CN107122511A - 一种超级电容分数阶模型参数识别方法 - Google Patents

一种超级电容分数阶模型参数识别方法 Download PDF

Info

Publication number
CN107122511A
CN107122511A CN201710142111.XA CN201710142111A CN107122511A CN 107122511 A CN107122511 A CN 107122511A CN 201710142111 A CN201710142111 A CN 201710142111A CN 107122511 A CN107122511 A CN 107122511A
Authority
CN
China
Prior art keywords
super capacitor
fractional
frequency
fractional order
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710142111.XA
Other languages
English (en)
Other versions
CN107122511B (zh
Inventor
梁志珊
夏鹏程
徐刚
肖霄
左信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum Beijing
Original Assignee
China University of Petroleum Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum Beijing filed Critical China University of Petroleum Beijing
Publication of CN107122511A publication Critical patent/CN107122511A/zh
Application granted granted Critical
Publication of CN107122511B publication Critical patent/CN107122511B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本发明涉及一种超级电容分数阶模型参数识别方法,该方法包括:步骤一,实验采集含超级电容的串联谐振电路的谐振频率响应数据;步骤二,分析计算含超级电容的串联谐振电路的谐振频率响应数据;步骤三,根据分数阶微积分理论推导公式,辨识得出超级电容的电容量和分数阶阶次。本发明基于实际电容和电感的模型参数都是分数阶的科学事实,采用测量含超级电容的分数阶串联谐振频率响应的实验方法,通过建立超级电容并联Ro Cα分数阶阻抗模型、进行谐振频率响应实验与数值计算、设计制造超级电容分数阶模型参数识别器,获得超级电容分数阶模型的精确参数,实验简单易行,步骤简洁,计算结果精确,适用性广泛。

Description

一种超级电容分数阶模型参数识别方法
技术领域
本发明涉及超级电容的分数阶模型参数识别技术领域,具体涉及一种利用串联谐振频率 响应测量超级电容的分数阶模型参数的识别方法。
背景技术
超级电容器作为一种能量存储设备,由于其优异的特性,得到了广泛的应用。近年来, 关于超级电容器的研究不断深入,为了描述多孔碳材料复杂的内部结构及相对应的电容值, 前人提出了三类基本模型:传统等效电路模型、人工神经网络模型及分数阶模型。自从1695 年Leibnitz和L’Hospital提出分数阶微积分的概念以后,分数阶模型成为种类最多的模型, 与传统等效电路模型相比较,该类模型能用较少的参数取得与实验符合得很好的结果。
在国外,R.Martin、Andrzej Dzie-linski、De Levie等研究了电容器分数阶模型及其时域 频域响应特性。
在国内,黄欢、刁利杰、余战波等改进了分数阶模型计算方法,研究了电阻、电容和电 感串并联等不同拓扑结构的电路基本特性和规律。
但是,国内外现有研究主要集中在对超级电容分数阶模型的理论分析,而针对超级电容 的实际应用中分数阶参数测量与识别方法的研究还很少。前人在参数测量实验和辨识过程中, 采用标准电容元件或电感元件时,依照传统等效电路模型的假设,把电容和电感的模型参数 当作是整数阶的。但是,只有理想的电容电感元件是整数阶的,而实际存在的电容和电感元 件一定都是分数阶的。在实验中不可能找到理想的整数阶电感(或电容)元件,用于测量分 数阶的电容(或电感)参数。因此,以前很多的参数测量和辨识方法忽略了实际上分数阶自 然存在的本质,其实验和计算结果很可能是错误的。
2010年至2013年间Todd J.Freeborn、Ahmed S Elwakil等基于Cole-Cole生物阻抗模型, 采用阶跃响应的实验和最小二乘数值优化方法,提取出电容器的分数阶阻抗参数。他们只针 对一阶RC电路做实验和辨识,可以得到电容器分数阶模型阶跃响应的时域数值解,但是他 们没有分析二阶及以上的RLC电路。而时域上的阶跃或脉冲响应的实验方法和数值计算的缺 点是:针对二阶及以上的RLC电路分数阶模型的阶跃或脉冲响应,从频域到时域的拉普拉斯 反变换不一定存在解,且与整数阶相比,想要得出分数阶模型响应的时域解析解更困难,也 更不易仿真实现。
综上所述,到目前为止,在实际应用中尚未见到采用分数阶RLβCα串联谐振频率响应的 方法识别超级电容分数阶模型参数(电阻、电容量和分数阶阶次)的装置或仪器。
发明内容
针对本领域的现有技术中存在的问题,本发明提供了一种超级电容分数阶参数识别方法, 该方法基于实际电容和电感的模型参数都是分数阶的科学事实,采用测量含超级电容的分数 阶串联谐振频率响应的实验方法,结合分数阶微积分理论推导公式,计算获得超级电容分数 阶阻抗模型的精确参数。
为了实现上述目的,本发明采用如下技术方案。
一种超级电容分数阶模型参数识别方法,该方法包括:
步骤一,实验采集含超级电容的串联谐振电路的谐振频率响应数据;
步骤二,分析计算含超级电容的串联谐振电路的谐振频率响应数据;
步骤三,根据分数阶微积分理论推导公式,辨识得出超级电容的电容量和分数阶阶次;
该方法通过建立超级电容并联Ro Cα分数阶阻抗模型、进行谐振频率响应实验与数值计 算、设计制造超级电容分数阶模型参数识别器,获得超级电容分数阶模型的精确参数。
优选的是,所述超级电容分数阶模型参数包括电阻、电容量和分数阶阶次。
在上述任一技术方案中优选的是,所述建立超级电容的分数阶模型,设定超级电容器的 并联RoCα分数阶阻抗模型是由一个不变电阻Ro和一个常相位元件CPE电路元件并联构成, 该常相位元件的阻抗是:时域中ZCPE=1/(jω)αC,或在频域s域中为1/sαC,其中C是电容量,α是电容的阶数;当α=0时,CPE是一个理想电阻;当α=1时,CPE是一个理想电 容器;而实际上电容和电感参数都是分数阶的,在数学上是可能的,则α的范围是 0≤α≤1,超级电容分数阶阻抗参数是时间常数是τ=(R0C)1/α
在上述任一技术方案中优选的是,所述谐振频率响应实验方法和参数计算方法,分数阶 RLβCα串联谐振电路是由一个大功率变频可控电源Vin、一个外加电阻R1、一个分数阶铁芯电 抗器Lβ和一个超级电容Cα依次串联而成,通过可控电源Vin施加频率不同的脉冲信号(或 PWM波),测量记录超级电容的输出电压VC、干路电流I1实验数据;
超级电容Cα的稳态电阻R0可通过稳态实验对其施加直流信号测得,串联谐振 回路中,在电源Vin施加脉冲信号,则由基尔霍夫电压定律(KVL)得
VR+VL+VC=Vin (1)
式中,VR表示外加电阻R1上的电压,VR=R1I1;VL表示分数阶铁芯电抗器Lβ上的电压, Vc表示超级电容Cα上的电压,Vc=R0I0,I1=I0+ICVin表示分数阶RLβCα串联谐振回路总电压,即电源电压;
在频域中,设电源Vin(s)=Vccg1,则通过串联谐振频率响应实验测量记录的超级电容的输 出电压VC可表示为
串联谐振回路的干路电流I1可表示为
根据双参数Mittag-Leffler函数定义,
以及双参数Mittag-Leffler函数的拉普拉斯变换,
其中t≥0,s是拉氏域里的变量,Re(s)定义了s的实值部分,λ∈R;
在时域中,当t∈[0,+∞)时,由公式(3)~(5)可得干路电流I1
其中ML=tβ-1Eα,β(-λtα);
当α=β=1时,传统整数阶RLC串联谐振电路,其复阻抗为
式中,电阻感抗XL=ωL,容抗电抗X=XL-XC、阻抗角均为电源角频率ω的函数;谐振时Vin(s)和I1(s)同相,即ΨZ=0,所以电路谐振时应满足:X=0,XL=XC谐振角频率为固有频率,谐振时的 电流达到最大;
同理,从整数阶推广至分数阶谐振电路,谐振的基本原理和定义不变;
因此,所述谐振频率响应实验调节可控电源Vin输出频率,当观察到干路电流达到最大值 时,即分数阶RLβCα串联谐振电路达到谐振频率工作点,超级电容两端的电压与铁芯电抗器 的电压大小相等、方向相反,VL=-VC;采用波形记录仪记录分数阶RLβCα串联谐振电路的 干路电流I1、超级电容的电压VC与电源输出频率ω之间的关系曲线,即I1-ω,VC-ω谐振曲 线;也可以用频率特性测试仪做实验测试频率特性,标记下谐振频率值和相位角;分数阶RLβCα 向量图,分数阶电感与电阻的夹角成βπ/2,分数阶电容与电阻的夹角成απ/2;
分数阶RLβCα串联谐振电路的总阻抗可表示为
由分数阶RLβCα谐振的定义可知,当时,谐振角频率为
又定义归一化角频率
可以改变外加电阻R1的值,使得系统阻尼发生变化,得到一组超级电容Cα电压VC的相 频特性曲线在传统整数阶情况下,α=1,超级电容Cα电压VC的相频特性曲线 与横轴交点是在电源输出频率ω达到谐振频率时ω=ω0而推广到 分数阶一般情况下,0≤α≤1,由公式(8)中ΨZ=0可知,超级电容Cα电压VC的相频特性 曲线与横轴交点处的频率为
超级电容Cα电压的相频特性曲线与横轴交点处的相位表示为
而且因为已知实验所用的分数阶铁芯电抗器的标准参数Lβ和β的 值,再根据RLβCα串联谐振频率响应实验数据,测得频率特性曲线交点处的谐振频率ωs和超 级电容Cα电压的相位所以超级电容Cα分数阶模型的阶数α值可以直接从上面公式(12) 得到;
再由公式(9)~(12)可得超级电容Cα分数阶模型的电容量Cα
在上述任一技术方案中优选的是,所述公式(6)表示干路电流I1(t)为双参数Mittag-Leffler 函数的函数,首先可用海维赛展开定理将式(3)展开成类似式(5)的形式,然后根据双参 数Mittag-Leffler函数的拉普拉斯反变换求得干路电流I1的时域解,再利用MATLAB函数工 具箱中的MLF程序数值计算出干路电流I1的数值解,最后可将I1代入式(2)求得超级电容 的输出电压VC的数值解,即为时域上分数阶RLβCα串联谐振电路的脉冲响应特性。
在上述任一技术方案中优选的是,所述超级电容分数阶模型参数识别器基于分数阶RLβCα 串联谐振频率响应方法,该基于分数阶RLβCα串联谐振频率响应方法的超级电容分数阶模型 参数识别器包括实验数据采集单元、数据转换存储单元、数据计算处理单元和数据显示输出 单元。
在上述任一技术方案中优选的是,所述实验数据采集单元包括高精度的电压互感器、电 流互感器和频率计;所述实验数据采集单元能够同步采集三路数据信号,分别是:分数阶RLβCα 串联谐振电路的干路电流I1、超级电容的电压VC与电源输出信号频率ω。
在上述任一技术方案中优选的是,所述数据转换存储单元包括高精度抗干扰光电隔离 A/D转换芯片、I/O接口、内存卡;所述数据转换存储单元能够将采集的模拟量信号转换成数 字量,并能将采集数据和计算结果都存储记录下来。
在上述任一技术方案中优选的是,所述数据计算处理单元包括ARM智能芯片,能够编 程计算分数阶RLβCα串联谐振频率响应;所述数据计算处理单元根据实验采集的数据和已知 条件,绘制出分数阶RLβCα串联谐振电路的干路电流I1、超级电容的电压VC与电源输出信号 频率ω之间的关系曲线,即I1-ω,VC-ω谐振曲线。
在上述任一技术方案中优选的是,所述数据显示输出单元包括液晶显示触摸屏、USB接 口和无限网卡;所述数据显示输出单元能够通过液晶显示触摸屏输入已知条件和参数,并实 时在线显示实验采集的数据、分析计算出的I1-ω,VC-ω谐振曲线、谐振频率和相位、超级电 容Cα分数阶模型的电容量Cα值和阶数α值,然后通过USB接口转存到U盘或移动硬盘上, 或通过无限网卡上传到上位机、网络云盘或打印机上。
在上述任一技术方案中优选的是,所述基于分数阶RLβCα串联谐振频率响应方法的超级 电容分数阶模型参数识别器,其运行计算流程包括:
步骤1、同步采集分数阶RLβCα串联谐振频率响应实验的3路数据信号,包括分数阶RLβCα 串联谐振电路的干路电流I1、超级电容的电压VC与电源输出信号频率ω;
步骤2、分析数据并绘制出分数阶RLβCα串联谐振电路的谐振频率特性曲线(I1-ω,VC-ω);
步骤3、根据稳态实验数据计算得出超级电容的稳态电阻
步骤4、根据谐振频率特性曲线找出谐振频率ωs及其对应的超级电容的电压相位角
步骤5、由公式(12)计算得出超级电容Cα分数阶模型的阶数
步骤6、根据输入已知的分数阶铁芯电抗器的标准参数Lβ和β的值,由公式(13)计算 得到超级电容Cα分数阶模型的电容量
本发明上述技术方案的优点是:
与传统的阶跃、脉冲或频率响应方法相比,该方法基于实际电容和电感的模型参数都是 分数阶的科学事实,采用测量含超级电容的分数阶RLβCα串联谐振频率响应的实验方法,实 验简单易行,只需做一次谐振实验,不需要借用昂贵的阻抗、网络或频谱分析仪等。
根据分数阶微积分理论推导出了分数阶RLβCα串联谐振频率响应的解析解,步骤更简洁, 计算结果更精确。
装置功能齐全,操作简便,性能优势在于测量精度高,计算能力强,支持嵌入式程序开 发,适用性更广泛。
实验结果表明,使用提取的超级电容分数阶模型参数,模拟出的谐振频率响应曲线和实 际的实验曲线非常吻合,绝对误差不超过0.1%,相对误差小于1%,达到了工程实际需要的 辨识精度。该分数阶参数识别方法及装置可以为工程上含超级电容的电路设计与控制保护提 供真实可靠的基础数据。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术 描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一 些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这 些附图获得其他的附图。
图1为按照本发明的超级电容分数阶模型参数识别方法的一优选实施例的流程图;
图2为按照本发明的超级电容分数阶模型参数识别方法的一优选实施例的超级电容器的 分数阶阻抗模型图;
图3为按照本发明的超级电容分数阶模型参数识别方法的一优选实施例的分数阶RLβCα 串联谐振实验电路图;
图4为按照本发明的超级电容分数阶模型参数识别方法的一优选实施例的分数阶RLβCα 向量图;
图5为按照本发明的超级电容分数阶模型参数识别方法的一优选实施例的分数阶参数识 别器的基本构成图;
图6为按照本发明的超级电容分数阶模型参数识别方法的一优选实施例的分数阶参数识 别器的运行计算流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描 述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明 中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
针对本领域的现有技术中存在的问题,本发明实施例提供一种超级电容分数阶参数(电 阻、电容量和分数阶阶次)识别方法及装置,该方法基于实际电容和电感的模型参数都是分 数阶的科学事实,采用测量含超级电容的分数阶RLβCα串联谐振频率响应的实验方法,结合 分数阶微积分理论推导公式,计算获得超级电容分数阶阻抗模型的精确参数(电阻、电容量 和分数阶阶次)。
如图1所示,本实施例所述的超级电容分数阶模型参数识别方法包括:
步骤一,实验采集含超级电容的RLβCα串联谐振电路的谐振频率响应数据;
步骤二,分析计算含超级电容的RLβCα串联谐振电路的谐振频率响应数据;
步骤三,根据分数阶微积分理论推导公式,辨识得出超级电容的电容量和分数阶阶次。
为了实现本实施例的上述技术方案,采用如下具体实施措施,分为3部分:1、建立超级 电容并联Ro Cα分数阶阻抗模型;2、进行谐振频率响应实验与数值计算;3、设计制造超级电 容分数阶模型参数识别器。
首先,建立超级电容的分数阶模型。
超级电容器的并联RoCα分数阶阻抗模型,假设是由一个不变电阻Ro和一个常相位元件 (CPE)电路元件并联构成,如图2所示。该常相位元件的阻抗是,时域中ZCPE=1/(jω)αC, 或在频域s域中为1/sαC,其中C是电容量,α是电容的阶数。当α=0时,CPE是一个理 想电阻;当α=1时,是一个理想电容器。而实际上电容和电感参数都是分数阶的,在 数学上是可能的。因此,我们讨论α的范围是0≤α≤1。超级电容分数阶阻抗参数是时间常数是τ=(R0C)1/α
其次,进行谐振频率响应实验和参数计算。
谐振频率响应实验方法和参数计算方法:
分数阶RLβCα串联谐振电路实验方法,是由一个大功率变频可控电源Vin、一个外加电阻 R1、一个分数阶铁芯电抗器Lβ和一个超级电容Cα依次串联而成,如图3所示。通过可控电 源Vin施加频率不同的脉冲信号(或PWM波),测量记录超级电容的输出电压VC、干路电 流I1等实验数据。
超级电容的稳态电阻R0可通过稳态实验对其施加直流信号测得,
如图3所示的串联谐振回路中,在电源Vin施加脉冲信号,则由基尔霍夫电压定律(KVL) 得
VR+VL+VC=Vin (1)
式中,VR表示外加电阻R1上的电压,VR=R1I1;VL表示分数阶铁芯电抗器Lβ上的电压, Vc表示超级电容Cα上的电压,Vc=R0I0,I1=I0+ICVin表示分数阶RLβCα串联谐振回路总电压,即电源电压。
在频域中,设电源Vin(s)=Vccg1,因此,通过串联谐振频率响应实验测量记录的超级电容 的输出电压VC可表示为
串联谐振回路的干路电流I1可表示为
根据双参数Mittag-Leffler函数定义,
以及双参数Mittag-Leffler函数的拉普拉斯变换,
其中t≥0,s是拉氏域里的变量,Re(s)定义了s的实值部分,λ∈R。
在时域中,当t∈[0,+∞)时,由公式(3)~(5)可得干路电流I1
其中ML=tβ-1Eα,β(-λtα)。
说明:式(6)表示干路电流I1(t)为双参数Mittag-Leffler函数的函数,首先可用海维赛 展开定理将式(3)展开成类似式(5)的形式,然后根据双参数Mittag-Leffler函数的拉普拉 斯反变换求得干路电流I1的时域解,再利用MATLAB函数工具箱中的MLF程序数值计算出 干路电流I1的数值解,最后可将I1代入式(2)求得超级电容的输出电压VC的数值解,即为 时域上分数阶RLβCα串联谐振电路的脉冲响应特性。
当α=β=1时,图3为传统整数阶RLC串联谐振电路,其复阻抗为
式中,电阻感抗XL=ωL,容抗电抗X=XL-XC、阻抗角均为电源角频率ω的函数。谐振时Vin(s)和I1(s)同相,即ΨZ=0,所以电路谐振时应满足:X=0,XL=XC谐振角频率为固有频率,谐振时的 电流达到最大。
同理,从整数阶推广至分数阶谐振电路,谐振的基本原理和定义不变。
因此,实验调节可控电源Vin输出频率,当观察到干路电流达到最大值时,即分数阶RLβCα 串联谐振电路达到谐振频率工作点,超级电容两端的电压与铁芯电抗器的电压大小相等、方 向相反,VL=-VC。采用波形记录仪记录分数阶RLβCα串联谐振电路的干路电流I1、超级电容 的电压VC与电源输出频率ω之间的关系曲线,即I1-ω,VC-ω谐振曲线。也可以用频率特性 测试仪做实验测试频率特性,标记下谐振频率值和相位角。如图4所示为分数阶RLβCα向量 图,分数阶电感与电阻的夹角成βπ/2,分数阶电容与电阻的夹角成απ/2。
分数阶RLβCα串联谐振电路的总阻抗可表示为
由分数阶RLβCα谐振的定义可知,当时,谐振角频率为
又定义归一化角频率
可以改变外加电阻R1的值,使得系统阻尼发生变化,得到一组超级电容Cα电压VC的相 频特性曲线在传统整数阶情况下,α=1,超级电容Cα电压VC的相频特性曲线 与横轴交点是在电源输出频率ω达到谐振频率时ω=ω0而推广到 分数阶一般情况下,0≤α≤1,由公式(8)中ΨZ=0可知,超级电容Cα电压VC的相频特性 曲线与横轴交点处的频率为
超级电容Cα电压的相频特性曲线与横轴交点处的相位表示为
而且因为已知实验所用的分数阶铁芯电抗器的标准参数Lβ和β的 值,再根据RLβCα串联谐振频率响应实验数据,测得频率特性曲线交点处的谐振频率ωs和超 级电容Cα电压的相位所以超级电容Cα分数阶模型的阶数α值可以直接从上面公式(12) 得到。
说明:可根据本申请人的另一项专利技术测量辨识得到分数阶铁芯电抗器的标准参数Lβ 和β的值,“梁志珊,夏鹏程,李应坤,谭程.一种铁芯电抗器参数识别方法[P].中国发明专利, 申请号:201610287104.4”,并且该方法测量分数阶铁芯电抗器的标准参数不会用到电容器, 所以可以先测得分数阶电感参数,然后将其用于测量辨识待测的分数阶电容参数。
再由公式(9)~(12)可得超级电容Cα分数阶模型的电容量Cα
最后,装置超级电容分数阶模型参数识别器。
基于分数阶RLβCα串联谐振频率响应方法的超级电容分数阶模型参数识别器,主要是由 实验数据采集单元、数据转换存储单元、数据计算处理单元和数据显示输出单元等4部分构 成的,如图5所示。
其中,实验数据采集单元是由高精度的电压互感器、电流互感器和频率计等元件构成, 能够同步采集3路数据信号,分别是:分数阶RLβCα串联谐振电路的干路电流I1、超级电容 的电压VC与电源输出信号频率ω。
数据转换存储单元是由高精度抗干扰光电隔离A/D转换芯片、I/O接口、内存卡等元件 构成,能够将采集的模拟量信号转换成数字量,并能将采集数据和计算结果都存储记录下来。
数据计算处理单元是由ARM等智能芯片构成,能够编程计算分数阶RLβCα串联谐振频 率响应,根据实验采集的数据和已知条件,绘制出分数阶RLβCα串联谐振电路的干路电流I1、 超级电容的电压VC与电源输出信号频率ω之间的关系曲线,即I1-ω,VC-ω谐振曲线。
数据显示输出单元是由液晶显示触摸屏、USB接口和无限网卡构成,能够通过液晶显示 触摸屏输入已知条件和参数,并实时在线显示实验采集的数据、分析计算出的I1-ω,VC-ω谐 振曲线、谐振频率和相位、超级电容Cα分数阶模型的电容量Cα值和阶数α值等,然后通过 USB接口转存到U盘或移动硬盘上,或通过无限网卡上传到上位机、网络云盘或打印机上。
如图6所示,基于分数阶RLβCα串联谐振频率响应方法的超级电容分数阶模型参数识别 器的运行计算流程如下:
步骤1、同步采集分数阶RLβCα串联谐振频率响应实验的3路数据信号,包括分数阶RLβCα 串联谐振电路的干路电流I1、超级电容的电压VC与电源输出信号频率ω。
步骤2、分析数据并绘制出分数阶RLβCα串联谐振电路的谐振频率特性曲线(I1-ω,VC-ω)。
步骤3、根据稳态实验数据计算得出超级电容的稳态电阻
步骤4、根据谐振频率特性曲线找出谐振频率ωs及其对应的超级电容的电压相位角
步骤5、由公式(12)计算得出超级电容Cα分数阶模型的阶数
步骤6、根据输入已知的分数阶铁芯电抗器的标准参数Lβ和β的值,由公式(13)计算 得到超级电容Cα分数阶模型的电容量
上述计算流程都可以基于ARM嵌入式系统编程实现。通过上述精确的实验测量和计算 步骤,终于成功识别出超级电容的并联R0Cα分数阶模型的3个阻抗参数:R0、Cα和α。
进一步的,可以利用已经识别出的超级电容分数阶模型参数代入公式(2)~(3)中,仿 真计算出分数阶RLβCα串联谐振频率响应特性曲线,并与实际的实验曲线做对比,观察两者 的误差,从而验证参数辨识方法的正确性和精确度。如果仿真结果与实验曲线还存在一定误 差,可以改变外加电阻做多次谐振实验,并应用最小二乘法、灵敏度分析法等优化算法,对 上述的参数识别计算过程反复迭代优化,从而提高超级电容分数阶模型参数识别的精确度。 与之相对应的,可以在参数识别器中基于ARM嵌入式系统编程,添加合适的优化算法,因 此,此处不再赘述。
本发明技术的优点是:与传统的阶跃、脉冲或频率响应方法相比,该方法基于实际电容 和电感的模型参数都是分数阶的科学事实,采用测量含超级电容的分数阶RLβCα串联谐振频 率响应的实验方法,实验简单易行,只需做一次谐振实验,不需要借用昂贵的阻抗、网络或 频谱分析仪等。根据分数阶微积分理论推导出了分数阶RLβCα串联谐振频率响应的解析解, 步骤更简洁,计算结果更精确。还有,该装置功能齐全,操作简便,性能优势在于测量精度 高,计算能力强,支持嵌入式程序开发,适用性更广泛。
实验结果表明,使用提取的超级电容分数阶模型参数,模拟出的谐振频率响应曲线和实 际的实验曲线非常吻合,绝对误差不超过0.1%,相对误差小于1%,达到了工程实际需要的 辨识精度。该分数阶参数识别方法及装置可以为工程上含超级电容的电路设计与控制保护提 供真实可靠的基础数据。
以上所述的方案仅是对本发明的优选实施方式进行描述,并非是对本发明的范围进行限 定,在不脱离本发明设计精神的前提下,本领域普通工程技术人员对本发明的技术方案作出 的各种变形和改进,均应落入本发明的权利要求书确定的保护范围内。
本发明专利得到北京市自然科学基金资助项目(3162025)和国家重点研发计划项目 (2016YFC0303703)的支持。

Claims (10)

1.一种超级电容分数阶模型参数识别方法,该方法包括:
步骤一,实验采集含超级电容的串联谐振电路的谐振频率响应数据;
步骤二,分析计算含超级电容的串联谐振电路的谐振频率响应数据;
步骤三,根据分数阶微积分理论推导公式,辨识得出超级电容的电容量和分数阶阶次;
该方法通过建立超级电容并联Ro Cα分数阶阻抗模型、进行谐振频率响应实验与数值计算、设计制造超级电容分数阶模型参数识别器,获得超级电容分数阶模型的精确参数。
2.如权利要求1所述的超级电容分数阶模型参数识别方法,其特征在于:所述超级电容分数阶模型参数包括电阻、电容量和分数阶阶次。
3.如权利要求1或2所述的超级电容分数阶模型参数识别方法,其特征在于:所述建立超级电容的分数阶模型,设定超级电容器的并联RoCα分数阶阻抗模型是由一个不变电阻Ro和一个常相位元件CPE电路元件并联构成,该常相位元件的阻抗是:时域中ZCPE=1/(jω)αC,或在频域s域中为1/sαC,其中C是电容量,α是电容的阶数;当α=0时,CPE是一个理想电阻;当α=1时,CPE是一个理想电容器;而实际上电容和电感参数都是分数阶的,在数学上是可能的,则α的范围是0≤α≤1,超级电容分数阶阻抗参数是时间常数是τ=(R0C)1/α
4.如权利要求1或2所述的超级电容分数阶模型参数识别方法,其特征在于:所述谐振频率响应实验方法和参数计算方法,分数阶RLβCα串联谐振电路是由一个大功率变频可控电源Vin、一个外加电阻R1、一个分数阶铁芯电抗器Lβ和一个超级电容Cα依次串联而成,通过可控电源Vin施加频率不同的脉冲信号(或PWM波),测量记录超级电容的输出电压VC、干路电流I1实验数据;
超级电容Cα的稳态电阻R0可通过稳态实验对其施加直流信号测得,串联谐振回路中,在电源Vin施加脉冲信号,则由基尔霍夫电压定律(KVL)得
VR+VL+VC=Vin (1)
式中,VR表示外加电阻R1上的电压,VR=R1I1;VL表示分数阶铁芯电抗器Lβ上的电压,Vc表示超级电容Cα上的电压,Vc=R0I0Vin表示分数阶RLβCα串联谐振回路总电压,即电源电压;
在频域中,设电源Vin(s)=Vccgl,则通过串联谐振频率响应实验测量记录的超级电容的输出电压VC可表示为
串联谐振回路的干路电流I1可表示为
根据双参数Mittag-Leffler函数定义,
以及双参数Mittag-Leffler函数的拉普拉斯变换,
其中t≥0,s是拉氏域里的变量,Re(s)定义了s的实值部分,λ∈R;
在时域中,当t∈[0,+∞)时,由公式(3)~(5)可得干路电流I1
其中ML=tβ-1Eα,β(-λtα);
当α=β=1时,传统整数阶RLC串联谐振电路,其复阻抗为
式中,电阻感抗XL=ωL,容抗电抗X=XL-XC、阻抗角均为电源角频率ω的函数;谐振时Vin(s)和I1(s)同相,即ΨZ=0,所以电路谐振时应满足:X=0,XL=XC谐振角频率为固有频率,谐振时的电流达到最大;
同理,从整数阶推广至分数阶谐振电路,谐振的基本原理和定义不变;
因此,所述谐振频率响应实验调节可控电源Vin输出频率,当观察到干路电流达到最大值时,即分数阶RLβCα串联谐振电路达到谐振频率工作点,超级电容两端的电压与铁芯电抗器的电压大小相等、方向相反,VL=-VC;采用波形记录仪记录分数阶RLβCα串联谐振电路的干路电流I1、超级电容的电压VC与电源输出频率ω之间的关系曲线,即I1-ω,VC-ω谐振曲线;也可以用频率特性测试仪做实验测试频率特性,标记下谐振频率值和相位角;分数阶RLβCα向量图,分数阶电感与电阻的夹角成βπ/2,分数阶电容与电阻的夹角成απ/2;
分数阶RLβCα串联谐振电路的总阻抗可表示为
由分数阶RLβCα谐振的定义可知,当时,谐振角频率为
又定义归一化角频率
可以改变外加电阻R1的值,使得系统阻尼发生变化,得到一组超级电容Cα电压VC的相频特性曲线在传统整数阶情况下,α=1,超级电容Cα电压VC的相频特性曲线与横轴交点是在电源输出频率ω达到谐振频率时ω=ω0而推广到分数阶一般情况下,0≤α≤1,由公式(8)中ΨZ=0可知,超级电容Cα电压VC的相频特性曲线与横轴交点处的频率为
超级电容Cα电压的相频特性曲线与横轴交点处的相位表示为
而且因为已知实验所用的分数阶铁芯电抗器的标准参数Lβ和β的值,再根据RLβCα串联谐振频率响应实验数据,测得频率特性曲线交点处的谐振频率ωs和超级电容Cα电压的相位所以超级电容Cα分数阶模型的阶数α值可以直接从上面公式(12)得到;
再由公式(9)~(12)可得超级电容Cα分数阶模型的电容量Cα
5.如权利要求4所述的超级电容分数阶模型参数识别方法,其特征在于:所述公式(6)表示干路电流I1(t)为双参数Mittag-Leffler函数的函数,首先可用海维赛展开定理将式(3)展开成类似式(5)的形式,然后根据双参数Mittag-Leffler函数的拉普拉斯反变换求得干路电流I1的时域解,再利用MATLAB函数工具箱中的MLF程序数值计算出干路电流I1的数值解,最后可将I1代入式(2)求得超级电容的输出电压VC的数值解,即为时域上分数阶RLβCα串联谐振电路的脉冲响应特性。
6.如权利要求1或2所述的超级电容分数阶模型参数识别方法,其特征在于:所述超级电容分数阶模型参数识别器基于分数阶RLβCα串联谐振频率响应方法,该基于分数阶RLβCα串联谐振频率响应方法的超级电容分数阶模型参数识别器包括实验数据采集单元、数据转换存储单元、数据计算处理单元和数据显示输出单元。
7.如权利要求6所述的超级电容分数阶模型参数识别方法,其特征在于:所述实验数据采集单元包括高精度的电压互感器、电流互感器和频率计;所述实验数据采集单元能够同步采集三路数据信号,分别是:分数阶RLβCα串联谐振电路的干路电流I1、超级电容的电压VC与电源输出信号频率ω。
8.如权利要求6所述的超级电容分数阶模型参数识别方法,其特征在于:所述数据转换存储单元包括高精度抗干扰光电隔离A/D转换芯片、I/O接口、内存卡;所述数据转换存储单元能够将采集的模拟量信号转换成数字量,并能将采集数据和计算结果都存储记录下来。
9.如权利要求6所述的超级电容分数阶模型参数识别方法,其特征在于:所述数据计算处理单元包括ARM智能芯片,能够编程计算分数阶RLβCα串联谐振频率响应;所述数据计算处理单元根据实验采集的数据和已知条件,绘制出分数阶RLβCα串联谐振电路的干路电流I1、超级电容的电压VC与电源输出信号频率ω之间的关系曲线,即I1-ω,VC-ω谐振曲线。
10.如权利要求6所述的超级电容分数阶模型参数识别方法,其特征在于:所述数据显示输出单元包括液晶显示触摸屏、USB接口和无限网卡;所述数据显示输出单元能够通过液晶显示触摸屏输入已知条件和参数,并实时在线显示实验采集的数据、分析计算出的I1-ω,VC-ω谐振曲线、谐振频率和相位、超级电容Cα分数阶模型的电容量Cα值和阶数α值,然后通过USB接口转存到U盘或移动硬盘上,或通过无限网卡上传到上位机、网络云盘或打印机上。
CN201710142111.XA 2016-03-11 2017-03-10 一种超级电容分数阶模型参数识别方法 Expired - Fee Related CN107122511B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610141137 2016-03-11
CN2016101411378 2016-03-11

Publications (2)

Publication Number Publication Date
CN107122511A true CN107122511A (zh) 2017-09-01
CN107122511B CN107122511B (zh) 2020-08-04

Family

ID=59717959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710142111.XA Expired - Fee Related CN107122511B (zh) 2016-03-11 2017-03-10 一种超级电容分数阶模型参数识别方法

Country Status (1)

Country Link
CN (1) CN107122511B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107622147A (zh) * 2017-10-11 2018-01-23 湖南柯立凯科技开发有限公司 一种预测超级电容器性能的数值仿真方法
CN109446647A (zh) * 2018-10-29 2019-03-08 成都师范学院 电压分数阶积分控制式忆阶元
CN109977501A (zh) * 2019-03-11 2019-07-05 江苏理工学院 基于分数阶微积分的超级电容器存储能量估计方法
CN111125980A (zh) * 2019-12-12 2020-05-08 杭州电子科技大学 一种分数阶指数型忆阻器电路模型
CN113901750A (zh) * 2021-09-29 2022-01-07 深圳市今朝时代股份有限公司 基于分数阶微积分的超级电容器存储能量估计方法
CN113972714A (zh) * 2021-09-27 2022-01-25 湖南国天电子科技有限公司 重型水下机器人超级电容器的节能控制方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103487659A (zh) * 2013-09-11 2014-01-01 广西电网公司电力科学研究院 一种基于冲击大电流检测断路器回路电阻的方法
CN103915915A (zh) * 2014-03-31 2014-07-09 华南理工大学 一种分数阶串联谐振无线电能传输系统
FR3004863A1 (fr) * 2013-04-22 2014-10-24 Schneider Electric Ind Sas Procede de production d'electricite a l'aide d'une installation comprenant un moteur et un dispositif de stockage d'energie permettant de pallier les latences des changements de regime du moteur
CN104392080A (zh) * 2014-12-19 2015-03-04 山东大学 一种锂电池分数阶变阶等效电路模型及其辨识方法
CN204687864U (zh) * 2015-06-17 2015-10-07 湖北理工学院 一种新型城市轨道交通系统
CN105045971A (zh) * 2015-07-01 2015-11-11 西安交通大学 一种锂电池分数阶离散化阻抗模型
CN105608266A (zh) * 2015-12-10 2016-05-25 河南理工大学 基于分数阶微积分的pwm整流器建模方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004863A1 (fr) * 2013-04-22 2014-10-24 Schneider Electric Ind Sas Procede de production d'electricite a l'aide d'une installation comprenant un moteur et un dispositif de stockage d'energie permettant de pallier les latences des changements de regime du moteur
CN103487659A (zh) * 2013-09-11 2014-01-01 广西电网公司电力科学研究院 一种基于冲击大电流检测断路器回路电阻的方法
CN103915915A (zh) * 2014-03-31 2014-07-09 华南理工大学 一种分数阶串联谐振无线电能传输系统
CN104392080A (zh) * 2014-12-19 2015-03-04 山东大学 一种锂电池分数阶变阶等效电路模型及其辨识方法
CN204687864U (zh) * 2015-06-17 2015-10-07 湖北理工学院 一种新型城市轨道交通系统
CN105045971A (zh) * 2015-07-01 2015-11-11 西安交通大学 一种锂电池分数阶离散化阻抗模型
CN105608266A (zh) * 2015-12-10 2016-05-25 河南理工大学 基于分数阶微积分的pwm整流器建模方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
谭程等: "《电感电流伪连续模式下Boost变换器的分数阶建模与分析》", 《物理学报》 *
黄欢等: "《超级电容器不同理论模型的研究》", 《四川大学学报》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107622147A (zh) * 2017-10-11 2018-01-23 湖南柯立凯科技开发有限公司 一种预测超级电容器性能的数值仿真方法
CN107622147B (zh) * 2017-10-11 2020-10-27 湖南柯立凯科技开发有限公司 一种预测超级电容器性能的数值仿真方法
CN109446647A (zh) * 2018-10-29 2019-03-08 成都师范学院 电压分数阶积分控制式忆阶元
CN109446647B (zh) * 2018-10-29 2022-11-08 成都师范学院 电压分数阶积分控制式忆阶元
CN109977501A (zh) * 2019-03-11 2019-07-05 江苏理工学院 基于分数阶微积分的超级电容器存储能量估计方法
CN109977501B (zh) * 2019-03-11 2023-07-14 江苏理工学院 基于分数阶微积分的超级电容器存储能量估计方法
CN111125980A (zh) * 2019-12-12 2020-05-08 杭州电子科技大学 一种分数阶指数型忆阻器电路模型
CN111125980B (zh) * 2019-12-12 2023-06-02 杭州电子科技大学 一种分数阶指数型忆阻器电路模型
CN113972714A (zh) * 2021-09-27 2022-01-25 湖南国天电子科技有限公司 重型水下机器人超级电容器的节能控制方法及系统
CN113972714B (zh) * 2021-09-27 2023-08-08 湖南国天电子科技有限公司 重型水下机器人超级电容器的节能控制方法及系统
CN113901750A (zh) * 2021-09-29 2022-01-07 深圳市今朝时代股份有限公司 基于分数阶微积分的超级电容器存储能量估计方法
CN113901750B (zh) * 2021-09-29 2022-08-16 深圳市今朝时代股份有限公司 基于分数阶微积分的超级电容器存储能量估计方法

Also Published As

Publication number Publication date
CN107122511B (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
CN107122511A (zh) 一种超级电容分数阶模型参数识别方法
CN100582808C (zh) 一种铁电材料电滞回线的测量方法
CN103513211B (zh) 交流阻抗测试仪检测装置
CN103257271A (zh) 一种基于stm32f107vct6的微电网谐波与间谐波检测装置及检测方法
CN105229645A (zh) 电感器的仿真方法及电感器的非线性等效电路模型
CN103278686A (zh) 一种谐波分析滤波系统及智能选择谐波检测方法
CN106567708A (zh) 一种基于c4d技术的随钻侧向电阻率测井系统及其信号检测方法
CN204832352U (zh) 一种相位延迟积分的小电容测量仪
CN110071706A (zh) 核脉冲信号上升沿恢复方法、装置及数字化核仪器
CN108051485A (zh) 土壤水分测量方法和土壤水分传感器
CN103926550B (zh) 一种基于虚拟仪器校验电力互感器的装置及方法
CN206096370U (zh) 一种电路参数测量仪
CN110514912A (zh) 一种二次电压核相系统
CN104198811A (zh) 低频信号频率测量方法和装置
CN107064612B (zh) 单相架空输电线路相电压测量方法
CN106909713A (zh) 一种适用于分析共模干扰的三相交流电机高频模型
CN204177872U (zh) 一种绝对电容和差动电容测量电路
CN205982429U (zh) 虚拟仪器的实验室阻抗测量装置
CN202534234U (zh) 一种谐振法测电感实验仪
CN110569536A (zh) 电容式电压互感器的误差计算方法、装置及系统
CN106802436A (zh) 一种基于Goertzel变换算法的检波器测试仪及测试方法
CN108828316A (zh) 线路参数测量方法、装置及电子设备
CN110220630A (zh) 一种便携式桥梁索力检测装置
CN105954598B (zh) 一种铁芯电抗器参数识别方法
CN204924274U (zh) 电容传感器的模拟装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200804

Termination date: 20210310