CN107141577A - 一种光伏电池用高导热耐候阻燃封装材料及其制备方法 - Google Patents

一种光伏电池用高导热耐候阻燃封装材料及其制备方法 Download PDF

Info

Publication number
CN107141577A
CN107141577A CN201710425100.2A CN201710425100A CN107141577A CN 107141577 A CN107141577 A CN 107141577A CN 201710425100 A CN201710425100 A CN 201710425100A CN 107141577 A CN107141577 A CN 107141577A
Authority
CN
China
Prior art keywords
parts
heat conduction
photovoltaic cell
encapsulating material
weather
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710425100.2A
Other languages
English (en)
Inventor
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Huagai Photovoltaic Technology Co Ltd
Original Assignee
Hefei Huagai Photovoltaic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Huagai Photovoltaic Technology Co Ltd filed Critical Hefei Huagai Photovoltaic Technology Co Ltd
Priority to CN201710425100.2A priority Critical patent/CN107141577A/zh
Publication of CN107141577A publication Critical patent/CN107141577A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/204Applications use in electrical or conductive gadgets use in solar cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种光伏电池用高导热耐候阻燃封装材料,包括以下重量份的原料:乙烯‑醋酸乙烯酯共聚物70‑90份、乙烯‑辛烯共聚物10‑20份、短切玻璃纤维4‑6份、无机纳米阻燃剂0.1‑0.5份、硬脂酸锌0.2‑0.3份、导热添加剂8‑12份、增粘剂1‑3份、抗氧剂0.1‑0.3份、抗老化助剂0.2‑0.4份、紫外线吸收剂0.1‑0.2份、增塑剂3‑6份、交联固化剂4‑6份。本发明的封装材料具有较好的导热性能,可长久经受户外紫外光老化和热氧化,还具有较好的阻燃性能,能够发挥良好的密封效果、有效提高光伏电池组件的光电转化效率,同时本发明提供的制备方法材料成本较低、原料易得、工艺简明,具有较高的使用价值和良好的应用前景。

Description

一种光伏电池用高导热耐候阻燃封装材料及其制备方法
技术领域
本发明涉及光伏发电技术领域,具体涉及一种光伏电池用高导热耐候阻燃封装材料及其制备方法。
背景技术
随着能源的日益枯竭以及环境的恶化,各国政府对节能减排的要求越来越高,人们迫切需求一种新能源能够替代石化燃料。太阳能是一种绿色无污染并且取之不尽的能源,并且相对其它能源来说,太阳能对于地球上绝大多数地区具有存在的普遍性,可就地取用,同时具有不排放温室效应气体的优点。因而在最近十年,太阳能产业成为了全球各国发展的重点。太阳能的利用主要是通过太阳能电池板将其转化成电能,然后将其转化为其它用途,如太阳能热水器、空调、路灯以及电动汽车等等。由于太阳能电池组件的工作环境主要为室外,而太阳能电池片不能直接暴露在阳光、雨水等自然条件下,为延长其使用寿命,有必要对其进行密封。
目前太阳能光伏电池一般采用玻璃-EVA( 乙烯一醋酸乙烯共聚物) 作封装材料,这种封装模式虽然能满足太阳能光伏电池封装的基本要求,但存在许多不足,如EVA 胶膜抗老化性能较差,在使用过程中容易变黄老化,这大大降低了太阳能光伏电池的使用寿命和光电转换效率,并且采用玻璃EVA 封装模式对玻璃的要求比较高,若玻璃表面被污染或霉变,就会使玻璃的透光率降低,损失了光电转换效率。同时,这种模式封装的太阳能电池还存在维修困难和运输不便等不足。另一方面上述结构中EVA属于易燃材料,且燃烧时易产生带有毒性气体的黑烟。
同时随着太阳能技术的不断发展,现有的技术特点已经不能满足发展的需要,其固化速度、稳定性、耐老化性以及胶黏强度等都不能满足日益发展的需要,因此还需要进一步研究开发一种具有满足抗紫外、抗老化、抗冲击、防火等光伏行业技术标准的,更加优异性能的封装材料。
发明内容
针对现有技术的缺陷,本发明的目的是提供一种光伏电池用高导热耐候阻燃封装材料,该封装材料具有较好的导热性能,可长久经受户外紫外光老化和热氧化,还具有较好的阻燃性能,能够发挥良好的密封效果、有效提高光伏电池组件的光电转化效率,同时本发明提供的制备方法材料成本较低、原料易得、工艺简明,具有较高的使用价值和良好的应用前景。
本发明解决技术问题采用如下技术方案:
本发明提供了一种光伏电池用高导热耐候阻燃封装材料,包括以下重量份的原料:
乙烯-醋酸乙烯酯共聚物70-90份、乙烯-辛烯共聚物10-20份、短切玻璃纤维4-6份、无机纳米阻燃剂0.1-0.5份、硬脂酸锌0.2-0.3份、导热添加剂8-12份、增粘剂1-3份、抗氧剂0.1-0.3份、抗老化助剂0.2-0.4份、紫外线吸收剂0.1-0.2份、增塑剂3-6份、交联固化剂4-6份。
优选地,所述光伏电池用高导热耐候阻燃封装材料包括以下重量份的原料:
乙烯-醋酸乙烯酯共聚物80份、乙烯-辛烯共聚物15份、短切玻璃纤维5份、无机纳米阻燃剂0.3份、硬脂酸锌0.25份、导热添加剂13份、增粘剂2份、抗氧剂0.2份、抗老化助剂0.3份、紫外线吸收剂0.15份、增塑剂4.5份、交联固化剂5份。
优选地,所述乙烯-醋酸乙烯酯共聚物中醋酸乙烯酯的含量为25-35%、熔融指数为15-35g/10min;所述乙烯-辛烯共聚物中辛烯含量为10%-30%,熔融指数为10-40g/10min。
优选地,所述无机纳米阻燃剂为纳米氢氧化铝、纳米氢氧化镁和纳米二氧化钛中的一种或多种。
优选地,所述导热添加剂为纳米氧化锌、纳米氧化镁、纳米氧化铝中的一种或几种。
优选地,所述增粘剂为γ-氨丙基三乙氧基硅烷、γ-甲基丙烯酸酰氧基丙基三甲氧基硅烷、γ-缩水甘油醚氧丙基三甲基硅烷、3-氨丙基三甲基硅烷中的一种或几种的混合;所述抗氧剂为硫代二丙酸二月桂酯;所述抗老化助剂为(2,4- 二叔丁基苯基)亚磷酸三酯;所述紫外线吸收剂为2-羟基-4-正辛氧基二苯甲酮;所述增塑剂为己二酸酯、聚酯己二酸、偏苯三酸三辛酯中的一种或几种的混合;所述交联固化剂为过氧化二异丙苯、丁基-4,4-双( 叔丁基过氧基) 戊酸酯、叔丁基过氧化碳酸-2-乙基己酯、异氰脲酸三缩水甘油酯、偏苯三酸三缩水甘油酯中的一种或几种的混合。
本发明还提供了一种光伏电池用高导热耐候阻燃封装材料的制备方法,包括以下步骤:
步骤一,将抗氧剂、抗老化助剂、紫外线吸收剂、硬脂酸锌共同在55-65℃的水浴中搅拌15-25min,得混合助剂A;
步骤二,将乙烯-醋酸乙烯酯共聚物、乙烯-辛烯共聚物、增塑剂、交联固化剂加入高速搅拌机中,在温度为145-155℃、转速为350-450r/min下搅拌40-80分钟,再加入增粘剂、短切玻璃纤维、步骤一制得的混合助剂A、无机纳米阻燃剂、导热添加剂在温度为120-130℃、转速为400-500r/min下搅拌100-150分钟制得混合物B;
步骤三,将步骤二制得的混合物B加入双螺杆挤出机加料斗,进行熔融共混、挤出、冷却、造粒,双螺杆挤出机的共混挤出温度为85-95℃,螺杆转速135r/min,再将粒料熔融流延成膜,冷却、分切及收卷,得到所述光伏电池用高导热耐候阻燃封装材料。
优选地,所述光伏电池用高导热耐候阻燃封装材料的制备步骤为:
步骤一,将抗氧剂、抗老化助剂、紫外线吸收剂、硬脂酸锌共同在60℃的水浴中搅拌20min,得混合助剂A;
步骤二,将乙烯-醋酸乙烯酯共聚物、乙烯-辛烯共聚物、增塑剂、交联固化剂加入高速搅拌机中,在温度为150℃、转速为400r/min下搅拌60分钟,再加入增粘剂、短切玻璃纤维、步骤一制得的混合助剂A、无机纳米阻燃剂、导热添加剂在温度为125℃、转速为450r/min下搅拌125分钟制得混合物B;
步骤三,将步骤二制得的混合物B加入双螺杆挤出机加料斗,进行熔融共混、挤出、冷却、造粒,双螺杆挤出机的共混挤出温度为85-95℃,螺杆转速135r/min,再将粒料熔融流延成膜,冷却、分切及收卷,得到所述光伏电池用高导热耐候阻燃封装材料。
与现有技术相比,本发明具有如下的有益效果:
(1)本发明的一种光伏电池用高导热耐候阻燃封装材料添加了一定量的无机纳米阻燃剂,主要为纳米氢氧化铝、纳米氢氧化镁、纳米二氧化硅、纳米氧化锌和纳米二氧化钛,其具有热稳定性好、不挥发、效果持久、价格便宜的优点,能够使制备的封装材料具有良好的阻燃性能。
(2)本发明的一种光伏电池用高导热耐候阻燃封装材料在主料中添加了一部分的短切玻璃纤维能够有效增加制备的封装材料的机械强度和力学性能,使得封装材料能够很好的保护光伏电池组件。
(3)本发明的一种光伏电池用高导热耐候阻燃封装材料添加了导热添加剂,能够有效增加封装材料的导热系数,提高光伏电池组件的散热性能,有效降低硅电池表面温度,提高其光伏发电的效率。
(4)本发明的一种光伏电池用高导热耐候阻燃封装材料添加的紫外线吸收剂能够有效增强材料耐紫外线老化性能,添加的抗氧剂、硬质酸锌和抗老化助剂能够有效增加材料的热稳定性和耐老化耐候性能
(5)本发明的一种光伏电池用高导热耐候阻燃封装材料中主料采用了乙烯-醋酸乙烯酯共聚物、乙烯-辛烯共聚物,辅助添加了增粘剂、增塑剂、交联固化剂能够使得制备的封装材料具有较好的机械强度和表面致密性,能够得到良好的密封效果。
(6)本发明的提供的光伏电池用高导热耐候阻燃封装材料的制备方法简单、工艺简明、材料成本较低、原料易得、适合大规模工业生产,具有较高的实用价值和广泛的应用前景。
具体实施方式
下面结合具体实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1.
本实施例的光伏电池用高导热耐候阻燃封装材料,包括以下重量份的原料:
乙烯-醋酸乙烯酯共聚物70份、乙烯-辛烯共聚物10份、短切玻璃纤维4份、无机纳米阻燃剂0.1份、硬脂酸锌0.2份、导热添加剂8份、增粘剂1份、抗氧剂0.1份、抗老化助剂0.2份、紫外线吸收剂0.1份、增塑剂3份、交联固化剂4份。
本实施例中乙烯-醋酸乙烯酯共聚物中醋酸乙烯酯的含量为25%、熔融指数为15g/10min;所述乙烯-辛烯共聚物中辛烯含量为10%%,熔融指数为10g/10min。
本实施例中无机纳米阻燃剂为纳米氢氧化铝。
本实施例中导热添加剂为纳米氧化锌。
本实施例中增粘剂为γ-氨丙基三乙氧基硅烷;抗氧剂为硫代二丙酸二月桂酯;抗老化助剂为(2,4- 二叔丁基苯基)亚磷酸三酯;紫外线吸收剂为2-羟基-4-正辛氧基二苯甲酮;增塑剂为己二酸酯;交联固化剂为过氧化二异丙苯。
本实施例的光伏电池用高导热耐候阻燃封装材料的制备方法,包括以下步骤:
步骤一,将抗氧剂、抗老化助剂、紫外线吸收剂、硬脂酸锌共同在55℃的水浴中搅拌15min,得混合助剂A;
步骤二,将乙烯-醋酸乙烯酯共聚物、乙烯-辛烯共聚物、增塑剂、交联固化剂加入高速搅拌机中,在温度为145℃、转速为350r/min下搅拌40分钟,再加入增粘剂、短切玻璃纤维、步骤一制得的混合助剂A、无机纳米阻燃剂、导热添加剂在温度为120℃、转速为400r/min下搅拌100钟制得混合物B;
步骤三,将步骤二制得的混合物B加入双螺杆挤出机加料斗,进行熔融共混、挤出、冷却、造粒,双螺杆挤出机的共混挤出温度为85℃,螺杆转速135r/min,再将粒料熔融流延成膜,冷却、分切及收卷,得到所述光伏电池用高导热耐候阻燃封装材料。
实施例2.
本实施例的光伏电池用高导热耐候阻燃封装材料,包括以下重量份的原料:
乙烯-醋酸乙烯酯共聚物90份、乙烯-辛烯共聚物20份、短切玻璃纤维6份、无机纳米阻燃剂0.5份、硬脂酸锌0.3份、导热添加剂12份、增粘剂3份、抗氧剂0.3份、抗老化助剂0.4份、紫外线吸收剂0.2份、增塑剂6份、交联固化剂6份。
本实施例中乙烯-醋酸乙烯酯共聚物中醋酸乙烯酯的含量为35%、熔融指数为35g/10min;所述乙烯-辛烯共聚物中辛烯含量为30%,熔融指数为40g/10min。
本实施例中无机纳米阻燃剂为纳米氢氧化镁。
本实施例中导热添加剂为纳米氧化铝。
本实施例中增粘剂为γ-甲基丙烯酸酰氧基丙基三甲氧基硅烷;抗氧剂为硫代二丙酸二月桂酯;抗老化助剂为(2,4- 二叔丁基苯基)亚磷酸三酯;紫外线吸收剂为2-羟基-4-正辛氧基二苯甲酮;增塑剂为聚酯己二酸;交联固化剂为丁基-4,4-双( 叔丁基过氧基)戊酸酯。
本实施例的光伏电池用高导热耐候阻燃封装材料的制备方法,包括以下步骤:
步骤一,将抗氧剂、抗老化助剂、紫外线吸收剂、硬脂酸锌共同在65℃的水浴中搅拌25min,得混合助剂A;
步骤二,将乙烯-醋酸乙烯酯共聚物、乙烯-辛烯共聚物、增塑剂、交联固化剂加入高速搅拌机中,在温度为155℃、转速为450r/min下搅拌80分钟,再加入增粘剂、短切玻璃纤维、步骤一制得的混合助剂A、无机纳米阻燃剂、导热添加剂在温度为130℃、转速为500r/min下搅拌150分钟制得混合物B;
步骤三,将步骤二制得的混合物B加入双螺杆挤出机加料斗,进行熔融共混、挤出、冷却、造粒,双螺杆挤出机的共混挤出温度为95℃,螺杆转速135r/min,再将粒料熔融流延成膜,冷却、分切及收卷,得到所述光伏电池用高导热耐候阻燃封装材料。
实施例3.
本实施例的光伏电池用高导热耐候阻燃封装材料,包括以下重量份的原料:
乙烯-醋酸乙烯酯共聚物80份、乙烯-辛烯共聚物15份、短切玻璃纤维5份、无机纳米阻燃剂0.3份、硬脂酸锌0.25份、导热添加剂13份、增粘剂2份、抗氧剂0.2份、抗老化助剂0.3份、紫外线吸收剂0.15份、增塑剂4.5份、交联固化剂5份。
本实施例中乙烯-醋酸乙烯酯共聚物中醋酸乙烯酯的含量为30%、熔融指数为25g/10min;所述乙烯-辛烯共聚物中辛烯含量为20%,熔融指数为25g/10min。
本实施例中无机纳米阻燃剂为纳米二氧化钛。
本实施例中导热添加剂为纳米氧化镁。
本实施例中增粘剂为γ-缩水甘油醚氧丙基三甲基硅烷;抗氧剂为硫代二丙酸二月桂酯;抗老化助剂为(2,4- 二叔丁基苯基)亚磷酸三酯;所述紫外线吸收剂为2-羟基-4-正辛氧基二苯甲酮;增塑剂为偏苯三酸三辛酯;交联固化剂为4-双( 叔丁基过氧基) 戊酸酯。
本实施例的光伏电池用高导热耐候阻燃封装材料的制备方法,包括以下步骤:
步骤一,将抗氧剂、抗老化助剂、紫外线吸收剂、硬脂酸锌共同在60℃的水浴中搅拌20min,得混合助剂A;
步骤二,将乙烯-醋酸乙烯酯共聚物、乙烯-辛烯共聚物、增塑剂、交联固化剂加入高速搅拌机中,在温度为150℃、转速为400r/min下搅拌60分钟,再加入增粘剂、短切玻璃纤维、步骤一制得的混合助剂A、无机纳米阻燃剂、导热添加剂在温度为125℃、转速为450r/min下搅拌125分钟制得混合物B;
步骤三,将步骤二制得的混合物B加入双螺杆挤出机加料斗,进行熔融共混、挤出、冷却、造粒,双螺杆挤出机的共混挤出温度为85-95℃,螺杆转速135r/min,再将粒料熔融流延成膜,冷却、分切及收卷,得到所述光伏电池用高导热耐候阻燃封装材料。
以上各实施例制得的光伏电池用高导热耐候阻燃封装材料性能测试结果如下:
实验项目 实施例1 实施例2 实施例3 标准要求
透光率% 89 93 90 87
拉伸强度MPa 8.21 8.97 8.62 7.78
剪切强度MPa 6.70 6.67 6.69 6.52
导热系数(W/(m·K) 0.67 0.59 0.63 0.32
阻燃性能UL-94 V1 V1 V1 V2
人工老化试验(70℃,85%湿度条件)无异常最大时间h 1435 1380 1417 1213
本发明的一种光伏电池用高导热耐候阻燃封装材料具有较好的导热性能,可长久经受户外紫外光老化和热氧化,还具有较好的阻燃性能,能够发挥良好的密封效果、有效提高光伏电池组件的光电转化效率,同时本发明提供的制备方法材料成本较低、原料易得、工艺简明,具有较高的使用价值和良好的应用前景。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (8)

1.一种光伏电池用高导热耐候阻燃封装材料,其特征在于,包括以下重量份的原料:
乙烯-醋酸乙烯酯共聚物70-90份、乙烯-辛烯共聚物10-20份、短切玻璃纤维4-6份、无机纳米阻燃剂0.1-0.5份、硬脂酸锌0.2-0.3份、导热添加剂8-12份、增粘剂1-3份、抗氧剂0.1-0.3份、抗老化助剂0.2-0.4份、紫外线吸收剂0.1-0.2份、增塑剂3-6份、交联固化剂4-6份。
2.根据权利要求1所述的一种光伏电池用高导热耐候阻燃封装材料,其特征在于,所述封装材料包括以下重量份的原料:
乙烯-醋酸乙烯酯共聚物80份、乙烯-辛烯共聚物15份、短切玻璃纤维5份、无机纳米阻燃剂0.3份、硬脂酸锌0.25份、导热添加剂13份、增粘剂2份、抗氧剂0.2份、抗老化助剂0.3份、紫外线吸收剂0.15份、增塑剂4.5份、交联固化剂5份。
3.根据权利要求1或2所述的一种光伏电池用高导热耐候阻燃封装材料,其特征在于,所述乙烯-醋酸乙烯酯共聚物中醋酸乙烯酯的含量为25-35%、熔融指数为15-35g/10min;所述乙烯-辛烯共聚物中辛烯含量为10%-30%,熔融指数为10-40g/10min。
4.根据权利要求1或2所述的一种光伏电池用高导热耐候阻燃封装材料,其特征在于,所述无机纳米阻燃剂为纳米氢氧化铝、纳米氢氧化镁和纳米二氧化钛中的一种或多种。
5.根据权利要求1或2所述的一种光伏电池用高导热耐候阻燃封装材料,其特征在于,所述导热添加剂为纳米氧化锌、纳米氧化镁、纳米氧化铝中的一种或几种。
6.根据权利要求1或2所述的一种光伏电池用高导热耐候阻燃封装材料,其特征在于,所述增粘剂为γ-氨丙基三乙氧基硅烷、γ-甲基丙烯酸酰氧基丙基三甲氧基硅烷、γ-缩水甘油醚氧丙基三甲基硅烷、3-氨丙基三甲基硅烷中的一种或几种的混合;所述抗氧剂为硫代二丙酸二月桂酯;所述抗老化助剂为(2,4- 二叔丁基苯基)亚磷酸三酯;所述紫外线吸收剂为2-羟基-4-正辛氧基二苯甲酮;所述增塑剂为己二酸酯、聚酯己二酸、偏苯三酸三辛酯中的一种或几种的混合;所述交联固化剂为过氧化二异丙苯、丁基-4,4-双( 叔丁基过氧基) 戊酸酯、叔丁基过氧化碳酸-2-乙基己酯、异氰脲酸三缩水甘油酯、偏苯三酸三缩水甘油酯中的一种或几种的混合。
7.一种制备如权利要求1或2所述的光伏电池用高导热耐候阻燃封装材料的方法,其特征在于,包括以下步骤:
步骤一,将抗氧剂、抗老化助剂、紫外线吸收剂、硬脂酸锌共同在55-65℃的水浴中搅拌15-25min,得混合助剂A;
步骤二,将乙烯-醋酸乙烯酯共聚物、乙烯-辛烯共聚物、增塑剂、交联固化剂加入高速搅拌机中,在温度为145-155℃、转速为350-450r/min下搅拌40-80分钟,再加入增粘剂、短切玻璃纤维、步骤一制得的混合助剂A、无机纳米阻燃剂、导热添加剂在温度为120-130℃、转速为400-500r/min下搅拌100-150分钟制得混合物B;
步骤三,将步骤二制得的混合物B加入双螺杆挤出机加料斗,进行熔融共混、挤出、冷却、造粒,双螺杆挤出机的共混挤出温度为85-95℃,螺杆转速135r/min,再将粒料熔融流延成膜,冷却、分切及收卷,得到所述光伏电池用高导热耐候阻燃封装材料。
8.根据权利要求7所述的光伏电池用高导热耐候阻燃封装材料的制备方法,其特征在于,所述制备步骤为:
步骤一,将抗氧剂、抗老化助剂、紫外线吸收剂、硬脂酸锌共同在60℃的水浴中搅拌20min,得混合助剂A;
步骤二,将乙烯-醋酸乙烯酯共聚物、乙烯-辛烯共聚物、增塑剂、交联固化剂加入高速搅拌机中,在温度为150℃、转速为400r/min下搅拌60分钟,再加入增粘剂、短切玻璃纤维、步骤一制得的混合助剂A、无机纳米阻燃剂、导热添加剂在温度为125℃、转速为450r/min下搅拌125分钟制得混合物B;
步骤三,将步骤二制得的混合物B加入双螺杆挤出机加料斗,进行熔融共混、挤出、冷却、造粒,双螺杆挤出机的共混挤出温度为85-95℃,螺杆转速135r/min,再将粒料熔融流延成膜,冷却、分切及收卷,得到所述光伏电池用高导热耐候阻燃封装材料。
CN201710425100.2A 2017-06-08 2017-06-08 一种光伏电池用高导热耐候阻燃封装材料及其制备方法 Withdrawn CN107141577A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710425100.2A CN107141577A (zh) 2017-06-08 2017-06-08 一种光伏电池用高导热耐候阻燃封装材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710425100.2A CN107141577A (zh) 2017-06-08 2017-06-08 一种光伏电池用高导热耐候阻燃封装材料及其制备方法

Publications (1)

Publication Number Publication Date
CN107141577A true CN107141577A (zh) 2017-09-08

Family

ID=59780508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710425100.2A Withdrawn CN107141577A (zh) 2017-06-08 2017-06-08 一种光伏电池用高导热耐候阻燃封装材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107141577A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109401035A (zh) * 2018-10-19 2019-03-01 刘建宏 一种光伏电池封装材料及其制备方法
CN113512377A (zh) * 2021-04-24 2021-10-19 佛山格邦高分子科技有限公司 一种高粘力的耐候热熔胶及其制备方法
CN115386157A (zh) * 2022-06-07 2022-11-25 博睿谷伦(武汉)科技有限公司 一种电缆线路包覆专用轻质阻燃绝缘卷材及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045112A (zh) * 2012-12-28 2013-04-17 阿特斯(中国)投资有限公司 一种光伏组件用导热eva封装胶膜及其制备方法
CN104530548A (zh) * 2014-12-25 2015-04-22 杭州福斯特光伏材料股份有限公司 一种无卤透明阻燃光伏封装材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045112A (zh) * 2012-12-28 2013-04-17 阿特斯(中国)投资有限公司 一种光伏组件用导热eva封装胶膜及其制备方法
CN104530548A (zh) * 2014-12-25 2015-04-22 杭州福斯特光伏材料股份有限公司 一种无卤透明阻燃光伏封装材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109401035A (zh) * 2018-10-19 2019-03-01 刘建宏 一种光伏电池封装材料及其制备方法
CN113512377A (zh) * 2021-04-24 2021-10-19 佛山格邦高分子科技有限公司 一种高粘力的耐候热熔胶及其制备方法
CN115386157A (zh) * 2022-06-07 2022-11-25 博睿谷伦(武汉)科技有限公司 一种电缆线路包覆专用轻质阻燃绝缘卷材及其制备方法和应用

Similar Documents

Publication Publication Date Title
AU2017312823B2 (en) Packaging material for photovoltaic module and method for preparing packaging material
CN107141577A (zh) 一种光伏电池用高导热耐候阻燃封装材料及其制备方法
CN103937418B (zh) 一种高反光率白色eva胶膜及其制备工艺
CN108859353B (zh) 一种pe复合薄膜的制备方法及包含该膜的太阳能背板
CN102632611B (zh) 太阳能电池封装胶膜
CN102975448A (zh) 一种太阳能电池封装材料以及一种太阳能电池
CN104388002A (zh) 太阳能电池转光封装胶膜及其制备方法
CN110885641B (zh) 用于太阳能电池封装的高性能pvb胶膜及其制备方法
CN104356548A (zh) 高透光性光伏太阳能电池封装膜及其制备方法
CN114369427A (zh) 一种可阻断紫外线的eva热熔胶膜及其制备方法
CN103144390B (zh) 一种太阳能电池背板
CN102642364A (zh) 一种太阳能电池背板及其生产方法
CN109913153A (zh) 一种太阳能光伏组件用密封胶及其制备方法
CN108440778A (zh) 一种用于光伏组件隔离条及其生产方法
CN106206790B (zh) 光伏组件封装用poe复合膜
CN104212050A (zh) 一种聚乙烯纤维改性的eva封装胶膜
CN108456399A (zh) 一种太阳能电池环保导热质轻封装材料及其制备方法
CN104022175A (zh) 太阳能电池封装用的荧光含氟聚合物薄膜及其制备方法
CN104527167A (zh) 一种led路灯灯罩用复合材料
CN107163434A (zh) 一种阻燃耐候栈道板及其制备方法
CN208039548U (zh) 一种可配色的建筑一体化光伏光热联供组件
CN113004815B (zh) 一种太阳能电池用封装胶膜及其制备方法
CN106318236A (zh) 一种新型太阳能光伏电池封装材料
CN105969207A (zh) 一种基于甲氧乙基酯和月桂酯的光伏蓄电池密封胶及制作方法
CN105950032A (zh) 一种基于环己酯和异冰片酯的光伏蓄电池密封胶及制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20170908