CN107140238B - High-efficiency kinetic energy dissipation protective screen - Google Patents
High-efficiency kinetic energy dissipation protective screen Download PDFInfo
- Publication number
- CN107140238B CN107140238B CN201710316128.2A CN201710316128A CN107140238B CN 107140238 B CN107140238 B CN 107140238B CN 201710316128 A CN201710316128 A CN 201710316128A CN 107140238 B CN107140238 B CN 107140238B
- Authority
- CN
- China
- Prior art keywords
- kinetic energy
- wave impedance
- back plate
- protective
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001681 protective effect Effects 0.000 title claims abstract description 43
- 230000021715 photosynthesis, light harvesting Effects 0.000 title description 3
- 239000000463 material Substances 0.000 claims abstract description 38
- 239000011148 porous material Substances 0.000 claims abstract description 17
- 239000000956 alloy Substances 0.000 claims abstract description 7
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 6
- 239000006260 foam Substances 0.000 claims abstract description 5
- 239000012634 fragment Substances 0.000 claims abstract description 5
- 230000001413 cellular effect Effects 0.000 claims abstract description 4
- 238000005096 rolling process Methods 0.000 claims description 14
- 229910000838 Al alloy Inorganic materials 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 230000035939 shock Effects 0.000 claims description 8
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 7
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 6
- 229920005830 Polyurethane Foam Polymers 0.000 claims description 6
- 239000011496 polyurethane foam Substances 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 5
- 238000005728 strengthening Methods 0.000 claims description 4
- 238000011282 treatment Methods 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 238000007745 plasma electrolytic oxidation reaction Methods 0.000 claims description 3
- 238000013329 compounding Methods 0.000 claims 1
- 230000010354 integration Effects 0.000 abstract description 2
- 239000002131 composite material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 229910001094 6061 aluminium alloy Inorganic materials 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 238000005480 shot peening Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000011825 aerospace material Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 229910001234 light alloy Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/52—Protection, safety or emergency devices; Survival aids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/043—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/28—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Critical Care (AREA)
- Emergency Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Laminated Bodies (AREA)
Abstract
Description
技术领域technical field
本发明涉及空间碎片防护技术领域,尤其是涉及一种动能高效耗散空间碎片防护结构。The invention relates to the technical field of space debris protection, in particular to a space debris protection structure that dissipates kinetic energy efficiently.
背景技术Background technique
空间碎片撞击产生的极高压力超过航天器材料屈服强度的数十到数百倍,会穿透航天器表面,破坏内部的器件和系统,造成航天器功能严重损伤,甚至导致航天器彻底解体/爆炸失效。上世纪四十年代,天体物理学家F.L.Whipple 提出在航天器外部一定间隔处放置一层金属薄板来破碎弹丸,消耗弹丸动能,将入射弹丸的点载荷变为面载荷,从而减小航天器所受的微流星体撞击损伤,该结构被称为Whipple防护结构。国际上通用的空间碎片防护结构都是在 Whipple防护结构的基础上发展演变而来的,包括:单防护屏增强型防护结构、多层冲击防护结构和填充式Whipple防护结构等。The extremely high pressure generated by the impact of space debris exceeds the yield strength of the spacecraft material by tens to hundreds of times, which will penetrate the surface of the spacecraft, destroy the internal devices and systems, cause serious damage to the function of the spacecraft, and even lead to the complete disintegration of the spacecraft/ Explosive failure. In the 1940s, astrophysicist F.L. Whipple proposed to place a layer of metal sheet at a certain interval outside the spacecraft to break the projectile, consume the kinetic energy of the projectile, and change the point load of the incident projectile into a surface load, thereby reducing the amount of space required by the spacecraft. Damaged by the impact of a micrometeoroid, the structure is known as the Whipple Shield. The commonly used space debris protection structures in the world are developed and evolved on the basis of the Whipple protection structure, including: single protection screen reinforced protection structure, multi-layer impact protection structure and filled Whipple protection structure.
材料特性对防护结构防护能力有很大的影响。对于航天器防护材料的选择,要求其能够有效破碎来袭的空间碎片,更多的传递、耗散其撞击能量,以达到抵御撞击并对航天器进行有效防护的目的。与国外相比,国内由于受先进防护材料制备能力的限制,在航天器防护方面具有较大差距。一些防护屏通过牺牲表面平整性,通过表面异型化处理来提升空间碎片的破碎能力【CN102514737A、 CN102490912A】,或者采用两层或多层防护屏设计【CN102514737A、 CN105109709A、CN103466104A】,来抵御空间碎片撞击,使结构变得复杂,并且占用了大量航天器上宝贵的空间资源。Material properties have a great influence on the protective ability of protective structures. For the selection of spacecraft protective materials, it is required that it can effectively shatter the incoming space debris, and transmit and dissipate more of its impact energy, so as to achieve the purpose of resisting impact and effectively protecting the spacecraft. Compared with foreign countries, due to the limitation of the ability to prepare advanced protective materials, there is a big gap in spacecraft protection in China. Some protective screens improve the crushing ability of space debris by sacrificing surface flatness and through surface profile treatment [CN102514737A, CN102490912A], or adopt two-layer or multi-layer protective screen design [CN102514737A, CN105109709A, CN103466104A], to resist the impact of space debris , which complicates the structure and occupies a lot of valuable space resources on the spacecraft.
由于航天材料工程应用的苛刻要求,发展一种具有密度低、结构简单、体积小、应用灵活等特点的动能高效耗散防护结构具有重要意义。Due to the harsh requirements of aerospace material engineering applications, it is of great significance to develop a protective structure with low density, simple structure, small volume, and flexible application.
发明内容SUMMARY OF THE INVENTION
针对空间碎片环境的严峻形势和航天器碎片防护的迫切需求,本发明提出了一种具有动能高效耗散特性的新型空间碎片防护结构,提升了航天器的安全性和可靠性。Aiming at the severe situation of the space debris environment and the urgent need for spacecraft debris protection, the present invention proposes a novel space debris protection structure with the characteristics of efficient dissipation of kinetic energy, which improves the safety and reliability of the spacecraft.
本发明以限定防护屏面密度为约束条件,保证防护结构的轻质化,采用一体化平面单一防护屏结构,减小了其与舱壁之间的间距,释放了更多的可使用空间。The invention takes limiting the surface density of the protective screen as a constraint condition to ensure the lightweight of the protective structure, adopts an integrated plane single protective screen structure, reduces the distance between it and the bulkhead, and releases more usable space.
本发明采用了如下的技术方案加以实现:The present invention adopts the following technical scheme to realize:
动能高效耗散防护屏,包括依次焊接或者粘附连接的高性能波阻抗梯度材料、多孔材料和背板,其中第一层的高性能波阻抗梯度材料由两种或多种材料组分以波阻抗由高到低的顺序排列,外表面作为受撞击面具有最高的波阻抗,充分破碎空间碎片,后续的低阻抗部分改变冲击波传输路径和时间,充分分散和耗散碎片动能;第二层的多孔材料具有蜂窝或泡沫的多孔结构,能够进一步吸收碎片动能;第三层的背板为合金背板,主要起固定作用,同时再次耗散碎片动能。High-efficiency kinetic energy dissipative protective shield, including high-performance wave impedance gradient material, porous material and back plate welded or adhesively connected in sequence, wherein the high-performance wave impedance gradient material of the first layer is composed of two or more material components in wave form. The impedance is arranged in order from high to low. The outer surface, as the impacted surface, has the highest wave impedance, which fully breaks the space debris. The subsequent low-impedance part changes the shock wave transmission path and time, and fully disperses and dissipates the kinetic energy of the debris. The porous material has the porous structure of honeycomb or foam, which can further absorb the kinetic energy of debris; the back plate of the third layer is an alloy back plate, which mainly plays a role of fixing and dissipates the kinetic energy of debris again.
其中,高性能波阻抗梯度材料包括钛合金、铝合金或镁合金等合金材料。Among them, the high-performance wave impedance gradient material includes alloy materials such as titanium alloy, aluminum alloy or magnesium alloy.
其中,所述高性能波阻抗梯度材料通过轧制或粉末冶金方法制备。Wherein, the high-performance wave impedance gradient material is prepared by rolling or powder metallurgy method.
进一步地,所述高性能波阻抗梯度材料通过表面强化处理的方式对其表面进行处理。Further, the surface of the high-performance wave impedance gradient material is treated by surface strengthening treatment.
其中,所述表面强化方式包括微弧氧化或表面喷丸,提升防护屏迎风面的硬度和强度。Wherein, the surface strengthening method includes micro-arc oxidation or surface shot peening to improve the hardness and strength of the windward surface of the protective screen.
其中,多孔材料为铝蜂窝板、泡沫铝、泡沫镁和/或聚氨酯泡沫。Wherein, the porous material is aluminum honeycomb panel, foamed aluminum, foamed magnesium and/or polyurethane foam.
其中,所述背板为铝合金或镁合金的轻质合金背板。Wherein, the back plate is a light alloy back plate of aluminum alloy or magnesium alloy.
进一步地,所述高性能波阻抗梯度材料、多孔材料和背板的厚度范围分别为0.5-2.0mm,1.5-5.0mm和0.2-0.5mm。Further, the thickness ranges of the high-performance wave impedance gradient material, the porous material and the back plate are 0.5-2.0 mm, 1.5-5.0 mm and 0.2-0.5 mm, respectively.
进一步地,以限定防护屏面密度为约束条件,保证防护结构的重量不增加。Further, the limited surface density of the protective screen is used as a constraint condition to ensure that the weight of the protective structure does not increase.
其中,所述防护结构的面密度与1mm厚铝合金相等。Wherein, the areal density of the protective structure is equal to that of 1 mm thick aluminum alloy.
本发明的防护结构,集成了高性能波阻抗梯度材料、多孔材料和背板,将其置于舱壁前一定距离,可代替典型的铝合金Whipple结构的防护屏。本发明的防护结构,具有轻质化、集成度高、占用空间小、使用灵活等特点,能够高效耗散和分散空间碎片动能,在不增加重量和占用空间的前提下大幅提升了航天器抵御空间碎片的能力。所提出的防护结构,保证了表面平面性,减小了防护屏与舱壁之间的间距,释放了更多的可使用空间,The protective structure of the present invention integrates high-performance wave impedance gradient material, porous material and back plate, and is placed at a certain distance in front of the bulkhead, which can replace the protective screen of a typical aluminum alloy Whipple structure. The protective structure of the present invention has the characteristics of light weight, high integration, small occupied space, flexible use, etc., can efficiently dissipate and disperse the kinetic energy of space debris, and greatly improves the resistance of the spacecraft without increasing the weight and occupied space. Space debris capabilities. The proposed protective structure ensures the flatness of the surface, reduces the distance between the protective screen and the bulkhead, and releases more usable space,
附图说明Description of drawings
图1为本发明的动能高效耗散空间碎片防护结构结构示意图。FIG. 1 is a schematic structural diagram of the space debris protection structure of the present invention for efficient dissipation of kinetic energy.
其中,1、高性能波阻抗梯度材料层;2、多孔材料层;3、背板; 4、舱壁。Among them, 1. high-performance wave impedance gradient material layer; 2. porous material layer; 3. back plate; 4. bulkhead.
具体实施方式Detailed ways
以下介绍的是作为本发明所述内容的具体实施方式,下面通过具体实施方式对本发明的所述内容作进一步的阐明。当然,描述下列具体实施方式只为示例本发明的不同方面的内容,而不应理解为限制本发明范围。The following introduces specific embodiments as the content of the present invention, and the content of the present invention will be further clarified below through specific embodiments. Of course, the following specific embodiments are described only to illustrate different aspects of the present invention and should not be construed as limiting the scope of the present invention.
本发明动能高效耗散空间碎片防护结构,如图1所示,由防护屏、间距S 和舱壁4组成,其关键在于动能高效耗散防护屏。该动能高效耗散防护屏由高性能波阻抗梯度材料1、多孔材料2和背板3组成,以限定防护屏面密度为约束条件,对高性能波阻抗梯度材料、多孔材料和背板的厚度进行优化设计,在提升防护性能的同时保持结构轻质化。The space debris protection structure for efficiently dissipating kinetic energy of the present invention, as shown in FIG. 1 , is composed of a protective screen, a distance S and a
第一层为高性能波阻抗梯度材料,该材料由两种或多种材料组分以波阻抗由高到低的顺序排列。受撞击面具有最高的波阻抗,达到充分破碎空间碎片的效果,后续低阻抗部分改变冲击波传输路径和时间,增加冲击波的内能转化,分散和耗散空间碎片初始动能。此外,根据冲击波原理,当冲击波由高阻抗材料向低阻抗材料中传播时,分别在界面透射和反射一个冲击波和稀疏波。该反射稀疏波能够使空间碎片进一步破碎和分散。在材料组分选择时,应避免其它空间环境效应的影响,如原子氧、空间辐照等,采用常用航天金属材料,如:钛合金、铝合金、镁合金等。通过轧制或粉末冶金等方法制备波阻抗梯度材料。可通过表面强化处理的方式,如微弧氧化、表面喷丸等,提升防护屏迎风面的硬度和强度,或生成陶瓷、非晶合金等,增加破碎空间碎片的能力。The first layer is a high-performance wave impedance gradient material, which is composed of two or more material components arranged in the order of wave impedance from high to low. The impacted surface has the highest wave impedance, which can fully break the space debris. The subsequent low impedance part changes the shock wave transmission path and time, increases the internal energy conversion of the shock wave, and disperses and dissipates the initial kinetic energy of the space debris. In addition, according to the shock wave principle, when the shock wave propagates from the high-impedance material to the low-impedance material, a shock wave and a rarefaction wave are transmitted and reflected at the interface, respectively. This reflected rarefaction wave can further fragment and disperse space debris. In the selection of material components, the influence of other space environmental effects, such as atomic oxygen, space irradiation, etc., should be avoided, and commonly used aerospace metal materials, such as titanium alloys, aluminum alloys, and magnesium alloys, should be used. The wave impedance gradient material is prepared by methods such as rolling or powder metallurgy. The hardness and strength of the windward side of the protective screen can be improved by surface strengthening treatments, such as micro-arc oxidation, surface shot peening, etc., or ceramics and amorphous alloys can be generated to increase the ability to break space debris.
第二层为多孔材料,该材料由蜂窝或泡沫等多孔结构组成,材料可为铝蜂窝板、泡沫铝、泡沫镁、聚氨酯泡沫等。该类疏松多孔材料能够起到缓冲的作用,再次改变冲击波传输路径,增加传输时间,提升空间碎片的破碎程度。同时,由于多孔材料发生大规模塑性形变,堆积大量的热量使材料发生熔融甚至气化,将动能转化为内能,达到耗散动能的效果。可采用焊接或者粘附的方式将其与第一层波阻抗梯度材料低阻抗面结合在一起。The second layer is a porous material, which is composed of cellular or foamed porous structures, and the material can be aluminum honeycomb panels, foamed aluminum, foamed magnesium, and polyurethane foam. This kind of loose porous material can play a buffering role, change the transmission path of the shock wave again, increase the transmission time, and improve the fragmentation degree of space debris. At the same time, due to the large-scale plastic deformation of the porous material, a large amount of heat is accumulated to make the material melt or even gasify, and the kinetic energy is converted into internal energy to achieve the effect of dissipating kinetic energy. It can be combined with the low-impedance surface of the first layer of wave impedance gradient material by welding or adhesion.
第三层为背板,起到固定作用,使防护屏在被撞击后保持较高的完整度。也可起到再次阻挡空间碎片提升防护性能的作用。可采用铝合金或镁合金等轻质合金作为背板。采用焊接或者粘附的方式将其与第二层多孔材料结合,形成一体化防护屏结构。The third layer is the back plate, which plays a fixed role, so that the protective screen maintains a high integrity after being hit. It can also play the role of blocking space debris again and improving the protective performance. Lightweight alloys such as aluminum alloys or magnesium alloys can be used as the backplane. It is combined with the second layer of porous material by welding or adhesion to form an integrated protective screen structure.
形成防护屏后,将其置于舱壁(或需要防护的元器件、管路、子系统等重要部位)前一定间距,间距可根据实际工程应用情况,针对不同航天器,不同部位进行优化调整。After the protective screen is formed, place it at a certain distance in front of the bulkhead (or important parts such as components, pipelines, subsystems, etc. that need to be protected). The spacing can be optimized and adjusted for different spacecraft and different parts according to the actual engineering application. .
实施例:Example:
防护结构组成:The protective structure consists of:
第一层:0.3mm厚的TC4钛合金,0.2mm厚的6061铝合金组成的波阻抗梯度材料;The first layer: wave impedance gradient material composed of 0.3mm thick TC4 titanium alloy and 0.2mm thick 6061 aluminum alloy;
第二层:1.7mm PR-6710聚氨酯泡沫;Second layer: 1.7mm PR-6710 polyurethane foam;
第三层:0.2mm厚的6061铝合金。The third layer: 0.2mm thick 6061 aluminum alloy.
其中第一层采用轧制复合法将TC4钛合金(4.17g/cm3)和6061铝合金(2.69 g/cm3)制成波阻抗梯度材料,用双组份环氧树脂胶粘剂将第二层聚氨酯泡沫粘附在波阻抗梯度材料低阻抗面上,再用双组份环氧树脂胶粘剂将第三层铝合金粘附在聚氨酯泡沫上,最终形成一种动能高效耗散防护屏。The first layer is made of TC4 titanium alloy (4.17g/cm3) and 6061 aluminum alloy (2.69 g/cm3) into a wave impedance gradient material by rolling compound method, and the second layer is made of polyurethane foam with two-component epoxy resin adhesive. Adhere to the low impedance surface of the wave impedance gradient material, and then use a two-component epoxy resin adhesive to adhere the third layer of aluminum alloy to the polyurethane foam, and finally form a kinetic energy efficient dissipation protective screen.
所制备的防护屏的面密度与1mm厚铝合金相等,防护屏与舱壁间距为100 mm。经过验证,该结构与传统铝合金Whipple结构相比,在3.5-6.5km/s防护性能大幅度提升。The surface density of the prepared protective screen is equal to that of 1mm thick aluminum alloy, and the distance between the protective screen and the bulkhead is 100 mm. After verification, compared with the traditional aluminum alloy Whipple structure, the protection performance of this structure is greatly improved at 3.5-6.5km/s.
波阻抗梯度材料轧制制备工艺及参数:Rolling preparation process and parameters of wave impedance gradient material:
将板材切割成100mm×100mm的规格,对复合的表面进行钢刷打磨,然后将 0.3mm厚TC4钛合金(4.17g/cm3)和0.2mm厚6061铝合金(2.69g/cm3)进行堆叠,四角进行铆接,然后放入加热炉进行加热。The plate was cut into 100mm×100mm specifications, and the composite surface was brushed and polished, and then 0.3mm thick TC4 titanium alloy (4.17g/cm3) and 0.2mm thick 6061 aluminum alloy (2.69g/cm3) were stacked, four corners Riveted and then put into a heating furnace for heating.
(1)表面处理:钛合金和铝合金表面的氧化膜对于轧制复合是不利的,因此需要在轧制复合前去除其表面的氧化膜。本实施例采用机械打磨的方式去除表面氧化膜,然后用酒精等对表面进行冲洗。(1) Surface treatment: The oxide film on the surface of titanium alloy and aluminum alloy is unfavorable for rolling composite, so it is necessary to remove the oxide film on the surface before rolling composite. In this embodiment, the surface oxide film is removed by mechanical polishing, and then the surface is rinsed with alcohol or the like.
(2)铆接:在轧制复合过程中,由于钛和铝的力学性能(变形抗力、塑性和延伸率)不同,以及在热轧过程中可能使表面再次氧化。因此需要对板材进行铆接,一个目的是对两种板材进行固定,使其轧制过程容易咬入,防止轧制过程中轧件错位;另一个目的是防止处理后的表面再次氧化。(2) Riveting: During the rolling composite process, the surface may be oxidized again due to the different mechanical properties (deformation resistance, plasticity and elongation) of titanium and aluminum, and during hot rolling. Therefore, it is necessary to riveting the plates. One purpose is to fix the two plates so that they can be easily bitten during the rolling process and prevent the dislocation of the rolling piece during the rolling process; the other purpose is to prevent the treated surface from re-oxidizing.
(3)加热:加热的目的是减小变形抗力,提高复合板的结合性能。在本实施例中采用的温度是420℃-460℃,加热时间为15-30min。(3) Heating: The purpose of heating is to reduce the deformation resistance and improve the bonding performance of the composite board. The temperature used in this embodiment is 420°C-460°C, and the heating time is 15-30min.
(4)热轧复合:将铆接好的钛/铝板材试样加热并保温一定时间后取出,送入轧辊辊缝进行轧制,使其产生一定的压下量。热轧过程中二辊轧机的参数为:轧辊轧制速度0.2-0.6m/s;最大轧制力100t。(4) Hot-rolled composite: The riveted titanium/aluminum plate sample is heated and kept for a certain period of time and taken out, and sent to the roll gap for rolling to generate a certain reduction. The parameters of the two-roll mill in the hot rolling process are: The rolling speed is 0.2-0.6m/s; the maximum rolling force is 100t.
尽管上文对本发明的具体实施方式给予了详细描述和说明,但是应该指明的是,本领域的技术人员可以依据本发明的精神对上述实施方式进行各种等效改变和修改,其所产生的功能作用在未超出说明书及附图所涵盖的精神时,均应在本发明保护范围之内。Although the specific embodiments of the present invention have been described and illustrated in detail above, it should be pointed out that those skilled in the art can make various equivalent changes and modifications to the above embodiments according to the spirit of the present invention, and the resulting All functions and effects shall fall within the protection scope of the present invention as long as they do not exceed the spirit covered by the description and the accompanying drawings.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710316128.2A CN107140238B (en) | 2017-05-08 | 2017-05-08 | High-efficiency kinetic energy dissipation protective screen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710316128.2A CN107140238B (en) | 2017-05-08 | 2017-05-08 | High-efficiency kinetic energy dissipation protective screen |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107140238A CN107140238A (en) | 2017-09-08 |
CN107140238B true CN107140238B (en) | 2020-07-28 |
Family
ID=59777877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710316128.2A Active CN107140238B (en) | 2017-05-08 | 2017-05-08 | High-efficiency kinetic energy dissipation protective screen |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107140238B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109131947B (en) * | 2018-08-16 | 2020-04-14 | 中国空气动力研究与发展中心超高速空气动力研究所 | Ultra-high-speed impact protection device and method |
CN110155375B (en) * | 2018-10-26 | 2020-08-21 | 北京机电工程研究所 | Space debris protective structure |
CN109822293B (en) * | 2019-02-19 | 2021-07-02 | 西安建筑科技大学 | A kind of preparation method of gradient material along thickness direction and application of preparation of magnesium alloy |
CN112660396A (en) * | 2019-10-15 | 2021-04-16 | 通用电气公司 | Removable fuselage shroud for aircraft |
CN111645884B (en) * | 2020-06-17 | 2021-11-19 | 中国空气动力研究与发展中心超高速空气动力研究所 | Frame honeycomb structure, honeycomb sandwich structure and fiber filling type protection configuration |
CN113212809B (en) * | 2021-04-22 | 2022-09-27 | 上海空间电源研究所 | An on-orbit dissipative vibration and friction protection method for the active section of the launcher |
CN113401372A (en) * | 2021-06-22 | 2021-09-17 | 北京宇航系统工程研究所 | Impact reduction separation structure suitable for initiating explosive device |
CN113636109B (en) * | 2021-08-30 | 2023-04-21 | 北京卫星环境工程研究所 | Filling type protection structure design method for spacecraft |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1902046A (en) * | 2004-01-19 | 2007-01-24 | 伊兰科有限公司 | High impact strength, elastic, composite, fibre, metal laminate |
CN101603799A (en) * | 2009-07-03 | 2009-12-16 | 中国科学院力学研究所 | Novel protective structure of gradient composite space |
CN102490912A (en) * | 2011-11-08 | 2012-06-13 | 西安交通大学 | Space debris prevention structure of spacecraft |
CN102514737A (en) * | 2011-11-08 | 2012-06-27 | 西安交通大学 | Lightweight filled composite protective structure for space debris |
CN104029827A (en) * | 2014-06-13 | 2014-09-10 | 南京理工大学 | Fiber rod filling corrugated sandwich structure |
-
2017
- 2017-05-08 CN CN201710316128.2A patent/CN107140238B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1902046A (en) * | 2004-01-19 | 2007-01-24 | 伊兰科有限公司 | High impact strength, elastic, composite, fibre, metal laminate |
CN101603799A (en) * | 2009-07-03 | 2009-12-16 | 中国科学院力学研究所 | Novel protective structure of gradient composite space |
CN102490912A (en) * | 2011-11-08 | 2012-06-13 | 西安交通大学 | Space debris prevention structure of spacecraft |
CN102514737A (en) * | 2011-11-08 | 2012-06-27 | 西安交通大学 | Lightweight filled composite protective structure for space debris |
CN104029827A (en) * | 2014-06-13 | 2014-09-10 | 南京理工大学 | Fiber rod filling corrugated sandwich structure |
Also Published As
Publication number | Publication date |
---|---|
CN107140238A (en) | 2017-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107140238B (en) | High-efficiency kinetic energy dissipation protective screen | |
CN1746609B (en) | Composite bulletproof armour with steel honeycomb ceramic sandwich manufacture method | |
Wang et al. | Design and characteristics of hybrid composite armor subjected to projectile impact | |
CN101216272A (en) | A multi-layer armor protection system | |
CN104647823B (en) | Shock-resistant energy-absorbing material and preparation method thereof | |
CN101650148B (en) | Ceramic/composite material interlayer protecting structure | |
CN102514737A (en) | Lightweight filled composite protective structure for space debris | |
CN105783598B (en) | Explosion-proof composite armor structure with elastic plate | |
CN102607332A (en) | Density gradient type armored protection device | |
CN104792224B (en) | A composite armor structure for anti-explosion waves | |
Zhang et al. | Comparison of shielding performance of Al/Mg impedance-graded-material-enhanced and aluminum Whipple shields | |
CN104553143B (en) | An explosion-proof composite structure based on metamaterials | |
CN112848554A (en) | High-toughness fiber-reinforced foamed aluminum gradient anti-explosion composite structure | |
CN102490912A (en) | Space debris prevention structure of spacecraft | |
CN206737742U (en) | A kind of composite construction blast-resistant door | |
JP5508743B2 (en) | Shock absorbing member | |
CN106980727A (en) | The method for determining high-performance wave impedance gradient protection of space debris material structure | |
CN110806146A (en) | Honeycomb damping element multilayer composite energy-absorbing material and its preparation | |
CN113234967B (en) | 30mm armor-piercing-resistant elastic gradient aluminum-based composite material and preparation method thereof | |
CN112606495A (en) | Compound antiknock protective structure | |
CN102853723A (en) | Novel light composite sandwich protection device | |
CN106881921A (en) | Shock wave composite energy dissipation protector | |
CN111006547A (en) | Light bulletproof armor composite structure containing transparent aerogel | |
CN104029827A (en) | Fiber rod filling corrugated sandwich structure | |
CN206540850U (en) | A kind of explosive container radiograph window safeguard structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |