CN107175823A - 多分辨率飞秒激光3d打印装置和打印方法 - Google Patents

多分辨率飞秒激光3d打印装置和打印方法 Download PDF

Info

Publication number
CN107175823A
CN107175823A CN201710432759.0A CN201710432759A CN107175823A CN 107175823 A CN107175823 A CN 107175823A CN 201710432759 A CN201710432759 A CN 201710432759A CN 107175823 A CN107175823 A CN 107175823A
Authority
CN
China
Prior art keywords
convex lens
printing
lens
laser
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710432759.0A
Other languages
English (en)
Other versions
CN107175823B (zh
Inventor
程亚
储蔚
谭远鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN201710432759.0A priority Critical patent/CN107175823B/zh
Publication of CN107175823A publication Critical patent/CN107175823A/zh
Application granted granted Critical
Publication of CN107175823B publication Critical patent/CN107175823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

一种多分辨率飞秒激光3D打印装置和打印方法,本发明的核心是利用时空聚焦技术对飞秒激光脉冲进行时空整形,操控入射脉冲光束时空特性,同时利用空间波前矫正技术对像差进行补偿,实现打印材料中不同尺度的三维对称焦斑形状,从而进行不同尺度的三维物体光固化成型。本发明具有有效、高速、精度可控等特点,能够实现不同尺度的光固化3D成型和打印,在激光3D打印、模具制造、生物医学功能器官制造、激光三维加工与显示等领域均有着重要的潜在应用价值。

Description

多分辨率飞秒激光3D打印装置和打印方法
技术领域
本发明涉及光固化成型3D打印,特别是一种多分辨率飞秒激光3D打印装置和打印方法。
背景技术
1986年美国博士Charles Hull在其博士毕业论文中提出光固化三维快速成型技术并申请了相关专利,其原理是使用激光固化液态树脂成型,现在通常成为SLA技术(Stereo lithography Appearance)。SLA是最早提出并实现商业应用的成型技术。由于该技术成熟度高,精度高,适用面广等特点,自从登上历史舞台后就受到了极大关注,基于SLA技术的打印方法和设备层出不穷。时至今日,基于SLA技术的3D打印在诸多领域如工业制造领域的设计验证、小批量试制和蜡膜铸造;生物医疗领域中齿科和骨科功能器官制造以及文物和艺术品仿制等方面均有着广泛和重要的应用。
传统的基于SLA技术的3D打印机利用的是UV紫外激光器进行光敏打印材料的固化,由于机理为单光子聚合,其打印精度受到了一定的限制。飞秒激光以其成像精度高、热效应小以及可以对透明材料实现三维扫描与加工等优点在聚合、加工等诸多领域有重要的潜在应用前景(参见文献Sugioka,K.&Cheng,Y.Ultrafast lasers—reliable tools foradvanced materials processing.Light:Sci.Appl.3,e149 2014)。飞秒激光能通过非线性过程实现光固化材料的双光子聚合,具备高分辨的三维成型能力。利用飞秒激光进行双光子聚合在各领域已有着广泛应用(参见文献Xing J F,Zheng M L,Duan X M.,Two-photon polymerization microfabrication of hydrogels:an advanced 3D printingtechnology for tissue engineering and drug delivery.Chemical Society Reviews,2015,44(15):5031-5039.)。市场上已经有高精度的飞秒激光3D打印设备问世。目前基于非线性光固化过程的飞秒激光3D打印技术聚焦光斑小,精度高,需要数值孔径(NA)较高的物镜来实现。若通过降低NA来进行较大分辨率的三维成型,此时瑞利距离将急剧变长,焦斑在轴向变得狭长,降低成型时的轴向分辨率,极大破坏3D打印的成型质量。因此,目前1μm-100μm分辨率的3D打印仍缺少有效的技术方案和解决手段。
发明内容
本发明旨在提供一种多分辨率飞秒激光3D打印装置和打印方法,该装置具有有效、高速、精度可控等特点,能够实现不同尺度的光固化3D成型和打印,在激光3D打印、模具制造、生物医学功能器官制造、激光三维加工与显示等领域均有着重要的潜在应用价值。
本发明的技术解决方案如下:
一种多分辨率飞秒激光3D打印装置,其特点是该装置包括沿飞秒激光脉冲的输出方向依次是展宽器、放大器、可变焦的凸透镜和凹透镜、可调衰减片、第一光栅、第二光栅、空间光调制器、第一凸透镜、平面反射镜、第二凸透镜、分色镜、平场透镜和位于三维平移台上的打印材料,在所述的打印材料的反射光方向依次是平场透镜、分色镜、第三凸透镜和CCD,所述的飞秒激光脉冲聚焦在所述的三维平移台上放置的光固化打印材料中,第三凸透镜和CCD接受加工图像以便实时观察整个3D打印过程,计算机的输出端与所述的空间光调制器和三维平移台的控制端相连,所述的第一光栅和第二光栅相对且相互平行放置,所述的空间光调制器加载的矫正成型相差的掩模由所述的第一凸透镜、平面反射镜、第二凸透镜构成4f系统成像于所述的平场透镜的入瞳处。
利用上述多分辨率飞秒激光3D打印装置进行飞秒激光3D打印的方法,包括以下步骤:
①将打印材料固定在所述的三维平移台上;
②调整光路:经所述的展宽器和放大器发出的中心波长为800nm的飞秒激光脉冲,经过凸透镜、凹透镜构成的可变焦望远系统改变光束尺寸后,由可调衰减片控制能量,经第一光栅、第二光栅,由空间光调制器反射的激光脉冲经第一凸透镜、平面反射镜和第二凸透镜组成的4f成像系统至所述的分色镜,经分色镜反射后成像到所述的平场透镜的入瞳,经过上述时空整形和相位调制后的飞秒激光脉冲由所述的平场透镜聚焦于打印材料内部;
③控制所述的可变焦凸透镜的焦距以及可变焦凸透镜与凹透镜之间的距离实现光束比例的缩放,同时调节可调衰减片控制光束的能量,在所述的计算机输入的空间光调制器相位调制掩膜,控制聚焦区域的相差,实现打印材料中作用区域不同尺度的三维对称焦斑形状;将需要打印的三维物体模型文件输入所述的计算机,控制所述的三维平移台移动,进行光固化三维成型和打印。
本发明的技术效果如下:
本发明通过光栅对使飞秒激光脉冲产生空间色散后聚焦,让不同频率的光只在焦点处重合。通过光栅对前的缩束系统控制焦点区域横向光斑尺寸;同时由于时空聚焦技术的特性,在偏离焦点的地方,由于不同频率的光在时间和空间上不重合,使得脉冲宽度迅速增加,导致激光强度下降,瑞利长度减小,从而实现了轴向聚焦光斑尺寸的操控,最终获得打印材料内部飞秒激光聚焦焦点区域轴向和横向的三维对称特性。通过空间光调制器的波前矫正,确保不同深度的三维对称特性一致。此外,利用望远镜系统调节光束尺寸,辅以可调节衰减片调节飞秒激光的脉冲能量,能够实现打印过程中分辨率的连续可调。
本发明具有有效、高速、精度可控等特点,能够实现不同尺度的光固化3D成型和打印,在激光3D打印、模具制造、生物医学功能器官制造、激光三维加工与显示等领域均有着重要的潜在应用价值。
附图说明
图1是本发明多分辨率飞秒激光3D打印装置的光路图。
具体实施方式
下面结合实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
请参阅图1,图1为本发明多分辨率的飞秒激光3D打印装置具体实施的光路图。由图可见,本发明多分辨率飞秒激光3D打印装置,包括沿飞秒激光脉冲的输出方向依次是展宽器1、放大器2、可变焦的凸透镜3和凹透镜4、可调衰减片5、第一光栅6、第二光栅7、空间光调制器8、第一凸透镜9、平面反射镜10、第二凸透镜11、分色镜12、平场透镜13和位于三维平移台15上的打印材料14,在所述的打印材料14的反射光方向依次是平场透镜13、分色镜12、第三凸透镜16和CCD17,所述的飞秒激光脉冲聚焦在所述的三维平移台15上放置的光固化打印材料14中,第三凸透镜16和CCD17接受加工图像以便实时观察整个3D打印过程,计算机18的输出端与所述的空间光调制器7和三维平移台15的控制端相连,所述的第一光栅6和第二光栅7相对且相互平行放置,所述的空间光调制器8加载的矫正成型相差的掩模由所述的第一凸透镜9、平面反射镜10、第二凸透镜11构成4f系统成像于所述的平场透镜13的入瞳处。
利用上述多分辨率飞秒激光3D打印装置进行飞秒激光3D打印的方法,包括以下步骤:
①将打印材料14固定在所述的三维平移台15上;
②调整光路:经所述的展宽器1和放大器2发出的中心波长为800nm的飞秒激光脉冲,经过凸透镜3、凹透镜4构成可变焦的望远系统改变光束尺寸后,由可调衰减片5控制能量,经第一光栅6、第二光栅7,由空间光调制器8反射的激光脉冲经第一凸透镜9、平面反射镜10和第二凸透镜11组成的4f成像系统至所述的分色镜12,经分色镜12反射后成像到所述的平场透镜13的入瞳,经过上述时空整形和相位调制后的飞秒激光脉冲由所述的平场透镜13聚焦于打印材料14内部;
③控制所述的可变焦凸透镜3的焦距以及可变焦凸透镜3与凹透镜4之间的距离实现光束比例的缩放,同时调节可调衰减片5控制光束的能量,在所述的计算机18输入的空间光调制器相位调制掩膜,控制聚焦区域的相差,实现打印材料中作用区域不同尺度的三维对称焦斑形状;将需要打印的三维物体模型文件输入所述的计算机18,控制所述的三维平移台15移动,进行光固化三维成型和打印。
由展宽器1、放大器2发射出的未经过压缩的飞秒激光脉冲先通过可变焦凸透镜3和凹透镜4实现不同光束宽度的激光脉冲输出,从而控制平场透镜13聚焦焦点处光斑的横向尺寸。缩束后的飞秒激光脉冲经过第一光栅6和第二光栅7反射。第一光栅6和第二光栅7平行放置,入射角度和距离取决于飞秒激光脉冲的时间啁啾。由于飞秒激光脉冲经过光栅对后产生空间啁啾,不同频率的光在空间分开,这样在经过透镜聚焦后的聚焦过程中,只有在几何焦点处,不同频率的光在时间和空间上重合。而在偏离焦点的地方,不同频率的光在时间和空间上不重合,导致激光脉冲宽度迅速增加,激光峰值强度下降。最终使得激光的瑞利长度减小。在此基础上辅以可调节衰减片5的能量调节,从而控制平场透镜13焦点处聚焦光斑轴向尺寸。结合以上所述方法,实现打印材料内部聚合区域尺寸可操控的三维对称。
在计算机18端加载补偿相差的相位掩膜,激光脉冲通过空间光调制器8和4f系统后,由平场透镜13聚焦到三维平移台15上放置的光固化打印材料14中,利用计算机18规划三维成型路线,实现不同模型的三维打印。
实验表明,本发明具有有效、高速、精度可控等特点,能够实现不同尺度的光固化3D成型和打印,在激光3D打印、模具制造、生物医学功能器官制造、激光三维加工与显示等领域均有着重要的潜在应用价值。

Claims (2)

1.一种多分辨率飞秒激光3D打印装置,其特征是该装置包括沿飞秒激光脉冲的输出方向依次是展宽器(1)、放大器(2)、可变焦的凸透镜(3)和凹透镜(4)、可调衰减片(5)、第一光栅(6)、第二光栅(7)、空间光调制器(8)、第一凸透镜(9)、平面反射镜(10)、第二凸透镜(11)、分色镜(12)、平场透镜(13)和位于三维平移台(15)上的打印材料(14),在所述的打印材料(14)的反射光方向依次是平场透镜(13)、分色镜(12)、第三凸透镜(16)和CCD(17),所述的飞秒激光脉冲聚焦在所述的三维平移台(15)上放置的光固化打印材料(14)中,第三凸透镜(16)和CCD(17)接受加工图像以便实时观察整个3D打印过程,计算机(18)的输出端与所述的空间光调制器(7)和三维平移台(15)的控制端相连,所述的第一光栅(6)和第二光栅(7)相对且相互平行放置,所述的空间光调制器(8)加载的矫正成型相差的掩模由所述的第一凸透镜(9)、平面反射镜(10)、第二凸透镜(11)构成4f系统成像于所述的平场透镜(13)的入瞳处。
2.利用权利要求1所述的多分辨率飞秒激光3D打印装置飞秒激光3D打印的方法,其特征在于该方法包括以下步骤:
①将打印材料(14)固定在所述的三维平移台(15)上;
②调整光路:经所述的展宽器(1)和放大器(2)发出的中心波长为800nm的飞秒激光脉冲,经过凸透镜(3)、凹透镜(4)构成可变焦的望远系统改变光束尺寸后,由可调衰减片(5)控制能量,经第一光栅(6)、第二光栅(7),由空间光调制器(8)反射的激光脉冲经第一凸透镜(9)、平面反射镜(10)和第二凸透镜(11)组成的4f成像系统至所述的分色镜(12),经分色镜(12)反射后成像到所述的平场透镜(13)的入瞳,经过上述时空整形和相位调制后的飞秒激光脉冲由所述的平场透镜(13)聚焦于打印材料(14)内部;
③控制所述的可变焦凸透镜(3)的焦距以及可变焦凸透镜(3)与凹透镜(4)之间的距离实现光束比例的缩放,同时调节可调衰减片(5)控制光束的能量,在所述的计算机(18)输入的空间光调制器相位调制掩膜,控制聚焦区域的相差,实现打印材料中作用区域不同尺度的三维对称焦斑形状;将需要打印的三维物体模型文件输入所述的计算机(18),控制所述的三维平移台(15)移动,进行光固化三维成型和打印。
CN201710432759.0A 2017-06-09 2017-06-09 多分辨率飞秒激光3d打印装置和打印方法 Active CN107175823B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710432759.0A CN107175823B (zh) 2017-06-09 2017-06-09 多分辨率飞秒激光3d打印装置和打印方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710432759.0A CN107175823B (zh) 2017-06-09 2017-06-09 多分辨率飞秒激光3d打印装置和打印方法

Publications (2)

Publication Number Publication Date
CN107175823A true CN107175823A (zh) 2017-09-19
CN107175823B CN107175823B (zh) 2019-03-08

Family

ID=59836246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710432759.0A Active CN107175823B (zh) 2017-06-09 2017-06-09 多分辨率飞秒激光3d打印装置和打印方法

Country Status (1)

Country Link
CN (1) CN107175823B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107984102A (zh) * 2017-11-08 2018-05-04 华东师范大学 Su8光刻胶中冠状动脉血管支架倒模模具的飞秒激光微加工方法
CN110940659A (zh) * 2019-12-09 2020-03-31 北京理工大学 基于时空整形的飞秒激光诱导击穿光谱发生与采集系统
WO2020181620A1 (zh) * 2019-03-13 2020-09-17 无锡摩方精密科技有限公司 一种高精度大幅面立体投影3d打印系统及其打印方法
CN113465883A (zh) * 2021-06-02 2021-10-01 北京联袂义齿技术有限公司 一种数字化3d打印棱锥波前传感器
CN113547736A (zh) * 2021-06-24 2021-10-26 广东工业大学 一种多材料激光诱导转移3d打印方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1818771A (zh) * 2006-03-08 2006-08-16 中国科学院上海光学精密机械研究所 宽带高增益再生放大器
US20100078857A1 (en) * 2008-09-29 2010-04-01 Coherent, Inc. Diode-laser marker with one-axis scanning mirror mounted on a translatable carriage
CN103862168A (zh) * 2014-03-24 2014-06-18 北京工业大学 飞秒激光三维微加工的紧聚焦光斑能量优化方法及装置
CN104369374A (zh) * 2014-10-14 2015-02-25 清华大学 裸眼三维呈现装置、裸眼三维呈现装置制造系统及方法
CN104827034A (zh) * 2015-04-23 2015-08-12 马宁 3d打印装置
CA2952595A1 (en) * 2014-05-20 2015-11-26 The Regents Of University Of California Layerless bioprinting via dynamic optical projection and uses thereof
CN105751511A (zh) * 2016-04-20 2016-07-13 清华大学深圳研究生院 双光子聚合3d打印机及打印方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1818771A (zh) * 2006-03-08 2006-08-16 中国科学院上海光学精密机械研究所 宽带高增益再生放大器
US20100078857A1 (en) * 2008-09-29 2010-04-01 Coherent, Inc. Diode-laser marker with one-axis scanning mirror mounted on a translatable carriage
CN103862168A (zh) * 2014-03-24 2014-06-18 北京工业大学 飞秒激光三维微加工的紧聚焦光斑能量优化方法及装置
CA2952595A1 (en) * 2014-05-20 2015-11-26 The Regents Of University Of California Layerless bioprinting via dynamic optical projection and uses thereof
CN104369374A (zh) * 2014-10-14 2015-02-25 清华大学 裸眼三维呈现装置、裸眼三维呈现装置制造系统及方法
CN104827034A (zh) * 2015-04-23 2015-08-12 马宁 3d打印装置
CN105751511A (zh) * 2016-04-20 2016-07-13 清华大学深圳研究生院 双光子聚合3d打印机及打印方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
胡勇涛: "基于相位全息图的飞秒激光并行加工方法研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107984102A (zh) * 2017-11-08 2018-05-04 华东师范大学 Su8光刻胶中冠状动脉血管支架倒模模具的飞秒激光微加工方法
WO2020181620A1 (zh) * 2019-03-13 2020-09-17 无锡摩方精密科技有限公司 一种高精度大幅面立体投影3d打印系统及其打印方法
CN110940659A (zh) * 2019-12-09 2020-03-31 北京理工大学 基于时空整形的飞秒激光诱导击穿光谱发生与采集系统
CN113465883A (zh) * 2021-06-02 2021-10-01 北京联袂义齿技术有限公司 一种数字化3d打印棱锥波前传感器
CN113547736A (zh) * 2021-06-24 2021-10-26 广东工业大学 一种多材料激光诱导转移3d打印方法及装置

Also Published As

Publication number Publication date
CN107175823B (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
CN107175823B (zh) 多分辨率飞秒激光3d打印装置和打印方法
Jonušauskas et al. Mesoscale laser 3D printing
US20120098164A1 (en) Two-photon stereolithography using photocurable compositions
US20190255773A1 (en) Method for lithography-based generative production of three-dimensional components
US11897190B2 (en) 3D printing of an intraocular lens having smooth, curved surfaces
Naessens et al. Flexible fabrication of microlenses in polymer layers with excimer laser ablation
JP2010510089A (ja) ポリマーオブジェクトオプティカル製造工程
US20150009583A1 (en) Dynamic laser beam shaping methods and systems
CN108351498B (zh) 用于制造三维物体的设备及其应用
Busetti et al. A hybrid exposure concept for lithography-based additive manufacturing
US20180117709A1 (en) Method and device for locally defined machining on the surfaces of workpieces using laser light
Luo et al. Fabrication of parabolic cylindrical microlens array by shaped femtosecond laser
Luan et al. High-speed, large-area and high-precision fabrication of aspheric micro-lens array based on 12-bit direct laser writing lithography
TW201826031A (zh) 多光子吸收微影加工系統
Kiefer et al. A multi-photon (7× 7)-focus 3D laser printer based on a 3D-printed diffractive optical element and a 3D-printed multi-lens array
KR20190089964A (ko) 개선된 광학 그룹을 갖춘 광조형 기계
JP2023520296A (ja) 可変速度およびパワーのハイブリッド光源を備えた等方的ステレオリソグラフィ3d印刷のための予測方法および相対装置
Konstantinou et al. Improved two-photon polymerization through an optical fiber using coherent beam shaping
US20220001601A1 (en) Systems, devices, and methods for kaleidoscopic 3d printing
JP6397569B2 (ja) 3dプリンタ、印刷方法および鏡筒モジュール
US20170334142A1 (en) Method for three-dimensional printing
CN112297422B (zh) 一种一次成型的3d打印装置
Kim et al. Minimizing shrinkage in microstructures printed with projection two-photon lithography
KR102005632B1 (ko) 파면 제어기를 이용한 고속 3차원 광조형 방법 및 장치
Wang et al. Two-photon polymerization lithography for imaging optics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant