CN107132771A - 一种运载火箭飞行品质高效仿真验证方法 - Google Patents

一种运载火箭飞行品质高效仿真验证方法 Download PDF

Info

Publication number
CN107132771A
CN107132771A CN201710209658.7A CN201710209658A CN107132771A CN 107132771 A CN107132771 A CN 107132771A CN 201710209658 A CN201710209658 A CN 201710209658A CN 107132771 A CN107132771 A CN 107132771A
Authority
CN
China
Prior art keywords
deviation
test
model
calculating
simulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710209658.7A
Other languages
English (en)
Other versions
CN107132771B (zh
Inventor
陈曙光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Landspace Technology Co Ltd
Original Assignee
Beijing Blue Arrow Interspace Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Blue Arrow Interspace Technology Ltd filed Critical Beijing Blue Arrow Interspace Technology Ltd
Priority to CN201710209658.7A priority Critical patent/CN107132771B/zh
Publication of CN107132771A publication Critical patent/CN107132771A/zh
Application granted granted Critical
Publication of CN107132771B publication Critical patent/CN107132771B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Abstract

本发明公开了一种运载火箭飞行品质高效仿真验证方法,包括设计静态测试、开环测试、闭环测试进行运载火箭箭体模型校核、验证与确认;采用标准化的脚本文件,将制导系统的偏差参数和姿控系统的偏差参数编制为多条试验用例,实现不同偏差注入到简体数学模型中;箭载计算机和地面仿真系统连接形成闭环,分别运行飞行控制软件和箭体模型仿真软件,试验用例进行遍历测试,确定边界试验用例;将主要测试单元连接形成闭环,开展硬件在环仿真试验。本发明的有益效果:通过设计制导、姿控同步仿真验证技术,在同一平台上实现了制导系统与姿控系统不同指标的同步考核,节省了仿真试验资源,节省了人力成本,确保了仿真模型与软件版本更新一致性。

Description

一种运载火箭飞行品质高效仿真验证方法
技术领域
本发明涉及本发明涉及运载火箭控制系统的仿真验证与测试方法。
背景技术
在运载火箭控制系统传统研制过程中,制导系统与姿态控制系统由于考核指标不一样,需要研制两套仿真系统以供开展闭路制导仿真试验六自由度姿控仿真试验。在传统仿真试验模式下,需要配备两组试验人员、两套仿真软件,存在试验资源成本高、人力成本较高、试验周期过长、软件版本更新不一致等问题。
针对相关技术中的问题,目前尚未提出有效的解决方案。
发明内容
针对相关技术中的上述技术问题,本发明提出了一种运载火箭飞行品质高效仿真验证方法,在同一平台上实现制导系统与姿控系统不同指标的同步考核。
为实现上述技术目的,本发明的技术方案是这样实现的:
一种运载火箭飞行品质高效仿真验证方法,包括:
1. 运载火箭箭体模型校核、验证与确认(VVV&A)。
根据需求,设计基于单机模型模块的静态测试、基于箭体模型的开环测试、基于仿真流程的闭环测试等方法,确保用于仿真试验的数学模型和制导控制率实现的正确性和可靠性。
1)静态测试:运载火箭运动学与动力学模采用Matlab/Simulink与c语言混合编程方式实现,将发动机推力模型、伺服机构模型、惯性器件模型、风场引力场模型以及导航计算、弹道参数计算、迭代制导计算、气动力与力矩计算、导引及关机计算、姿态控制网络计算、控制指令输出计算的编码成c语言函数。将此函数封装为Simulink图形化子模块。给定阶跃信号输入,比较输出实际值与理论值,偏差若在允许范围(一般为0.1%以内)则通过静态测试。
2)开环测试:将通过静态测试的子模块按照信号流搭建运载火箭六自由度仿真模型,顺序为执行机构模型计算→箭体总体参数计算→风场引力场模型计算→攻角侧滑角计算→发动机推力气动力计算→发动机摆角合成计算→力与力矩计算→弹性晃动方程计算→速度位置姿态计算→惯性器件测量方程计算→惯性器件单机模型计算。给定输入,校验输出值的大小和延迟,偏差若在允许范围内则通过开环测试。
3)闭环测试:需将通过开环测试的六自由度仿真模型接入制导控制回路中行程闭环。制导控制的信息流顺序为读取仿真模型的脉冲数→导航参数计算→程序角计算→导引及关机计算→姿控网络计算→控制指令输出。给定输入与停止条件,进行闭环计算,比较理论值与实际值,偏差若在允许范围内则通过闭环测试。
2. 箭体模型偏差同步注入。
制导系统主要考核飞行精度指标,姿控系统主要考核飞行稳定性指标,根据不同的考核需求,采用标准化的脚本文件,按照偏差组合规则将制导系统的偏差参数和姿控系统的偏差参数编制为多条试验用例,实现不同偏差注入到简体数学模型中。
1)选定偏差项:综合考虑制导偏差与姿控偏差的铰链与分解情况,编制偏差目录文件,选型的偏差项包括:质量偏差、姿态偏差、质心偏差、位置偏差、速度偏差、角速度偏差、加速度偏差、大气偏差、风场偏差、推力偏差、气动力偏差、惯组偏差、弹性偏差、器件安装偏差。
2)偏差组合规则:针对方向类偏差(如力的方向),按照“+”、“-”标示其正反向进行读取,该规则记为R1;数值累偏差(如安装偏差角)则读取偏差的变化范围,该规则记为R2;分支类偏差(如多种风场数据偏差)则读取偏差的编号,该规则记为R3。最后,按照x、y、z三个不同维度采取遍历方式加注偏差,该规则记为R4。所以,得到组合偏差的同一编制规则R=R1*R2*R3*R4。
3)用例序列:按照上述规则将偏差文件按照同一的数据格式编制成标准文件,并从小到大赋予编号,行程仿真试验用例序列。
3. 软件在环仿真试验。
将箭载计算机和地面仿真系统连接形成闭环,箭载计算机运行飞行控制软件,地面仿真系统运行箭体模型仿真软件,对模型偏差试验用例进行遍历测试,并对试验数据进行分析,确定触及试验指标边界的试验用例。
1)系统组成:采用电缆网与网络系统将箭载计算机、地面仿真系统连接形成闭环,通过发送与接收接测试信号,实现闭环的信号通路测试。仿真模式设置为软件在环模式,采用数学模型模拟伺服机构特性、惯性器件特性、卫星导航计算与特性等。
2)仿真运行:加载仿真模型的试验用例序列,将当前序列的组合偏差加注到六自由度仿真模型中,实现实时模型运算与实时数据存储与显示。完成所有序列的测试后,借助第三方数据分析软件对仿真结果进行批量数据处理,同步分析制导、姿控性能,主要考核伺服执行机构的动态特性、姿态平稳性、制导精度等指标,找出逼近和超出边界条件的试验用例。
4. 硬件在环仿真试验。
将箭载计算机、地面仿真系统、火箭摆动喷管、卫星模拟器等主要测试单元连接形成闭环,开展硬件在环仿真试验。针对软件在环实验结果中的边界条件,进行实物仿真,考核其运行指标是否符合设计需求。
1)系统组成:按照附图1配备所需设备并采用电缆网和网络系统将所有设备进行连接形成闭环。对伺服机构节点发送1553B控制指令和采集反馈信号,完成其信号通路测试;对卫星导航模拟器的控制计算机节点通过光纤发送并接收信号,完成信号通路测试;将仿真模式设置为硬件在环模式,系统接入真实的伺服机构、卫星导航模拟器等。
2)仿真运行:针对软件在环仿真结果,选择触及边界条件的组合偏差加载仿真模型进行试验,实现实时模型运算与实时数据存储与显示。需关注试验过程中各个参试元件的运行情况,在出现异常及发散的请款下,人为干预仿真进展;需关注试验数据,并将硬件在环与软件在环的结果进行对比分析,比较其飞行过程中关键时刻的异同,据此优化设计。
3)优化设计:根据硬件在环与软件在环的结果差异,对姿控网络参数的正确性和适应性进行单向考核与优化设计,对迭代制导算法、导航算法的适用性进行复核与优化设计。经过优化设计后,再次进行验证。
本发明的有益效果:通过设计制导、姿控同步仿真验证技术,在同一平台上实现了制导系统与姿控系统不同指标的同步考核,节省了仿真试验资源,节省了人力成本,确保了仿真模型与软件版本更新一致性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例所述的一种运载火箭飞行品质高效仿真验证方法的硬件在环仿真结构图;
图2是根据本发明实施例所述的一种运载火箭飞行品质高效仿真验证方法的软件系统流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
如图1-2所示,根据本发明实施例所述的一种运载火箭飞行品质高效仿真验证方法,包括如下步骤:
1. 开展制导、姿控同步仿真验证流程设计,实现运载火箭信息流与控制流满足全弹道飞行仿真过程需求,基于总线技术与实时通信技术实现地面主控系统、箭载计算机、卫星模拟器、惯组、火箭喷管及伺服系统按照附图1配备仿真系统参试设备并通过电缆网和网络系统进行组网连接。
1)配电部分采用50kw级别的大功率直流电源给伺服机构供电,低功率电源则用于对控制器、采集传感器设备供电,由动力电缆网进行连接;
2)基于光纤HUB的星型光纤网系统用于向卫星模拟器节点传输实时姿态信息,并采集经角位移传感器转化后的伺服机构反馈信息;
3)以太网系统作为上下位机的通信载体,采用UDP协议实现模型编装载与数据回传,同时也用于下位机对电源的启停控制信号的传输;
4)1553B总线用于传输箭载计算机对外发出的控制指令和时序信号,传输协议在此处不做赘述。
2. 开展软件系统设计,基于Matlab/Simulink开发、编译和调试仿真模型,基于Visual c++开发上位机的人机交互系统,软件流程图如附图2 所示。其中,上位机软件采用采用多线程/多进程编程技术实现主控仿真软件、飞行控制软件的交互;
1)系统参试元件状态点名检查:基于C/S模式,连入闭环的多个参试设备为Client,上位机主控节点为Server,主控节点发出检查命令,各个节点依次自检并向主控节点反馈当前状态;
2)配置仿真任务:仿真模式可根据用户需求设置为软件在环模式、硬件在环模式,软件在环模式采用模型模拟参试元件的特性,硬件在环模式采用真实参试元件接入闭环,根据用户配置选择,通过对下位机工作标志位的自动映射实现两种状态的无缝切换;另外,读取仿真试验的偏差序列,将组合偏差注入六自由度箭体模型中;
3)下载仿真模型:通过以太网将仿真模型下载到下位机,下位机处于黑盒状态,持续侦听指定的网络通信接口,接收到模型后,自动加载到实时引擎中。
4)模型实时运算:下位机采用加拿大的实时系统QNX作为实时引擎,驱动模型,严格按照1ms的帧周期推进实时运算;
5)数据实时管理:主要完成的工作包括实时采集硬件端口的信号、实时发送控制指令,实时监测关键指标是否超出阈值,实时缓存采集与运算的仿真结果。通过高速以太网将仿真结果同步传输给上位机进行显示与存储。实时数据管理与模型实时运算采用多线程方式实现。
6)仿真启停管理:通过上位机人机交互界面输入用户需求,基于高速以太网传输给下位机进行启停控制。主要功能包括模式选择、用例注入、模型下载、仿真开始、仿真停止、数据回收等。
7)时钟信号同步:基于中断信号实现接入系统的所有参试设备的时钟同步。
3. 设计制导姿控仿真用例。将考核制导精度指标的关键偏差项、考核姿控稳定性指标的关键偏差项按照排列组合方式,编织成统一格式的脚本文件,并赋予专用的用例编号。
1)选定偏差项:综合考虑制导偏差与姿控偏差的铰链与分解情况,编制偏差目录文件,选型的偏差项包括:质量偏差、姿态偏差、质心偏差、位置偏差、速度偏差、角速度偏差、加速度偏差、大气偏差、风场偏差、推力偏差、气动力偏差、惯组偏差、弹性偏差、器件安装偏差。
2)偏差组合规则:针对方向类偏差(如力的方向),按照“+”、“-”标示其正反向进行读取,该规则记为R1;数值累偏差(如安装偏差角)则读取偏差的变化范围,该规则记为R2;分支类偏差(如多种风场数据偏差)则读取偏差的编号,该规则记为R3。最后,按照x、y、z三个不同维度采取遍历方式加注偏差,该规则记为R4。所以,得到组合偏差的同一编制规则R=R1*R2*R3*R4。
3)用例序列:按照上述规则将偏差文件按照同一的数据格式编制成标准文件,并从小到大赋予编号,形成仿真试验用例序列。
4. 开展模型校验与系统联试,采用静态测试法、开环校验与闭环校验,完成制导、姿控模型一致性校验,然后植入matlab平台在实时系统中,连接仿真参试元件进行通信调试,实现全系统的实时运行。
1)静态测试:运载火箭运动学与动力学模采用Matlab/Simulink与c语言混合编程方式实现,将发动机推力模型、伺服机构模型、惯性器件模型、风场引力场模型以及导航计算、弹道参数计算、迭代制导计算、气动力与力矩计算、导引及关机计算、姿态控制网络计算、控制指令输出计算的编码成c语言函数。将此函数封装为Simulink图形化子模块。给定阶跃信号输入,比较输出实际值与理论值,偏差若在允许范围(一般为0.1%以内)则通过静态测试。
2)开环测试:将通过静态测试的子模块按照信号流搭建运载火箭六自由度仿真模型,顺序为执行机构模型计算→箭体总体参数计算→风场引力场模型计算→攻角侧滑角计算→发动机推力气动力计算→发动机摆角合成计算→力与力矩计算→弹性晃动方程计算→速度位置姿态计算→惯性器件测量方程计算→惯性器件单机模型计算。给定输入,校验输出值的大小和延迟,偏差若在允许范围内则通过开环测试。
3)闭环测试:需将通过开环测试的六自由度仿真模型接入制导控制回路中行程闭环。制导控制的信息流顺序为读取仿真模型的脉冲数→导航参数计算→程序角计算→导引及关机计算→姿控网络计算→控制指令输出。给定输入与停止条件,进行闭环计算,比较理论值与实际值,偏差若在允许范围内则通过闭环测试。
5. 软件在环仿真试验。将箭载计算机和地面仿真系统连接形成闭环,箭载计算机运行飞行控制软件,地面仿真系统运行箭体模型仿真软件,对模型偏差试验用例进行遍历测试,并对试验数据进行分析,确定触及试验指标边界的试验用例。
1)系统组成:采用电缆网与网络系统将箭载计算机、地面仿真系统连接形成闭环,通过发送与接收接测试信号,实现闭环的信号通路测试。仿真模式设置为软件在环模式,采用数学模型模拟伺服机构特性、惯性器件特性、卫星导航计算与特性等。
2)仿真运行:加载仿真模型的试验用例序列,将当前序列的组合偏差加注到六自由度仿真模型中,实现实时模型运算与实时数据存储与显示。完成所有序列的测试后,借助第三方数据分析软件对仿真结果进行批量数据处理,同步分析制导、姿控性能,主要考核伺服执行机构的动态特性、姿态平稳性、制导精度等指标,找出逼近和超出边界条件的试验用例。
6. 硬件在环仿真试验,将箭载计算机、地面仿真系统、火箭摆动喷管、卫星模拟器等主要测试单元连接形成闭环,开展硬件在环仿真试验,系统结构如附图1 所示。针对软件在环实验结果中的边界条件,进行实物仿真,考核其运行指标是否符合设计需求。
1)系统组成:按照附图1配备所需设备并采用电缆网和网络系统将所有设备进行连接形成闭环。对伺服机构节点发送1553B控制指令和采集反馈信号,完成其信号通路测试;对卫星导航模拟器的控制计算机节点通过光纤发送并接收信号,完成信号通路测试;将仿真模式设置为硬件在环模式,系统接入真实的伺服机构、卫星导航模拟器等。
2)仿真运行:针对软件在环仿真结果,选择触及边界条件的组合偏差加载仿真模型进行试验,实现实时模型运算与实时数据存储与显示。需关注试验过程中各个参试元件的运行情况,在出现异常及发散的请款下,人为干预仿真进展;需关注试验数据,并将硬件在环与软件在环的结果进行对比分析,比较其飞行过程中关键时刻的异同,据此优化设计。
3)优化设计:根据硬件在环与软件在环的结果差异,对姿控网络参数的正确性和适应性进行单向考核与优化设计,对迭代制导算法、导航算法的适用性进行复核与优化设计。经过优化设计后,再次进行验证。
综上所述,借助于本发明的上述技术方案:
1.节省仿真系统软硬件成本。传统研制模式下,需要两套仿真主控系统、两套箭载计算机、两套仿真软件,可合成为一套软硬件系统。产品采购成本节省40%以上;
2.节省人力成本。制导试验与姿控试验需要两组实验人员执行试验、维护系统、分析数据、更新代码,采用该发明方案后,只需一组试验人员进行保障,节省人力成本50%;
3.缩短试验周期。传统研制模式下,制导指标、姿控指标分开考核后,还需关联分析,试验周期较长。采用该方案后,制导指标与姿控指标同步考核,提高了试验效率,缩短了试验周期50%。
4.避免软件更新不一致。两个试验分开开展过程中,存在数据更新不一致,软件版本不同步的情况,影响试验结果的可靠性。采用该方案后,只有一套仿真软件和模型,提高了仿真实验结果一致性与可靠性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种运载火箭飞行品质高效仿真验证方法,其特征在于,包括如下步骤:
S1 运载火箭箭体模型校核、验证与确认,包括基于单机模型模块的静态测试、基于箭体模型的开环测试、基于仿真流程的闭环测试;
S2 箭体模型偏差同步注入,制导系统主要考核飞行精度指标,姿控系统主要考核飞行稳定性指标,根据不同的考核需求,采用标准化的脚本文件,按照偏差组合规则将制导系统的偏差参数和姿控系统的偏差参数编制为多条试验用例,实现不同偏差注入到简体数学模型中;
S3 软件在环仿真试验,将箭载计算机和地面仿真系统连接形成闭环,箭载计算机运行飞行控制软件,地面仿真系统运行箭体模型仿真软件,对模型偏差试验用例进行遍历测试,并对试验数据进行分析,确定触及试验指标边界的试验用例;
S4硬件在环仿真试验,将包括箭载计算机、地面仿真系统、火箭摆动喷管、卫星模拟器的主要测试单元连接形成闭环,开展硬件在环仿真试验,针对软件在环实验结果中的边界条件,进行实物仿真,考核其运行指标是否符合设计需求。
2.根据权利要求1所述一种运载火箭飞行品质高效仿真验证方法,其特征在于,在步骤S1中,所述静态测试包括:运载火箭运动学与动力学模采用Matlab/Simulink与c语言混合编程方式实现,将发动机推力模型、伺服机构模型、惯性器件模型、风场引力场模型以及导航计算、弹道参数计算、迭代制导计算、气动力与力矩计算、导引及关机计算、姿态控制网络计算、控制指令输出计算的编码成c语言函数,将此函数封装为Simulink图形化子模块,给定阶跃信号输入,比较输出实际值与理论值,偏差若在允许范围则通过静态测试。
3.根据权利要求2所述一种运载火箭飞行品质高效仿真验证方法,其特征在于,在步骤S1中,所述开环测试包括:将通过静态测试的子模块按照信号流搭建运载火箭六自由度仿真模型,顺序为执行机构模型计算→箭体总体参数计算→风场引力场模型计算→攻角侧滑角计算→发动机推力气动力计算→发动机摆角合成计算→力与力矩计算→弹性晃动方程计算→速度位置姿态计算→惯性器件测量方程计算→惯性器件单机模型计算,给定输入,校验输出值的大小和延迟,偏差若在允许范围内则通过开环测试。
4.根据权利要求3所述一种运载火箭飞行品质高效仿真验证方法,其特征在于,在步骤S1中,所述闭环测试包括:需将通过开环测试的六自由度仿真模型接入制导控制回路中行程闭环,制导控制的信息流顺序为读取仿真模型的脉冲数→导航参数计算→程序角计算→导引及关机计算→姿控网络计算→控制指令输出;给定输入与停止条件,进行闭环计算,比较理论值与实际值,偏差若在允许范围内则通过闭环测试。
5.根据权利要求4所述一种运载火箭飞行品质高效仿真验证方法,其特征在于,在步骤S2中,进一步包括:
选定偏差项:综合考虑制导偏差与姿控偏差的铰链与分解情况,编制偏差目录文件,选型的偏差项包括:质量偏差、姿态偏差、质心偏差、位置偏差、速度偏差、角速度偏差、加速度偏差、大气偏差、风场偏差、推力偏差、气动力偏差、惯组偏差、弹性偏差、器件安装偏差;
偏差组合规则:针对方向类偏差,按照+、-标示其正反向进行读取,该规则记为R1;数值累偏差则读取偏差的变化范围,该规则记为R2;分支类偏差则读取偏差的编号,该规则记为R3,最后,按照x、y、z三个不同维度采取遍历方式加注偏差,该规则记为R4,得到组合偏差的同一编制规则R=R1*R2*R3*R4;
用例序列:按照上述规则将偏差文件按照同一的数据格式编制成标准文件,并从小到大赋予编号,行程仿真试验用例序列。
6.根据权利要求5所述一种运载火箭飞行品质高效仿真验证方法,其特征在于,在步骤S3中,进一步包括:
系统组成:采用电缆网与网络系统将箭载计算机、地面仿真系统连接形成闭环,通过发送与接收接测试信号,实现闭环的信号通路测试,仿真模式设置为软件在环模式,采用数学模型模拟伺服机构特性、惯性器件特性、卫星导航计算与特性;
仿真运行:加载仿真模型的试验用例序列,将当前序列的组合偏差加注到六自由度仿真模型中,实现实时模型运算与实时数据存储与显示;完成所有序列的测试后,借助第三方数据分析软件对仿真结果进行批量数据处理,同步分析制导、姿控性能,主要考核伺服执行机构的动态特性、姿态平稳性、制导精度等指标,找出逼近和超出边界条件的试验用例。
7.根据权利要求6所述一种运载火箭飞行品质高效仿真验证方法,其特征在于,在步骤S3中,进一步包括:
系统组成:配备所需设备并采用电缆网和网络系统将所有设备进行连接形成闭环,对伺服机构节点发送1553B控制指令和采集反馈信号,完成其信号通路测试;对卫星导航模拟器的控制计算机节点通过光纤发送并接收信号,完成信号通路测试;将仿真模式设置为硬件在环模式,系统接入真实的伺服机构、卫星导航模拟器;
仿真运行:针对软件在环仿真结果,选择触及边界条件的组合偏差加载仿真模型进行试验,实现实时模型运算与实时数据存储与显示;需关注试验过程中各个参试元件的运行情况,在出现异常及发散的请款下,人为干预仿真进展;需关注试验数据,并将硬件在环与软件在环的结果进行对比分析,比较其飞行过程中关键时刻的异同,据此优化设计。
8.根据权利要求7所述一种运载火箭飞行品质高效仿真验证方法,其特征在于,所述的优化设计包括:根据硬件在环与软件在环的结果差异,对姿控网络参数的正确性和适应性进行单向考核与优化设计,对迭代制导算法、导航算法的适用性进行复核与优化设计;经过优化设计后,再次进行验证。
CN201710209658.7A 2017-03-31 2017-03-31 一种运载火箭飞行品质高效仿真验证方法 Active CN107132771B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710209658.7A CN107132771B (zh) 2017-03-31 2017-03-31 一种运载火箭飞行品质高效仿真验证方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710209658.7A CN107132771B (zh) 2017-03-31 2017-03-31 一种运载火箭飞行品质高效仿真验证方法

Publications (2)

Publication Number Publication Date
CN107132771A true CN107132771A (zh) 2017-09-05
CN107132771B CN107132771B (zh) 2018-07-20

Family

ID=59715382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710209658.7A Active CN107132771B (zh) 2017-03-31 2017-03-31 一种运载火箭飞行品质高效仿真验证方法

Country Status (1)

Country Link
CN (1) CN107132771B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107807626A (zh) * 2017-09-27 2018-03-16 上海航天控制技术研究所 一种基于嵌入式多任务可自主配置飞行器控制系统
CN109164718A (zh) * 2018-10-22 2019-01-08 北京星际荣耀空间科技有限公司 一种用于检测火箭控制系统的“模拟飞行”仿真方法
CN109491266A (zh) * 2018-11-28 2019-03-19 北京宇航系统工程研究所 一种基于多体虚拟样机的运载火箭飞行仿真方法
CN109669434A (zh) * 2018-11-13 2019-04-23 昆山优尼电能运动科技有限公司 无人机自动化测试方法及系统
CN110032199A (zh) * 2019-04-19 2019-07-19 北京航天自动控制研究所 火箭发动机机架变形角的预偏角线性补偿方法和装置
CN110109373A (zh) * 2019-04-01 2019-08-09 江南机电设计研究所 一种导弹制导控制系统半实物仿真平台自动化仿真方法
CN110516298A (zh) * 2019-07-19 2019-11-29 陕西蓝箭航天技术有限公司 运载火箭通用仿真建模方法及存储介质
CN112181842A (zh) * 2020-10-10 2021-01-05 中国运载火箭技术研究院 飞行控制软件敏捷测试方法及系统、终端、存储介质
CN112527648A (zh) * 2020-12-15 2021-03-19 西安中朗智控科技有限公司 一种嵌入式软件系统的测试方法和测试装置
CN112699552A (zh) * 2020-12-29 2021-04-23 中国航空工业集团公司沈阳飞机设计研究所 一种基于置信度矩阵的高保真度仿真模型设计方法
CN112925705A (zh) * 2021-02-09 2021-06-08 上海航天控制技术研究所 一种基于无人值守的运载火箭飞行软件验收方法与系统
CN113408158A (zh) * 2021-08-19 2021-09-17 中国科学院力学研究所 一种适用于运载火箭级间冷分离的实现方法
CN113806859A (zh) * 2021-08-31 2021-12-17 西安航天动力研究所 火箭发动机多模式静态计算系统、方法、存储介质及设备
CN114442534A (zh) * 2022-01-26 2022-05-06 航天科工火箭技术有限公司 一种运载火箭控制系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104182272A (zh) * 2014-09-02 2014-12-03 哈尔滨工业大学 一种用于高超声速飞行器考核的仿真测试平台及控制方法
CN104898461A (zh) * 2015-04-21 2015-09-09 北京航天自动控制研究所 一种运载火箭控制系统半实物仿真试验系统及方法
CN103412493B (zh) * 2013-07-29 2016-01-20 北京航空航天大学 固液动力巡航飞行器飞行任务规划仿真系统
CN105929709A (zh) * 2016-04-13 2016-09-07 中国人民解放军63680部队 多型号火箭遥测数据仿真系统
CN106444430A (zh) * 2016-11-09 2017-02-22 上海宇航系统工程研究所 运载火箭一子级再入控制系统及方法、仿真系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412493B (zh) * 2013-07-29 2016-01-20 北京航空航天大学 固液动力巡航飞行器飞行任务规划仿真系统
CN104182272A (zh) * 2014-09-02 2014-12-03 哈尔滨工业大学 一种用于高超声速飞行器考核的仿真测试平台及控制方法
CN104898461A (zh) * 2015-04-21 2015-09-09 北京航天自动控制研究所 一种运载火箭控制系统半实物仿真试验系统及方法
CN105929709A (zh) * 2016-04-13 2016-09-07 中国人民解放军63680部队 多型号火箭遥测数据仿真系统
CN106444430A (zh) * 2016-11-09 2017-02-22 上海宇航系统工程研究所 运载火箭一子级再入控制系统及方法、仿真系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张艳华等: "改善剑机分离载机飞行品质的状态反馈器研究", 《飞行力学》 *
敬晓刚等: "运载火箭控制系统全数字仿真", 《2004系统仿真技术及其应用学术交流会论文集》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107807626A (zh) * 2017-09-27 2018-03-16 上海航天控制技术研究所 一种基于嵌入式多任务可自主配置飞行器控制系统
CN109164718A (zh) * 2018-10-22 2019-01-08 北京星际荣耀空间科技有限公司 一种用于检测火箭控制系统的“模拟飞行”仿真方法
CN109669434A (zh) * 2018-11-13 2019-04-23 昆山优尼电能运动科技有限公司 无人机自动化测试方法及系统
CN109491266A (zh) * 2018-11-28 2019-03-19 北京宇航系统工程研究所 一种基于多体虚拟样机的运载火箭飞行仿真方法
CN110109373A (zh) * 2019-04-01 2019-08-09 江南机电设计研究所 一种导弹制导控制系统半实物仿真平台自动化仿真方法
CN110032199B (zh) * 2019-04-19 2022-02-25 北京航天自动控制研究所 火箭发动机机架变形角的预偏角线性补偿方法和装置
CN110032199A (zh) * 2019-04-19 2019-07-19 北京航天自动控制研究所 火箭发动机机架变形角的预偏角线性补偿方法和装置
CN110516298A (zh) * 2019-07-19 2019-11-29 陕西蓝箭航天技术有限公司 运载火箭通用仿真建模方法及存储介质
CN112181842A (zh) * 2020-10-10 2021-01-05 中国运载火箭技术研究院 飞行控制软件敏捷测试方法及系统、终端、存储介质
CN112181842B (zh) * 2020-10-10 2024-04-05 中国运载火箭技术研究院 飞行控制软件敏捷测试方法及系统、终端、存储介质
CN112527648A (zh) * 2020-12-15 2021-03-19 西安中朗智控科技有限公司 一种嵌入式软件系统的测试方法和测试装置
CN112699552A (zh) * 2020-12-29 2021-04-23 中国航空工业集团公司沈阳飞机设计研究所 一种基于置信度矩阵的高保真度仿真模型设计方法
CN112925705A (zh) * 2021-02-09 2021-06-08 上海航天控制技术研究所 一种基于无人值守的运载火箭飞行软件验收方法与系统
CN112925705B (zh) * 2021-02-09 2022-07-29 上海航天控制技术研究所 一种基于无人值守的运载火箭飞行软件验收方法与系统
CN113408158A (zh) * 2021-08-19 2021-09-17 中国科学院力学研究所 一种适用于运载火箭级间冷分离的实现方法
CN113408158B (zh) * 2021-08-19 2021-11-09 中国科学院力学研究所 一种适用于运载火箭级间冷分离的实现方法
CN113806859A (zh) * 2021-08-31 2021-12-17 西安航天动力研究所 火箭发动机多模式静态计算系统、方法、存储介质及设备
CN113806859B (zh) * 2021-08-31 2023-08-04 西安航天动力研究所 火箭发动机多模式静态计算系统、方法、存储介质及设备
CN114442534A (zh) * 2022-01-26 2022-05-06 航天科工火箭技术有限公司 一种运载火箭控制系统及方法

Also Published As

Publication number Publication date
CN107132771B (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
CN107132771B (zh) 一种运载火箭飞行品质高效仿真验证方法
CN107942720A (zh) 一种便携式地面在线飞行仿真系统
CN106371813B (zh) 一种基于Simulink的电动汽车电机控制器软件生成方法
CN107065594A (zh) 一种运载火箭六自由度分布式半物理仿真方法及系统
CN107643695A (zh) 基于脑电的有人/无人机集群编队vr仿真方法及系统
CN113110590B (zh) 一种多机分布式协同仿真控制平台及控制方法
CN106383969B (zh) 一种运载火箭多体仿真数据交互方法
CN104731080B (zh) 一种硬件在环仿真环境模型自动生成系统及方法
CN106844822A (zh) 一种支持快速虚实互换的运载火箭半实物仿真方法
CN106372370A (zh) 一种飞行控制分布式实时仿真系统
CN108287959A (zh) 人工智能程序员书写数字飞行器源代码规范决策执行方法
CN103608735B (zh) 仿真系统、用于执行仿真的方法、控制系统和计算机程序产品
CN104598373B (zh) 一种多技术融合的嵌入式软件测试方法
CN112214902B (zh) 一种卫星姿轨控和单机通信的实时仿真系统
CN111767031A (zh) 一种基于仿真的核电工业互联网实验床
CN107797463A (zh) 一种多轴电力推进半实物模拟试验平台的仿真方法
US11138100B2 (en) Scenario based method for testing software
CN107703775A (zh) 刚‑柔‑液耦合复杂航天器仿真系统及方法
CN111950085A (zh) 一种基于Simulink和Stateflow的复用式导弹建模方法
CN113985920A (zh) 一种便携式异构无人机编队飞行飞机模拟器
CN105843745B (zh) 一种用于测试余度管理软件的方法及系统
CN112947125A (zh) 一种基于高速串行总线的嵌入式无人机集群仿真系统
CN111563324A (zh) 飞行控制系统仿真方法、平台、服务器及存储介质
CN113348764B (zh) 月球飞行器全过程数字仿真系统及方法
Chen et al. A Pixhawk-ROS Based Development Solution for the Research of Autonomous Quadrotor Flight with a Rotor Failure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 100176 Floor 1, Building 9, 13 Ronghua South Road, Beijing Economic and Technological Development Zone, 101

Patentee after: Blue Arrow Space Technology Co., Ltd.

Address before: 100085 02B-492, information block C, seat 28 (two level), Haidian District, Beijing.

Patentee before: Beijing blue arrow InterSpace Technology Ltd

CP03 Change of name, title or address