication number
CN107179694A
CN107179694A CN201710537015.5A CN201710537015A CN107179694A CN 107179694 A CN107179694 A CN 107179694A CN 201710537015 A CN201710537015 A CN 201710537015A CN 107179694 A CN107179694 A CN 107179694A
Authority
CN
China
Prior art keywords
mrow
msub
msup
combining inverter
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710537015.5A
Other languages
English (en)
Inventor
林琼斌
卢志钢
苏先进
柴琴琴
蔡逢煌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Xiamen Kehua Hengsheng Co Ltd
Original Assignee
Fuzhou University
Xiamen Kehua Hengsheng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University, Xiamen Kehua Hengsheng Co Ltd filed Critical Fuzhou University
Priority to CN201710537015.5A priority Critical patent/CN107179694A/zh
Publication of CN107179694A publication Critical patent/CN107179694A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及一种并网逆变器Narendra自适应控制算法。针对电力电子的非线性特性,传统控制器性能有限,为进一步改善并网逆变器性能,采用Narendra自适应控制,以单电流环为架构,首先采样电网电压跟踪相位,以及电网电流进行反馈,通过选择合适的参考模型,使得输出达到理想效果。

Description

一种并网逆变器Narendra自适应控制算法
技术领域
本发明涉及一种并网逆变器Narendra自适应控制算法。
背景技术
随着分布式新能源并网技术的发展,对并网逆变器的性能要求越来越高。电力电子装置是一种强耦合,非线性的系统。目前单纯地采用线性控制,如PID控制可以满足多数场合,但其控制性能有限,并不能完全消除逆变器误差。同时,由于电网含有各种谐波,及其幅值的波动,电路中的杂散参数影响将对系统带来干扰,并且逆变器带有感性滤波元件与DSP数字控制存在的时滞问题,以及控制器设计时将逆变器的桥臂输出作为一个常系数比例环节,而系统是非线性,其比例系数应该是时变的。以上因素将大大降低并网逆变器输出波形质量,并且这些参数变化是不可测的。因此,为改善进入电网的电流波形质量,可以在已设计完成的理想控制器环节引入自适应控制。
发明内容
本发明的目的在于进一步改善并网逆变系统性能,提供一种并网逆变器Narendra自适应控制算法,该算法在原先设计完成的控制器上加入Narendra自适应控制,可以根据自适应律对控制器进行调节,使得被控对象的动态、静态性能逼近所设定的参考模型。
为实现上述目的,本发明的技术方案是:一种并网逆变器Narendra自适应控制算法,包括如下步骤,
引入两个辅助信号发生器F1、F2,其中,辅助信号发生器F1的状态方程、输出方程和传递函数分别为:
ω1=cTv1
辅助信号发生器F2的状态方程、输出方程和传递函数分别为:
令yp=hTxp
ω2=dTv2+d0yp
式中v1,v2,c,d为(n-1)维列向量,I为单位矩阵,yp为并网逆变器输出电流,F1和F2的Λ和b完全相同,可分别表示为:
其中,l1、ln-1为假设的变量;列向量c和d可分别表示为:
cT=[c1 c2 … cn-1],dT=[d1 d2 … dn-1]
传递函数W1(s)和W2(s)中的分母N(s)是(n-1)阶首一古尔维茨多项式,分子C(s)和D(s)都是(n-2)阶多项式,它们的系数分别是向量c和d的元素;
设并网逆变器的传递函数为:
则辅助信号发生器与并网逆变器一起组成的系统的传递函数为:
其中,Vd为输入电压,L为电感量,r(s)为输入信号,yp(s)为输出传递函数,k0为系数;
选取参考模型,设参考模型的传递函数为Wm(s),为使得并网逆变器实现自适应控制,则需并网逆变器的传递函数与参考模型的传递函数相同,即Wp(s)=Wm(s),便可得到辅助信号发生器参数;
设并网逆变器输出电流与参考模型输出间的误差为e1=yp-ym
设2n维向量ω表示系统中的信号向量为
设2n维向量θ表示系统中可调节参数向量为
θT=[k0 cT d0 dT]
接着根据Lyapunov稳定性定理,选取Lyapunov函数为
式中P和г都是正定对称矩阵;虽然在这边引入P矩阵,但只是用来过渡,实际上并不需要求出实际矩阵参数;为方便计算,可令г矩阵为单位矩阵,可得自适应律为
其中,ω为信号向量,e1为广义误差;
故得
最后,结合PLL锁相环,令输入信号r为标准的正弦波,最终可得出并网逆变器的控制信号u(s);控制信号u(s)控制并网逆变器四个开关管的动作,从而使得并网逆变器输出电流跟踪参考模型的输出。
相较于现有技术,本发明具有以下有益效果:本发明算法针对电力电子的非线性特性,传统控制器性能有限,为进一步改善并网逆变器性能,采用Narendra自适应控制,以单电流环为架构,首先采样电网电压跟踪相位,以及电网电流进行反馈,通过选择合适的参考模型,使得输出达到理想效果。
附图说明
图1是并网逆变器自适应控制原理框图。
图2是本发明采用的系统简化框图。
图3是采用PSIM仿真软件搭建的控制框图。
图4是PSIM仿真软件搭建的并网逆变电路。
图5是输出电流波形图。
具体实施方式
下面结合附图,对本发明的技术方案进行具体说明。
本发明的一种并网逆变器Narendra自适应控制算法,包括如下步骤,
引入两个辅助信号发生器F1、F2,其中,辅助信号发生器F1的状态方程、输出方程和传递函数分别为:
ω1=cTv1
辅助信号发生器F2的状态方程、输出方程和传递函数分别为:
令yp=hTxp
ω2=dTv2+d0yp
式中v1,v2,c,d为(n-1)维列向量,I为单位矩阵,yp为并网逆变器输出电流,F1和F2的Λ和b完全相同,可分别表示为:
其中,l1、ln-1为假设的变量;列向量c和d可分别表示为:
cT=[c1 c2 … cn-1],dT=[d1 d2 … dn-1]
传递函数W1(s)和W2(s)中的分母N(s)是(n-1)阶首一古尔维茨多项式,分子C(s)和D(s)都是(n-2)阶多项式,它们的系数分别是向量c和d的元素;
设并网逆变器的传递函数为:
则辅助信号发生器与并网逆变器一起组成的系统的传递函数为:
其中,Vd为输入电压,L为电感量,r(s)为输入信号,yp(s)为输出传递函数,k0为系数;
选取参考模型,设参考模型的传递函数为Wm(s),为使得并网逆变器实现自适应控制,则需并网逆变器的传递函数与参考模型的传递函数相同,即Wp(s)=Wm(s),便可得到辅助信号发生器参数;
设并网逆变器输出电流与参考模型输出间的误差为e1=yp-ym
设2n维向量ω表示系统中的信号向量为
设2n维向量θ表示系统中可调节参数向量为
θT=[k0 cT d0 dT]
接着根据Lyapunov稳定性定理,选取Lyapunov函数为
式中P和г都是正定对称矩阵;虽然在这边引入P矩阵,但只是用来过渡,实际上并不需要求出实际矩阵参数;为方便计算,可令г矩阵为单位矩阵,可得自适应律为
其中,ω为信号向量,e1为广义误差;
故得
最后,结合PLL锁相环,令输入信号r为标准的正弦波,最终可得出并网逆变器的控制信号u(s);控制信号u(s)控制并网逆变器四个开关管的动作,从而使得并网逆变器输出电流跟踪参考模型的输出。
以下为本发明的具体实现过程。
本发明的并网逆变器自适应控制算法,以双BUCK全桥并网逆变器为例(如图2所示),其包括直流电压Vd,电网Vg,电容Cd,二极管D1、D2、D3、D4,开关管S1、S2、S3、S4,电感L1、L2;PLL锁相环采样电网电压并跟踪其相位,电流传感器采样电网电流作为反馈信号,并与基准电流给定、参考模型给定、自适应律等一起作为自适应控制的输入端,开关管S1-S4的驱动信号作为自适应控制的输出端,即与图2中的MCU连接,自适应算法在MCU中实现。Usensor采样电压,进入MCU对电网电压进行锁相,判断电压过零点及正、负半周。Ig为网侧的采样电流,进入MCU作为电流环采样反馈。
其电路工作模态为:当电网电压从负半周过零时,经PLL锁相以及电网电流采样进MCU,通过Narendra自适应控制算法得到控制信号u,即占空比。当u为正,工频管S3导通、S4关断,高频管S2以占空比u作高频开关动作。当S2开通时,电流从直流源Vd经过二极管D3,工频管S3,电感L2,高频管S2流回Vd。当高频管S2关断时,网侧电流从L2经过D2、D3、工频管S3、电网、L2续流。
当u为负时,工频管S4导通,S3关断,高频管S1以占空比|u|作高频开关动作。当S1开通时,电流从直流源Vd经过二极管D4,工频管S4,电感L1,高频管S1流回Vd。当高频管S1关断时,网侧电流从L1经过D1、D4、工频管S4、电网、L1续流。
本发明方法的仿真电路通过PSIM仿真软件搭建,如图3、4所示分别为PSIM仿真软件搭建的控制框图及PSIM仿真软件搭建的并网逆变电路。
本发明方法的原理框图如图1表示,其中,并网逆变器的传递函数为Wp(s),参考模型的传递函数为Wm(s)。辅助信号发生器F1和F2都是(n-1)阶的稳定动态系统。辅助信号发生器F1的状态方程、输出方程和传递函数分别为:
ω1=cTv1
辅助信号发生器F2的状态方程、输出方程和传递函数分别为:
ω2=dTv2+d0yp
式中v1,v2,c,d为(n-1)维列向量,F1和F2的Λ和b完全相同,可分别表示为:
列向量c和d可分别表示为:
cT=[c1 c2 … cn-1],dT=[d1 d2 … dn-1]
传递函数W1(s)和W2(s)中的分母N(s)是(n-1)阶首一古尔维茨多项式,分子C(s)和D(s)都是(n-2)阶多项式,它们的系数分别是向量c和d的元素,为系统的可调参数。设并网逆变器的传递函数为:
上述两个辅助信号发生器与并网逆变器一起组成如图2所示的系统。根据图2可得整个系统传递函数为:
自适应控制的作用就是使并网逆变器系统的传递函数与参考模型的传递函数相同,即Wp(s)=Wm(s),便可得到辅助信号发生器参数。
设并网逆变输出电流与参考模型输出间的误差为e1
设2n维向量ω表示系统中的信号向量为
设2n维向量θ表示系统中可调节参数向量为
θT=[k0 cT d0 dT]
接着根据Lyapunov稳定性定理,这里不做累述,选取Lyapunov函数为
式中P和г都是正定对称矩阵。可得自适应律为
参考模型的选取,可根据未引入自适应控制之前设计完成的控制器,也可以采用其它理想输出的二阶控制器。
最后,结合PLL锁相环,令输入信号r为标准的正弦波,最终可得出并网逆变器的控制信号u(s)。控制信号u(s)控制逆变器四个开关管的动作,从而使得并网逆变器输出电流跟踪参考模型的输出。
图5为经本发明并网逆变器Narendra自适应控制算法自适应控制后,双BUCK全桥并网逆变器电路的输出波形图,其中,ig为电网电流波形,ref为给定电流波形。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (1)

1.一种并网逆变器Narendra自适应控制算法,其特征在于:包括如下步骤,
引入两个辅助信号发生器F1、F2,其中,辅助信号发生器F1的状态方程、输出方程和传递函数分别为:
<mrow> <msub> <mover> <mi>v</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>&amp;Lambda;v</mi> <mn>1</mn> </msub> <mo>+</mo> <mi>b</mi> <mi>u</mi> </mrow>
ω1=cTv1
<mrow> <msub> <mi>W</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>c</mi> <mi>T</mi> </msup> <msup> <mrow> <mo>(</mo> <mi>s</mi> <mi>I</mi> <mo>-</mo> <mi>&amp;Lambda;</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>b</mi> <mo>=</mo> <mfrac> <mrow> <mi>C</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>N</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
辅助信号发生器F2的状态方程、输出方程和传递函数分别为:
令yp=hTxp
<mrow> <msub> <mover> <mi>v</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>&amp;Lambda;v</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>by</mi> <mi>p</mi> </msub> </mrow>
ω2=dTv2+d0yp
<mrow> <msub> <mi>W</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>d</mi> <mn>0</mn> </msub> <mo>+</mo> <msup> <mi>d</mi> <mi>T</mi> </msup> <msup> <mrow> <mo>(</mo> <mi>s</mi> <mi>I</mi> <mo>-</mo> <mi>&amp;Lambda;</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>b</mi> <mo>=</mo> <mfrac> <mrow> <mi>D</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>N</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <msub> <mi>d</mi> <mn>0</mn> </msub> </mrow>
式中v1,v2,c,d为(n-1)维列向量,I为单位矩阵,yp为并网逆变器输出电流,F1和F2的Λ和b完全相同,可分别表示为:
其中,l1、ln-1为假设的变量;列向量c和d可分别表示为:
cT=[c1 c2 … cn-1],dT=[d1 d2 … dn-1]
传递函数W1(s)和W2(s)中的分母N(s)是(n-1)阶首一古尔维茨多项式,分子C(s)和D(s)都是(n-2)阶多项式,它们的系数分别是向量c和d的元素;
设并网逆变器的传递函数为:
<mrow> <msub> <mi>W</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>V</mi> <mi>d</mi> </msub> <mrow> <mi>s</mi> <mi>L</mi> </mrow> </mfrac> </mrow>
则辅助信号发生器与并网逆变器一起组成的系统的传递函数为:
<mrow> <mi>W</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>y</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msub> <mi>k</mi> <mn>0</mn> </msub> <msub> <mi>W</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>W</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>W</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msub> <mi>W</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
其中,Vd为输入电压,L为电感量,r(s)为输入信号,yp(s)为输出传递函数,k0为系数;
选取参考模型,设参考模型的传递函数为Wm(s),为使得并网逆变器实现自适应控制,则需并网逆变器的传递函数与参考模型的传递函数相同,即Wp(s)=Wm(s),便可得到辅助信号发生器参数;
设并网逆变器输出电流与参考模型输出间的误差为e1=yp-ym
设2n维向量ω表示系统中的信号向量为
<mrow> <msup> <mi>&amp;omega;</mi> <mi>T</mi> </msup> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mi>r</mi> </mtd> <mtd> <msubsup> <mi>v</mi> <mn>1</mn> <mi>T</mi> </msubsup> </mtd> <mtd> <msub> <mi>y</mi> <mi>p</mi> </msub> </mtd> <mtd> <msubsup> <mi>v</mi> <mn>2</mn> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> </mrow>
设2n维向量θ表示系统中可调节参数向量为
θT=[k0 cT d0 dT]
接着根据Lyapunov稳定性定理,选取Lyapunov函数为
<mrow> <mi>V</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mi>T</mi> </msup> <mi>P</mi> <mi>e</mi> <mo>+</mo> <msup> <mi>&amp;Psi;</mi> <mi>T</mi> </msup> <msup> <mi>&amp;Gamma;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>&amp;Psi;</mi> <mo>)</mo> </mrow> </mrow>
式中P和г都是正定对称矩阵;虽然在这边引入P矩阵,但只是用来过渡,实际上并不需要求出实际矩阵参数;为方便计算,可令г矩阵为单位矩阵,可得自适应律为
<mrow> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mover> <mi>&amp;Psi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mo>-</mo> <msub> <mi>&amp;Gamma;&amp;omega;e</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>-</mo> <mi>&amp;omega;</mi> <mi>e</mi> <mn>1</mn> </mrow>
其中,ω为信号向量,e1为广义误差;
故得
最后,结合PLL锁相环,令输入信号r为标准的正弦波,最终可得出并网逆变器的控制信号u(s);控制信号u(s)控制并网逆变器四个开关管的动作,从而使得并网逆变器输出电流跟踪参考模型的输出。
CN201710537015.5A 2017-07-04 2017-07-04 一种并网逆变器Narendra自适应控制算法 Pending CN107179694A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710537015.5A CN107179694A (zh) 2017-07-04 2017-07-04 一种并网逆变器Narendra自适应控制算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710537015.5A CN107179694A (zh) 2017-07-04 2017-07-04 一种并网逆变器Narendra自适应控制算法

Publications (1)

Publication Number Publication Date
CN107179694A true CN107179694A (zh) 2017-09-19

Family

ID=59844566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710537015.5A Pending CN107179694A (zh) 2017-07-04 2017-07-04 一种并网逆变器Narendra自适应控制算法

Country Status (1)

Country Link
CN (1) CN107179694A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812984A (zh) * 2020-07-20 2020-10-23 温州大学 一种用于逆变器控制系统基于模型的鲁棒滤波方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080007318A1 (en) * 2004-04-26 2008-01-10 Letourneau Technologies Drilling Systems, Inc. Adaptive gate drive for switching devices of inverter
CN101572417A (zh) * 2009-06-03 2009-11-04 东南大学 单级三相光伏并网系统的最大功率跟踪控制方法
CN101867196A (zh) * 2010-06-03 2010-10-20 长沙理工大学 分布式并网发电与有源电力滤波器统一控制的方法
CN202340124U (zh) * 2011-12-12 2012-07-18 辽宁省电力有限公司锦州供电公司 小型智能双向自适应光伏并网发电系统
CN104218610A (zh) * 2014-09-26 2014-12-17 苏州同虞新能源科技有限公司 一种新型电能质量自适应调节的光伏并网逆变器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080007318A1 (en) * 2004-04-26 2008-01-10 Letourneau Technologies Drilling Systems, Inc. Adaptive gate drive for switching devices of inverter
CN101572417A (zh) * 2009-06-03 2009-11-04 东南大学 单级三相光伏并网系统的最大功率跟踪控制方法
CN101867196A (zh) * 2010-06-03 2010-10-20 长沙理工大学 分布式并网发电与有源电力滤波器统一控制的方法
CN202340124U (zh) * 2011-12-12 2012-07-18 辽宁省电力有限公司锦州供电公司 小型智能双向自适应光伏并网发电系统
CN104218610A (zh) * 2014-09-26 2014-12-17 苏州同虞新能源科技有限公司 一种新型电能质量自适应调节的光伏并网逆变器

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
N.詹金斯: "《分布式发电》", 31 August 2016, 机械工业出版社 *
单海超: "储能变流器的自适应控制研究", 《中国优秀硕士学位论文全文数据库-工程科技Ⅱ辑》 *
姚华: "《航空发动机全权限数字电子控制系统》", 30 June 2014, 航空工业出版社 *
廖辉等: "基于Narendra 稳定自适应控制器交流伺服电机的控制", 《机械研究与应用》 *
杨燕: "交流电机模型参考自适应控制系统的仿真", 《电气传动》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812984A (zh) * 2020-07-20 2020-10-23 温州大学 一种用于逆变器控制系统基于模型的鲁棒滤波方法
CN111812984B (zh) * 2020-07-20 2022-06-03 温州大学 一种用于逆变器控制系统基于模型的鲁棒滤波方法

Similar Documents

Publication Publication Date Title
Suresh et al. Real-time implementation of adaptive fuzzy hysteresis-band current control technique for shunt active power filter
CN104022631B (zh) 一种基于lcl滤波的并网逆变器电网谐波影响抑制方法
CN104333002B (zh) 一种基于ip-iq检测法和滞环控制的混合型有源滤波器
CN110350672B (zh) 一种半桥逆变型磁共振式无线充电系统建模和控制方法
Fang et al. Adaptive backstepping fuzzy neural controller based on fuzzy sliding mode of active power filter
Park et al. Advanced SOGI-FLL scheme based on fuzzy logic for single-phase grid-connected converters
CN106532702A (zh) 一种有源电力滤波器改进宽频自适应重复控制方法
CN107979316A (zh) 一种基于迭代学习的pmsm转速波动抑制方法
CN106786738A (zh) 基于svpwm和模糊pi的z源逆变器并网控制方法
CN109067232B (zh) 基于递归神经网络的并网逆变器电流控制方法
CN107179694A (zh) 一种并网逆变器Narendra自适应控制算法
CN109491242A (zh) 一种最优控制问题直接离散求解的网格重构方法
CN113224797B (zh) 一种逆变器的电压电流双闭环控制系统pi参数配置方法
CN109672212A (zh) Lcl并网逆变器电流内环全阶滑模虚拟控制方法
Tepljakov et al. Application of Newton's method to analog and digital realization of fractional-order controllers
Liu et al. Learning-based neural dynamic surface predictive control for MMC
CN110943446B (zh) 一种同步旋转坐标系下三相并网逆变器小信号建模方法
CN106992548A (zh) 一种提高并网变换器稳定性的控制方法
CN113258615B (zh) 并网逆变器频率自适应控制方法、装置、设备及存储介质
CN112147900B (zh) 全状态约束电力系统的有限时间自适应模糊跟踪控制方法
Georgopoulos et al. A non-negative approximate Wigner distribution with accurate low-order moments
Bayard et al. OTA-or CFOA-based LC sinusoidal oscillators-analysis of the magnitude stabilization phenomenon
Vijayakumar et al. Machine learning based model predictive control for grid connected enhanced switched capacitor cross‐connected switched multi‐level inverter (ESC3SMLI)
Alzain et al. Improved DFIG-WPGS efficiency via the tuned PI-resonant unit controller based on BAT algorithm
Yuqing et al. Adaptive Tuning Method of Parameters of Active Disturbance Rejection Controller for Nonlinear System

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 350108 Fuzhou University, No. 2 Xueyuan Road, University Town, Fuzhou City, Fujian Province

Applicant after: Fuzhou University

Applicant after: Kehua Hengsheng Co., Ltd.

Address before: 350108 Fuzhou University, No. 2 Xueyuan Road, University Town, Fuzhou City, Fujian Province

Applicant before: Fuzhou University

Applicant before: Xiamen Kehua Hengsheng Co., Ltd.

CB02 Change of applicant information
RJ01 Rejection of invention patent application after publication

Application publication date: 20170919

RJ01 Rejection of invention patent application after publication