CN107163229A - 新型电子传输材料及器件应用 - Google Patents
新型电子传输材料及器件应用 Download PDFInfo
- Publication number
- CN107163229A CN107163229A CN201510678922.2A CN201510678922A CN107163229A CN 107163229 A CN107163229 A CN 107163229A CN 201510678922 A CN201510678922 A CN 201510678922A CN 107163229 A CN107163229 A CN 107163229A
- Authority
- CN
- China
- Prior art keywords
- organic
- electron
- several kinds
- electron transport
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
本发明提供了一类新型电子传输材料,其分子结构可表述为
Description
技术领域
本发明涉及一类电子传输材料及其在有机电子器件中的应用。相应的电子器件可以为有机发光二极管(OLED),有机存储器件,有机场效应晶体管(OTFT),有机太阳能电池(OSC),以及基于钙钛矿材料的太阳能电池。
背景技术
1977年,Heeger,MacDiarmid以及白川英树发现了高导电率的聚乙炔,这一发现不仅改变了人们对有机材料的认识,还开创了有机电子学这一崭新的领域。发展最迅速的是有机半导体领域。1986年,第一个以聚噻吩为活性层的有机场效应晶体管(Organic field-effect transistor,OFET)问世;同年,Tang首次报道了基于酞青和苝衍生物的双层异质结有机太阳能电池(Organic photovoltaic,OPV),次年又报道了第一个基于羟基喹啉衍生物的电致发光二极管(Organic light-emmiting diode,OLED)。这三类基本有机电子学器件的成功研制对有机电子学具有里程碑式的意义电子传输材料是有机光电器件的重要组成部分。在各类的器件中应用广泛,对相应器件的性能影响很大。
以有机聚合物作为受体的有机太阳能电池为例。有机电子传输材料在有机太阳能电池器件结构中替代富勒烯及其衍生物材料,解决富勒烯及其衍生物材料吸光波长范围较窄、亲和能高、溶解性差、制作成本高等问题实现给体受体材料光学吸收互补,最大程度利用太阳光,并实现更高的开路电压,从而获得更好的器件性能,如高的电池效率、更长的寿命。2012年,占肖卫等人报道了的含有苝四羧酸二酰亚胺(PDI)单元的电子传输材料,以这个聚合物作电子受体材料,以二维共轭的聚噻吩衍生物为电子给体材料,其光电转化效率达到了1.5%;首次将聚合物电子受体材料成功用于器件测试。目前,基于有机聚合物电子传输材料作为受体的有机太阳能电池的光电转化效率已经提高到6.29%。这种极具潜力的应用前景吸引了众多科学家去探索新型的有机电子传输材料,具体实例可见于文献(1)Ye-Jin Hwang,Taeshik Earmme,Brett A.E.Courtright,Frank N.Eberle,and SamsonA.Jenekhe,J.Am.Chem.Soc.2015,137,4424-4434;文献(2)Daisuke Mori,HiroakiBenten,Izumi Okada,Hideo Ohkita,and Shinzaburo ItoAdv.Energy Mater.2014,4,1301006;文献(3)Changyeon Lee,Hyunbum Kang,Wonho Lee,Taesu Kim,Ki-Hyun Kim,HanYoung Woo,Cheng Wang,and Bumjoon J.Kim,Adv.Mater.2015,27,2466-2471.
发明内容
本发明提供了一类新型有机聚合物电子传输材料,此电子传输材料中两种吸电子基团通过Sonogashira反应通过三键连接起来。在两个吸电子基团上引入不同基团,调控分子能级,增强电子离域,增强分子间的π-π堆积以及分子内电荷转移,提高材料迁移率,实现器件性能的提高,为了达到上述发明目的,本发明采用了如下技术方案:
本发明中的新型有机聚合物电子传输材料其特征在于该材料结构上具有如下特征:
在结构通式中,通过Sonogashira反应使用共价三键连接吸电子基团1和吸电子基团2,聚合单元数量(n≥2)。
所述的吸电子基团1,包括以下结构式的一种或数种:其中A1,A2,A3,A4,……An=S或NH或O或S或Se或P或CR2或NR(R=烷烃或芳烃基团)中的一种或数种;X1,X2,X3,,……Xn==CH或CR或CF或CCl或CCN或CCF3或N中的一种或数种;R=CmH2m+1,m=1、2、3……30。
所述的吸电子基团2,包括如下结构单元中的一种或数种:其中Y1,Y2,Y3,……Yn=CH或CR或CF或CCl或CCN或CCF3或N中的一种或数种;B1,B2,B3,……Bn=S或NH或或NRO或S或Se或PR或CR2或NR(R=烷烃或芳烃基团)中的一种或数种,R1=CmH2m+1,m=1、2、3……30。
附图说明
图1、图2、图3、图4和图5分别为化学物3的合成路线图,化合物6的合成路线图,化合物9的合成路线图,实施例1、实施例2和实施例3中化合物的紫外吸收谱图及循环伏安谱图。
具体实施方式
下面结合附图实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
实施例1:
本实施中,新型有机聚合物电子传输材料以吡咯并吡咯烷酮为吸电子基团1,以萘四羧酸二酰亚胺为吸电子基团2,其结构式为:
化合物2的合成:
在氮气保护下,将化合物1(0.445g,0.490mmol),双三苯基磷二氯化钯(18mg,0.025mmol)和碘化亚铜(4.7mg,0.025mmol)溶于3ml四氢呋喃和2ml二异丙胺中。将三甲基硅基乙炔(0.172ml 1.23mmol)滴加到反应瓶中,在35℃条件下反应3小时。用二氯甲烷萃取(50ml×3),有机相用饱和的氯化钠溶液洗三次,无水硫酸钠干燥,旋干后固体过柱子,得到化合物2 0.360g,产率为82%。
化合物3的合成
在氮气保护下,将化合物2(0.360g,0.382mmol)和氟化钾(0.300g,5.16mmol)溶于10ml四氢呋喃和3ml水中。室温下反应12h,用二氯甲烷萃取,旋干后过柱子,得到化合物30.228g,产率为75%。
化合物4的合成
将4,6-二溴萘四羧酸二酰亚胺(0.130g,0.2mmol)、化合物3(0.185g,0.20mmol)四三苯基磷钯(6mg,0.2mmol)和碘化亚铜(2mg,0.0105mmol)溶于4ml的甲苯和2ml二异丙胺中,在室温下搅拌30分钟后,加热至60℃反应6小时。加入0.02ml三甲基硅基乙炔,搅拌2小时,冷却到室温。分别用甲醇,乙酸乙酯,丙酮,氯仿索氏抽提,即可得到0.224g化合物4,产率为80%。
实施例2:
本实施中,新型有机聚合物电子传输材料以吡咯并吡咯烷酮为吸电子基团1,以苝四羧酸二酰亚胺为吸电子基团2,其结构式为
化合物5的合成:
将4,6-二溴苝四羧酸二酰亚胺(0.154g,0.2mmol)、化合物3(0.185g,0.20mmol)四三苯基磷钯(6mg,0.2mmol)和碘化亚铜(2mg,0.0105mmol)溶于4ml的甲苯和2ml二异丙胺中,在室温下搅拌30分钟后,加热至60℃反应6小时。加入0.02ml三甲基硅基乙炔,搅拌2小时,冷却到室温。分别用甲醇,乙酸乙酯,丙酮,氯仿索氏抽提,即可得到0.237g化合物5,产率为78%。
实施例3:
本实施中,新型有机聚合物电子传输材料以吡咯并吡咯烷酮为吸电子基团1和吸电子基团2,其结构式为:
化合物6的合成:
将化合物1(0.204g,0.2mmol)、化合物3(0.185g,0.20mmol)四三苯基磷钯(6mg,0.2mmol)和碘化亚铜(2mg,0.0105mmol)溶于4ml的甲苯和2ml二异丙胺中,在室温下搅拌30分钟后,加热至60℃反应6小时。加入0.02ml三甲基硅基乙炔,搅拌2小时,冷却到室温。分别用甲醇,乙酸乙酯,丙酮,氯仿索氏抽提,即可得到0.268g化合物6,产率为76%。
上述制得的化合物,以吡咯并吡咯烷酮为吸电子基团1,以萘四羧酸二酰亚胺、苝四羧酸二酰亚胺和吡咯并吡咯烷酮为吸电子基团2,通过Sonogashira反应链接起来,增强分子间的π-π堆积以及分子内电荷转移,提高材料迁移率。这三个材料均可作为有机电子传输材料。
Claims (3)
1.本发明提供了一类有机聚合物电子传输材料,其特征包括以吸电子基团1和吸电子基团2通过Sonogashira反应由共价三键连接起来,所述的吸电子基团1,包括以下结构式的一种或数种:其中A1,A2,A3,A4=S或NH或O或S或Se或P或CR2或NR1(R1=烷烃或芳烃基团)中的一种或数种;X1,X2,X3,,......Xn==CH或CR2或CF或CCl或CCN或CCF3或N(R2=烷烃或芳烃基团)中的一种或数种,R=CmH2m+1,m=1、2、3......30。
所述的吸电子基团2,包括如下结构单元中的一种或数种:其中Y1,Y2,Y3,......Yn=CH或CR9(R=烷烃或芳烃基团))或CF或CCl或CCN或CCF3或N中的一种或数种;B1,B2=S或NH或NR或O或Se或PR或CR或NR(R=烷烃或芳烃基团)中的一种或数种。R1=CmH2m+1,m=1、2、3......30。
2.据权利要求1所述的有机电子传输材料其特征在于其分子最低未占轨道的能级介于-3.5eV与-4.5eV之间。
3.将根据权利要求1所述的材料应用于电子器件,其中包括有机发光二极管,有机场效应晶体管,有机存储器件,有机太阳能电池,染料敏化电池,以及基于钙钛矿材料的太阳能电池等。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510678922.2A CN107163229A (zh) | 2015-10-16 | 2015-10-16 | 新型电子传输材料及器件应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510678922.2A CN107163229A (zh) | 2015-10-16 | 2015-10-16 | 新型电子传输材料及器件应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107163229A true CN107163229A (zh) | 2017-09-15 |
Family
ID=59848415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510678922.2A Pending CN107163229A (zh) | 2015-10-16 | 2015-10-16 | 新型电子传输材料及器件应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107163229A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111574539A (zh) * | 2020-05-14 | 2020-08-25 | Tcl华星光电技术有限公司 | 有源层材料、有源层材料的制备方法和晶体管 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103865043A (zh) * | 2012-12-12 | 2014-06-18 | 海洋王照明科技股份有限公司 | 含吡咯并吡咯二酮和苝四羧酸二酰亚胺的共聚物及其制备方法和应用 |
CN104788649A (zh) * | 2015-03-06 | 2015-07-22 | 华南理工大学 | 一种电子传输层材料及钙钛矿太阳电池 |
-
2015
- 2015-10-16 CN CN201510678922.2A patent/CN107163229A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103865043A (zh) * | 2012-12-12 | 2014-06-18 | 海洋王照明科技股份有限公司 | 含吡咯并吡咯二酮和苝四羧酸二酰亚胺的共聚物及其制备方法和应用 |
CN104788649A (zh) * | 2015-03-06 | 2015-07-22 | 华南理工大学 | 一种电子传输层材料及钙钛矿太阳电池 |
Non-Patent Citations (1)
Title |
---|
WADE A. BRAUNECKER,ET AL: ""Ethynylene-Linked Donor−Acceptor Alternating Copolymers"", 《MACROMOLECULES》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111574539A (zh) * | 2020-05-14 | 2020-08-25 | Tcl华星光电技术有限公司 | 有源层材料、有源层材料的制备方法和晶体管 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Urieta-Mora et al. | Hole transporting materials for perovskite solar cells: a chemical approach | |
Wang et al. | Novel hole transporting materials with a linear π-conjugated structure for highly efficient perovskite solar cells | |
Shin et al. | Electron-accepting conjugated materials based on 2-vinyl-4, 5-dicyanoimidazoles for application in organic electronics | |
Nakano et al. | Sodium sulfide-promoted thiophene-annulations: powerful tools for elaborating organic semiconducting materials | |
Yang et al. | A solution-processable D–A–D small molecule based on isoindigo for organic solar cells | |
Shaikh et al. | Influences of structural modification of naphthalenediimides with benzothiazole on organic field-effect transistor and non-fullerene perovskite solar cell characteristics | |
Chi et al. | Donor-acceptor small molecule with coplanar and rigid π-bridge for efficient organic solar cells | |
Ali et al. | Dithieno [3, 2-b: 2′, 3′-d] thiophene (DTT): An emerging heterocyclic building block for future organic electronic materials & functional supramolecular chemistry | |
Chang et al. | Triphenylamine-substituted methanofullerene derivatives for enhanced open-circuit voltages and efficiencies in polymer solar cells | |
Rao et al. | A series of V-shaped small molecule non-fullerene electron acceptors for efficient bulk-heterojunction devices | |
Rao et al. | Donor–acceptor–acceptor-based non-fullerene acceptors comprising terminal chromen-2-one functionality for efficient bulk-heterojunction devices | |
Wu et al. | Facile synthesis of “lucky clover” hole-transport material for efficient and stable large-area perovskite solar cells | |
Liu et al. | PDI-based hexapod-shaped nonfullerene acceptors for the high-performance as-cast organic solar cells | |
Li et al. | Pyran-annulated perylene diimide derivatives as non-fullerene acceptors for high performance organic solar cells | |
Je et al. | End-group tuning of DTBDT-based small molecules for organic photovoltaics | |
CN104961643A (zh) | 一种应用于太阳能电池的空穴传输材料 | |
CN112930351B (zh) | 化合物及其制造方法以及使用了该化合物的有机半导体材料 | |
Song et al. | Solution-processed interlayer of n-type small molecules for organic photovoltaic devices: Enhancement of the fill factor due to ordered orientation | |
Weng et al. | Effect of intermolecular interaction with phenothiazine core on inverted organic photovoltaics by using different acceptor moiety | |
US8907108B2 (en) | P-type organic semiconductor material and optoelectronic device utilizing the same | |
KR101553806B1 (ko) | 포스핀 옥사이드기를 포함하는 유기 반도체 화합물 및 이를 이용한 유기태양전지 | |
CN107163229A (zh) | 新型电子传输材料及器件应用 | |
Zhang et al. | Ambipolar copolymer of dithienocoronenedi-imide and benzo (bis) thiadiazole with balanced hole and electron mobility | |
Yu et al. | Synthesis and photophysical properties of 2, 2′-bis (oligothiophene)-9, 9′-bifluorenylidene derivatives | |
CN107417892A (zh) | 一类新型的电子传输材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170915 |
|
RJ01 | Rejection of invention patent application after publication |