CN107124127A - 永磁同步电机分数阶等效电路模型及其辨识方法 - Google Patents

永磁同步电机分数阶等效电路模型及其辨识方法 Download PDF

Info

Publication number
CN107124127A
CN107124127A CN201710552293.8A CN201710552293A CN107124127A CN 107124127 A CN107124127 A CN 107124127A CN 201710552293 A CN201710552293 A CN 201710552293A CN 107124127 A CN107124127 A CN 107124127A
Authority
CN
China
Prior art keywords
fractional order
motor
equivalent
inductance
mrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710552293.8A
Other languages
English (en)
Inventor
张奇
张承慧
李珂
崔纳新
商云龙
段彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201710552293.8A priority Critical patent/CN107124127A/zh
Publication of CN107124127A publication Critical patent/CN107124127A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0017Model reference adaptation, e.g. MRAS or MRAC, useful for control or parameter estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/16Estimation of constants, e.g. the rotor time constant

Abstract

本发明公开了一种永磁同步电机分数阶等效电路模型及其辨识方法,包括旋转坐标系下的d轴等效电路和q轴等效电路,两个等效电路均包括依次相连的电机对应轴电压、电机定子绕组电阻、电机对应轴分数阶电感、对应轴电流控制的电压源,其中,q轴等效电路还包括由转子永磁体的励磁磁通控制的电压源,所述分数阶电感的阶次基于最小二乘法辨识模型确定。分数阶的引入使得模型动态性能更优、稳态性能精度更高。由于增加了分数阶变阶参数,模型获得了更多的自由度、更大的柔性和新意,具有较高的应用价值。

Description

永磁同步电机分数阶等效电路模型及其辨识方法
技术领域
本发明涉及一种永磁同步电机分数阶等效电路模型及其辨识方法。
背景技术
传统汽车排放的温室气体是全球气候变暖的主要致因,而伴随而来的能源枯竭和环境污染的日益严重,纯电动汽车越来越受到社会重视,已经成为未来汽车发展的主要方向。电机驱动系统是电动汽车动力系统最核心和最关键的部件,是动力电池最直接的输出负载,其性能对整车动力性、经济性和舒适性至关重要。永磁驱动电机因具有效率高、能量密度大、响应快、调速性能好、体积小、运行可靠等众多优点,已经成为当前电动汽车用驱动电机研发与应用的热点。精确的电机模型对高性能电机控制器的设计具有重要意义,是电动汽车电机驱动系统性能优化和效率优化的基础。
按不同的建模方法电机模型可以划分为不同的种类,如按模型阶数,可以分为三阶模型、四阶模型、五阶模型、高阶模型、降阶模型等;按电机变量变化情况,可以分为稳态模型和暂态模型;按是否考虑铁损等损耗,可以分为忽略损耗的模型和考虑损耗的模型;按模型变量,可以划分为电流模型、磁链模型和混合模型等。目前,常用的电机模型按不同研究领域主要有以下几种:①物理坐标系模型、②等效电路模型、③磁链模型、④小信号模型、⑤归一化模型、⑥空间相量模型等。其中,等效电路模型因物理意义清晰,建模分析简单,在电机效率优化、最小损耗控制等方面得到了广泛应用。
然而,建立一个实用而精确的电机模型并不简单,这是因为永磁驱动电机是一个多变量、非线性、强耦合的高阶时变系统。目前传统等效电路模型中采用整数阶的电感模型,实际上,电机表现出较强的非线性特性,更适合用分数阶模型来模拟。对比整数阶模型,分数阶电机模型具有更多的自由度、更大的柔性。同时,分数阶电感的引入也增加了许多新的现象和规律,具有比常规整数阶电机模型更优的动态响应特性。
发明内容
本发明为了解决上述问题,提出了一种永磁同步电机分数阶等效电路模型及其辨识方法,本发明将传统等效电路模型的整数阶电感推广到分数阶,并基于最小二乘法辨识模型的参数和阶次。分数阶的引入使得模型动态性能更优、稳态性能精度更高。由于增加了分数阶变阶参数,模型获得了更多的自由度、更大的柔性。本发明兼顾了模型的实用性和准确性,具有较高的应用价值。
为了实现上述目的,本发明采用如下技术方案:
一种永磁同步电机分数阶等效电路模型,包括旋转坐标系下的d轴等效电路和q轴等效电路,两个等效电路均包括依次相连的电机对应轴电压、电机定子绕组电阻、电机对应轴分数阶电感、对应轴电流控制的电压源,其中,q轴等效电路还包括由转子永磁体的励磁磁通控制的电压源,所述分数阶电感的阶次基于最小二乘法辨识模型确定。
进一步的,所述d轴等效电路,电路电压方程表示为式中,ud为电机d轴电压;id、iq分别为电机d轴和q轴电流;Lq分别为电机q轴分数阶电感大小;Rs为电机定子绕组电阻;np为定子绕组的极对数;ωm为转子机械角速度。
进一步的,所述q轴等效电路,电路电压方程表示为式中,uq分别为电机q轴电压;
ψf为转子永磁体的励磁磁通。
所述的永磁同步电机分数阶等效电路模型,其输出转矩表示为Te=npf+(Ld-Lq)id]iq,式中,Te为电机的输出转矩。
所述的分数阶电感,利用分数阶微积分理论来描述实际电感特性的分数阶电感模型,其特性方程表示为对应的传递函数可以表示为Uα(s)=Zα(s)Iα(s),式中,α为分数阶电感的分数阶阶次;i(t)和u(t)分别为分数阶电感通过的电流和两端的电压;Ua(s)、Ia(s)分别表示分数阶电感电压和电流的象函数;Za(s)为分数阶电感的阻抗。
所述的分数阶电感的阻抗Za(s),令s=jω,表示为:
基于上述永磁同步电机分数阶等效电路模型的辨识方法,包括以下步骤:
(1)根据分数阶微积分理论,实际的电容、电感模型都是分数阶元件,表示分数阶电感的特性方程及传递函数;
(2)构建永磁同步电机分数阶等效电路模型;
(3)通过用电桥测量三相电阻确定电机定子绕组电阻;
(4)基于电机稳态电压方程,通过电压、电流及转速数据的采集,通过稳态计算实现电机d轴和q轴分数阶电感参数的离线辨识;
(5)通过测量电压、电流和计算得到的等效电路分数阶电感得到分数阶电感的分数阶阶次。
与现有技术相比,本发明的有益效果为:
1.本发明将传统的永磁同步电机等效电路模型推广到分数阶,并通过实验辨识模型参数和分数阶阶次,由于增加了分数阶阶数这一未知参数,模型获得了更多的自由度、更大的柔性和新意;分数阶变阶等效电路模型从而获得了更高的精度、更好的动态性能和稳定性;
2.电感展现出了分数阶特性,釆用分数阶微积分描述那些本身带有分数阶特性的对象时,能更好地描述对象的本质特性及其行为,从这方面上讲,分数阶应比传统整数阶更为精确,具有较高的实用价值。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明永磁同步电机分数阶等效电路d轴模型结构示意图;
图2为本发明永磁同步电机分数阶等效电路q轴模型结构示意图;
具体实施方式:
下面结合附图与实施例对本发明作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,现有技术中存在永磁驱动电机是一个多变量、非线性、强耦合的高阶时变系统,因此建立一个实用而精确的电机模型并不简单的不足,为了解决如上的技术问题,本申请提出了一种永磁同步电机分数阶等效电路模型及其辨识方法,本发明将传统等效电路模型的整数阶电感推广到分数阶,并基于最小二乘法辨识模型的参数和阶次。分数阶的引入使得模型动态性能更优、稳态性能精度更高。由于增加了分数阶变阶参数,模型获得了更多的自由度、更大的柔性。本发明是在传统模型的基础上实现的,兼顾了模型的实用性和准确性,具有较高的应用价值。
本发明公开的一种永磁同步电机分数阶等效电路模型,包括旋转坐标系下的d轴等效电路和q轴等效电路。其中,d轴等效电路包括电机d轴电压ud、电机定子绕组电阻Rs、电机d轴分数阶电感Ld、电流iq控制的电压源等;q轴等效电路包括电机q轴电压uq、电机定子绕组电阻Rs、电机q轴分数阶电容感Lq、电流id控制的电压源等。
所述的d轴等效电路,电路电压方程可以表示为式中,ud为电机d轴电压;id、iq分别为电机d轴和q轴电流;Lq分别为电机q轴分数阶电感大小;Rs为电机定子绕组电阻;np为定子绕组的极对数;ωm为转子机械角速度。
所述的q轴等效电路,电路电压方程可以表示为
式中,uq分别为电机q轴电压;ψf为转子永磁体的励磁磁通。
所述的永磁同步电机分数阶等效电路模型,其输出转矩可以表示为
Te=npf+(Ld-Lq)id]iq,式中,Te为电机的输出转矩。
所述的分数阶电感(Fractional order inductance,FOI),是利用分数阶微积分理论来描述实际电感特性的分数阶电感模型,其特性方程可表示为 对应的传递函数可以表示为Uα(s)=Zα(s)Iα(s),式中,α为分数阶电感的分数阶阶次;i(t)和u(t)分别为分数阶电感通过的电流和两端的电压;Ua(s)、Ia(s)分别表示分数阶电感电压和电流的象函数;Za(s)为分数阶电感的阻抗。
所述的分数阶电感的阻抗Za(s),如果令s=jω,则可以表示为:
所述的永磁同步电机分数阶等效电路模型,是基于电感具有显著的分数阶特性,因此永磁同步电机系统也是分数阶的物理系统,并对实际的永磁同步电机系统测试,通过参数辨识得到的物理系统模型。
一种应用上述永磁同步电机分数阶等效电路模型及其辨识方法,包括以下步骤:
步骤一:根据分数阶微积分理论,实际的电容、电感模型都是分数阶元件(Fractional order element,FOE),其中分数阶电感(Fractional order inductance,FOI)的特性方程及传递函数可以表示为
式中:α为分数阶电感的分数阶阶次;i(t)和u(t)分别为分数阶电感通过的电流和两端电压;Ua(s)、Ia(s)分别表示分数阶电感电压和电流的象函数;Za(s)为分数阶电感的阻抗,如果令s=jω,则可以表示为:
实际的永磁同步电机系统具有显著的电感特性,因此也是分数阶的物理系统,根据等效电路模型,由电路电压方程和电机输出转矩方程,可得:
式中,ud、uq分别为电机d轴和q轴电压;id、iq分别为电机d轴和q轴电流;Ld、Lq分别为电机d轴和q轴电感;Rs为电机定子绕组电阻;np为定子绕组的极对数;ωm为转子机械角速度;ψf为转子永磁体的励磁磁通。
步骤二:根据永磁同步电机分数阶等效电路模型及其系统关系表达式,模型需要辨识的参数主要包括电机定子绕组电阻Rs,电机d轴和q轴分数阶电感的大小Ld、Lq,分数阶电感的分数阶阶次α,转子永磁体的励磁磁通ψf
步骤三:电机定子绕组电阻Rs通过用电桥测量三相电阻可得到,一般PMSM的三相定子绕组采用Y型接法,通过3次测量的数据R1,R2,R3,电机定子绕组电阻Rs=(R1+R2+R3)/6。
步骤四:电机的反电动势以A相相电压eA为例,其表达式为:eA≈npωmψf=2πf,而线电压Uab为√3倍的相电压eA,因此可得磁链系数:由式可知,永磁同步电机加速到一定转速后,测量三相开路线电压Uab及转子频率f,即可计算磁链系数ψf
步骤五:基于电机稳态电压方程:
通过电压、电流及转速数据的采集,通过稳态计算可实现电机d轴和q轴分数阶电感Ld、Lq参数的离线辨识。
步骤六:根据通过测量电压、电流和计算得到的等效电路分数阶电感Ld、Lq,可以得到分数阶电感的分数阶阶次α。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (7)

1.一种永磁同步电机分数阶等效电路模型,其特征是:包括旋转坐标系下的d轴等效电路和q轴等效电路,两个等效电路均包括依次相连的电机对应轴电压、电机定子绕组电阻、电机对应轴分数阶电感、对应轴电流控制的电压源,其中,q轴等效电路还包括由转子永磁体的励磁磁通控制的电压源,所述分数阶电感的阶次基于最小二乘法辨识模型确定。
2.如权利要求1所述的一种永磁同步电机分数阶等效电路模型,其特征是:所述d轴等效电路,电路电压方程表示为式中,ud为电机d轴电压;id、iq分别为电机d轴和q轴电流;Lq分别为电机q轴分数阶电感大小;Rs为电机定子绕组电阻;np为定子绕组的极对数;ωm为转子机械角速度。
3.如权利要求1所述的一种永磁同步电机分数阶等效电路模型,其特征是:所述q轴等效电路,电路电压方程表示为式中,uq分别为电机q轴电压;ψf为转子永磁体的励磁磁通。
4.如权利要求1所述的一种永磁同步电机分数阶等效电路模型,其特征是:所述的永磁同步电机分数阶等效电路模型,其输出转矩表示为Te=npf+(Ld-Lq)id]iq,式中,Te为电机的输出转矩。
5.如权利要求1所述的一种永磁同步电机分数阶等效电路模型,其特征是:所述的分数阶电感,利用分数阶微积分理论来描述实际电感特性的分数阶电感模型,其特性方程表示为0<α<1,对应的传递函数可以表示为Uα(s)=Zα(s)Iα(s),式中,α为分数阶电感的分数阶阶次;i(t)和u(t)分别为分数阶电感通过的电流和两端的电压;Ua(s)、Ia(s)分别表示分数阶电感电压和电流的象函数;Za(s)为分数阶电感的阻抗。
6.如权利要求1所述的一种永磁同步电机分数阶等效电路模型,其特征是:所述的分数阶电感的阻抗Za(s),令s=jω,表示为:
<mrow> <msub> <mi>Z</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>j</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>L</mi> <msup> <mrow> <mo>(</mo> <mi>j</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mi>&amp;alpha;</mi> </msup> <mo>=</mo> <msup> <mi>L&amp;omega;</mi> <mi>&amp;alpha;</mi> </msup> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mrow> <mo>(</mo> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>=</mo> <msup> <mi>L&amp;omega;</mi> <mi>&amp;alpha;</mi> </msup> <mrow> <mo>(</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo>(</mo> <mrow> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mi>&amp;alpha;</mi> </mrow> <mo>)</mo> <mo>+</mo> <mi>j</mi> <mi> </mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mo>(</mo> <mrow> <mfrac> <mi>&amp;pi;</mi> <mn>2</mn> </mfrac> <mi>&amp;alpha;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
7.基于权利要求1-6中任一项所述的永磁同步电机分数阶等效电路模型的辨识方法,其特征是:包括以下步骤:
(1)根据分数阶微积分理论,实际的电容、电感模型都是分数阶元件,表示分数阶电感的特性方程及传递函数;
(2)构建永磁同步电机分数阶等效电路模型;
(3)通过用电桥测量三相电阻确定电机定子绕组电阻;
(4)基于电机稳态电压方程,通过电压、电流及转速数据的采集,通过稳态计算实现电机d轴和q轴分数阶电感参数的离线辨识;
(5)通过测量电压、电流和计算得到的等效电路分数阶电感得到分数阶电感的分数阶阶次。
CN201710552293.8A 2017-07-07 2017-07-07 永磁同步电机分数阶等效电路模型及其辨识方法 Pending CN107124127A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710552293.8A CN107124127A (zh) 2017-07-07 2017-07-07 永磁同步电机分数阶等效电路模型及其辨识方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710552293.8A CN107124127A (zh) 2017-07-07 2017-07-07 永磁同步电机分数阶等效电路模型及其辨识方法

Publications (1)

Publication Number Publication Date
CN107124127A true CN107124127A (zh) 2017-09-01

Family

ID=59730622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710552293.8A Pending CN107124127A (zh) 2017-07-07 2017-07-07 永磁同步电机分数阶等效电路模型及其辨识方法

Country Status (1)

Country Link
CN (1) CN107124127A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108363877A (zh) * 2018-02-24 2018-08-03 电子科技大学 一种具有星形连接的永磁同步电机的完整三相模型
CN109492283A (zh) * 2018-10-29 2019-03-19 成都师范学院 电流分数阶积分控制式忆阶元
CN110068772A (zh) * 2019-05-06 2019-07-30 重庆大学 基于改进分数阶模型的锂离子电池荷电状态估计方法
CN110889240A (zh) * 2019-12-06 2020-03-17 大连海事大学 一种分数阶永磁同步电机非线性建模及辨识方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122916A (zh) * 2011-04-18 2011-07-13 苏州秉立电动汽车科技有限公司 基于永磁同步电机矢量控制系统的复合控制方法
US20120217912A1 (en) * 2011-02-28 2012-08-30 Long Wu Method and system for calibrating rotor position offset of an electric motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120217912A1 (en) * 2011-02-28 2012-08-30 Long Wu Method and system for calibrating rotor position offset of an electric motor
CN102122916A (zh) * 2011-04-18 2011-07-13 苏州秉立电动汽车科技有限公司 基于永磁同步电机矢量控制系统的复合控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
赵凯辉等: "IPMSM非奇异快速终端滑模无速度传感器转矩控制", 《仪器仪表学报》 *
高远等: "分数阶永磁同步电机的混沌运动及其控制研究", 《武汉理工大学学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108363877A (zh) * 2018-02-24 2018-08-03 电子科技大学 一种具有星形连接的永磁同步电机的完整三相模型
CN109492283A (zh) * 2018-10-29 2019-03-19 成都师范学院 电流分数阶积分控制式忆阶元
CN110068772A (zh) * 2019-05-06 2019-07-30 重庆大学 基于改进分数阶模型的锂离子电池荷电状态估计方法
CN110068772B (zh) * 2019-05-06 2021-07-30 重庆大学 基于改进分数阶模型的锂离子电池荷电状态估计方法
CN110889240A (zh) * 2019-12-06 2020-03-17 大连海事大学 一种分数阶永磁同步电机非线性建模及辨识方法
CN110889240B (zh) * 2019-12-06 2022-10-25 大连海事大学 一种分数阶永磁同步电机非线性建模及辨识方法

Similar Documents

Publication Publication Date Title
Zhu et al. Comprehensive sensitivity analysis and multiobjective optimization research of permanent magnet flux-intensifying motors
Zhu et al. Design and multicondition comparison of two outer-rotor flux-switching permanent-magnet motors for in-wheel traction applications
CN107124127A (zh) 永磁同步电机分数阶等效电路模型及其辨识方法
Rabiei et al. Maximizing the energy efficiency of a PMSM for vehicular applications using an iron loss accounting optimization based on nonlinear programming
CN106026816B (zh) 一种轴向磁场磁通切换型混合永磁体记忆电机矢量控制方法
CN110212710A (zh) 一种车用永磁同步电机设计方法
CN104331573A (zh) 无刷复合结构电机系统的优化设计方法
Cha et al. Wound field synchronous motor with hybrid circuit for neighborhood electric vehicle traction improving fuel economy
Hindmarsh et al. Electrical machines and drives
Liu et al. Analysis and design of a high power density permanent magnet-assisted synchronous reluctance machine with low-cost ferrite magnets for EVs/HEVs
CN107482967B (zh) 考虑铁损的永磁同步电机分数阶变结构模型及辨识方法
Pinhal et al. Driving cycle simulation of wound-rotor synchronous machine with hairpin windings considering ac-losses
Villan et al. Experimental comparison between induction and synchronous reluctance motor-drives
Kassa et al. Design Optimazation and Simulation of PMSM based on Maxwell and TwinBuilder for EVs
CN107154716A (zh) 双定子周向错位角电励磁直流电机及其控制方法
Shriwastava Sensorless field-oriented control of PMSM drive system for automotive application
Kerdsup et al. Design of permanent magnet-assisted synchronous reluctance motors with maximum efficiency-power factor and torque per cost
Ghosh et al. Mathematical approach to generate efficiency maps for induction motor and optimization for EV
Chen et al. Multiobjective optimization design of unequal halbach array permanent magnet vernier motor based on optimization algorithm
CN107959452B (zh) 一种永磁同步电机的工作电流确定方法及装置
CN108875255A (zh) 基于电动汽车实际行驶工况的永磁驱动电机温升分析方法
Park et al. Modeling, design and control of wound-field synchronous motor for high energy efficiency of electric vehicle
Li et al. Sizing of modular cascade machines system for electric vehicles
CN111857197B (zh) 三相交流电机及其负载的模拟方法及装置
CN105353220A (zh) 三相异步电动机电学性能参数的辨识方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170901