CN107121335A - 一种单波导杆材料动态压痕实验方法 - Google Patents

一种单波导杆材料动态压痕实验方法 Download PDF

Info

Publication number
CN107121335A
CN107121335A CN201710370833.0A CN201710370833A CN107121335A CN 107121335 A CN107121335 A CN 107121335A CN 201710370833 A CN201710370833 A CN 201710370833A CN 107121335 A CN107121335 A CN 107121335A
Authority
CN
China
Prior art keywords
mrow
msub
pressure head
omega
depression bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710370833.0A
Other languages
English (en)
Other versions
CN107121335B (zh
Inventor
宋力
秦焜
蒋世婕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201710370833.0A priority Critical patent/CN107121335B/zh
Publication of CN107121335A publication Critical patent/CN107121335A/zh
Application granted granted Critical
Publication of CN107121335B publication Critical patent/CN107121335B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/066Special adaptations of indicating or recording means with electrical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/48Investigating hardness or rebound hardness by performing impressions under impulsive load by indentors, e.g. falling ball

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种单波导杆材料动态压痕实验方法,特点是在压杆的右端部一体设置球形的压头,并在压杆的左端部固定脉冲整形器,在压杆的中部固定电阻应变片,然后分别在不安装被测试件的状态下进行撞击实验,在不安装被测试件且去掉撞击杆的状态下进行实验,最后在压头的右侧放置被测试件,通过撞击杆进行撞击实验,并将上述所测得的各个信号代入关系式,处理后,得到压头的压入力、压入速度和压入位移时程曲线,实现对材料动态力学性能的测试;优点是通过该实验方法可精确测得压头压入被测试件过程中的压入力、压入位移和压入速度时程曲线,且可用于应变率高达105s‑1量级的材料动态力学特性的原位测试及工件动态力学性能的现场测试。

Description

一种单波导杆材料动态压痕实验方法
技术领域
本发明涉及一种用于测试材料动态力学特性的实验方法,尤其涉及一种单波导杆材料动态压痕实验方法。
背景技术
工程材料的力学行为受到其应力状态的明显影响,而在动态加载条件下,材料的力学行为更与加载的速度(具体度量为应变率)相关,对于高应变率下材料力学性能的测量,现在实验技术受到各种限制仍不尽完美。材料硬度实验是工程界广泛采用的材料力学性能的测试方法,简单有效,而仪器化压痕、纳米压痕实验技术则是传统硬度测量的进一步发展,可以测得压入过程的变形与受力,但现有技术仅限于材料的静态性能测试。虽然也有采用动态压入的实验技术如常见的里氏、肖氏硬度计等,但它们仅具有形式上的“动态”,并不能测得足够的材料的动态力学响应的细节。
目前也有采用霍普金森压杆来研究材料的动态力学特性,但现有的方法由于压头与压杆的波阻抗不完全匹配,使得其实验中压入量时程测量的误差不可忽略;又由于动态力传感器的支承方式,使得压入力的测量不可避免地含有附加振荡,从而导致其整体的测量精度不高,且不适用于高加载速度下的测试。此外,在许多情况下,希望对于材料动态力学特性的测试能够在其工作的环境下进行即所谓原位测试,而目前的动态硬度测试技术对此无能为力。
发明内容
本发明所要解决的技术问题是提供一种可精确测得压头压入材料过程的压入力与压入位移时程曲线,且可用于应变率高达105s-1量级的材料动态力学特性的原位测试及工件动态力学性能的现场测试的单波导杆材料动态压痕实验方法。
本发明解决上述技术问题所采用的技术方案为:一种单波导杆材料动态压痕实验方法,包括以下具体步骤:
(1)、在压杆的右端部一体设置球形的压头,并在压杆的左端部固定脉冲整形器;
(2)、在压杆的中部固定电阻应变片,并将电阻应变片与信号调理器电连接,将信号调理器和计算机处理系统分别与数字示波器电连接;
(3)、在不安装被测试件的状态下进行撞击实验,具体为:发射撞击杆,撞击杆撞击压杆的左端,压杆中的应力波在压头处发生自由面反射,电阻应变片分别测得压杆中的入射波应变信号εi0(t)和反射波应变信号εri(t),同时测出压头的速度时程vi(t),然后通过傅立叶变换得到相应的频域变量Ei0(ω)、Eri(ω)和Vi(ω),即Ei0(ω)=F[εi0(t)],Eri(ω)=F[εri(t)],Vi(ω)=F[vi(t)];
(4)、在不安装被测试件且去掉撞击杆的状态下进行实验,具体为:在压头上施加轴向力脉冲f(t),电阻应变片测得应变信号εrf(t),同时测出压头的速度时程vf(t),然后通过傅立叶变换得到相应的频域变量Ff(ω)、Erf(ω)和Vf(ω),即Ff(ω)=F[f(t)],Erf(ω)=F[εrf(t)],Vf(ω)=F[vf(t)];
(5)、在压头的右侧放置被测试件,并对被测试件的撞击面进行打磨,然后通过撞击杆进行撞击实验,具体为:发射撞击杆,撞击杆撞击压杆的左端,压杆右端部的球形的压头压入被测试件,形成压坑过程,同时,电阻应变片分别测得压杆中的入射波应变信号εi(t)和反射波应变信号εr(t),并通过傅立叶变换得到相应的频域变量Ei(ω)和Er(ω);
(6)、将上述所测得的各个信号代入关系式:
处理后,得到压头的压入力时程曲线findent(t)、压入速度时程曲线vindent(t)和压入位移时程曲线uindent(t),实现对材料动态力学性能的测试,上述关系式(1)、(2)中,Er-indent(ω)表示频域中由压痕发生所产生的反射波信号成份,Vindent(ω)表示频域中的压头压入速度,Findent(ω)表示频域中的压头压入力,符号F-1[]表示傅立叶逆变换。
进一步地,所述的压杆和所述的压头的材料均为硬质合金,如碳化钨硬质合金。
进一步地,所述的压杆的直径与所述的压头的直径之比为1~6:1,所述的撞击杆的直径与所述的压杆的直径相等,所述的压杆的长度与所述的撞击杆的长度之比大于等于5。
进一步地,所述的脉冲整形器为铜或铝质薄片,厚度为0.1~0.5mm。
进一步地,所述的被测试件为圆盘状,且直径D大于10倍的压头直径,当被测试件的厚度L≤2CpTf或被测试件的直径D≤2CpTf时,其中:Cp表示被测试件的材料中P波波速,Tf表示被测试件的加载脉冲宽度,在所述的被测试件的右侧设置支撑重块,所述的支撑重块与所述的被测试件的右端面紧密接触。
与现有技术相比,本发明的优点是通过该实验方法可精确测得压头压入被测试件过程中的压入力、压入位移和压入速度时程曲线,且可用于应变率高达105s-1量级的材料动态力学特性的原位测试及工件动态力学性能的现场测试;此外,该实验方法为基于频域—时域变换的精确实验数据处理方法,克服了传统的、基于一维应力波理论的数据处理方法无法应用于该类实验的困难。
附图说明
图1为本发明的结构示意图;
图2为本发明的步骤(5)在进行撞击实验时所测得的应变信号图;
图3为本发明所测得的压头压入力时程曲线和压入位移时程曲线。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
如图所示,一种单波导杆材料动态压痕实验方法,包括以下具体步骤:
(1)、在压杆1的右端部一体设置球形的压头11,并在压杆1的左端部固定脉冲整形器2;
(2)、在压杆1的中部固定电阻应变片3,并将电阻应变片3与信号调理器4电连接,将信号调理器4和计算机处理系统5分别与数字示波器6电连接;
(3)、在不安装被测试件7的状态下进行撞击实验,具体为:发射撞击杆8,撞击杆8撞击压杆1的左端,压杆1中的应力波在压头11处发生自由面反射,电阻应变片3分别测得压杆1中的入射波应变信号εi0(t)和反射波应变信号εri(t),同时测出压头11的速度时程vi(t),然后通过傅立叶变换得到相应的频域变量Ei0(ω)、Eri(ω)和Vi(ω),即Ei0(ω)=F[εi0(t)],Eri(ω)=F[εri(t)],Vi(ω)=F[vi(t)];
(4)、在不安装被测试件7且去掉撞击杆8的状态下进行实验,具体为:在压头11上施加轴向力脉冲f(t),电阻应变片3测得应变信号εrf(t),同时测出压头11的速度时程vf(t),然后通过傅立叶变换得到相应的频域变量Ff(ω)、Erf(ω)和Vf(ω),即Ff(ω)=F[f(t)],Erf(ω)=F[εrf(t)],Vf(ω)=F[vf(t)];
(5)、在压头11的右侧放置被测试件7,并对被测试件7的撞击面进行打磨,然后通过撞击杆8进行撞击实验,具体为:发射撞击杆8,撞击杆8撞击压杆1的左端,压杆1右端部的球形的压头11压入被测试件7,形成压坑过程,同时,电阻应变片3分别测得压杆1中的入射波应变信号εi(t)和反射波应变信号εr(t),并通过傅立叶变换得到相应的频域变量Ei(ω)和Er(ω);
(6)、将上述所测得的各个信号代入关系式:
处理后,得到压头11的压入力时程曲线findent(t)、压入速度时程曲线vindent(t)和压入位移时程曲线uindent(t),实现对材料动态力学性能的测试,上述关系式(1)、(2)中,Er-indent(ω)表示频域中由压痕发生所产生的反射波信号成份,Vindent(ω)表示频域中的压头压入速度,Findent(ω)表示频域中的压头压入力,符号F-1[]表示傅立叶逆变换。
上述实施例中,压杆1和压头11的材料均为硬质合金,如碳化钨硬质合金,压杆1的直径与压头11的直径之比可在1~6:1的范围内根据实际情况进行选择,撞击杆8的直径与压杆1的直径相等,压杆1的长度与撞击杆8的长度之比大于等于5;脉冲整形器2可以为铜或铝质薄片,厚度可在0.1~0.5mm的范围内选择;此外,被测试件7为圆盘状,且直径D大于10倍的压头11的直径,当被测试件7的厚度L≤2CpTf或被测试件7的直径D≤2CpTf时,其中:Cp表示被测试件7的材料中P波波速,Tf表示被测试件7的加载脉冲宽度,在被测试件7的右侧设置支撑重块,支撑重块与被测试件7的右端面紧密接触。

Claims (5)

1.一种单波导杆材料动态压痕实验方法,其特征在于包括以下具体步骤:
(1)、在压杆的右端部一体设置球形的压头,并在压杆的左端部固定脉冲整形器;
(2)、在压杆的中部固定电阻应变片,并将电阻应变片与信号调理器电连接,将信号调理器和计算机处理系统分别与数字示波器电连接;
(3)、在不安装被测试件的状态下进行撞击实验,具体为:发射撞击杆,撞击杆撞击压杆的左端,压杆中的应力波在压头处发生自由面反射,电阻应变片分别测得压杆中的入射波应变信号εi0(t)和反射波应变信号εri(t),同时测出压头的速度时程vi(t),然后通过傅立叶变换得到相应的频域变量Ei0(ω)、Eri(ω)和Vi(ω),即Ei0(ω)=F[εi0(t)],Eri(ω)=F[εri(t)],Vi(ω)=F[vi(t)];
(4)、在不安装被测试件且去掉撞击杆的状态下进行实验,具体为:在压头上施加轴向力脉冲f(t),电阻应变片测得应变信号εrf(t),同时测出压头的速度时程vf(t),然后通过傅立叶变换得到相应的频域变量Ff(ω)、Erf(ω)和Vf(ω),即Ff(ω)=F[f(t)],Erf(ω)=F[εrf(t)],Vf(ω)=F[vf(t)];
(5)、在压头的右侧放置被测试件,并对被测试件的撞击面进行打磨,然后通过撞击杆进行撞击实验,具体为:发射撞击杆,撞击杆撞击压杆的左端,压杆右端部的球形的压头压入被测试件,形成压坑过程,同时,电阻应变片分别测得压杆中的入射波应变信号εi(t)和反射波应变信号εr(t),并通过傅立叶变换得到相应的频域变量Ei(ω)和Er(ω);
(6)、将上述所测得的各个信号代入关系式:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mo>-</mo> <mi>i</mi> <mi>n</mi> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>E</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>E</mi> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mi>E</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>V</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>E</mi> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mi>E</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mo>-</mo> <mi>i</mi> <mi>n</mi> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>F</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mi>E</mi> <mrow> <mi>r</mi> <mo>-</mo> <mi>i</mi> <mi>n</mi> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>v</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>F</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>&amp;lsqb;</mo> <msub> <mi>V</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>t</mi> </msubsup> <msub> <mi>v</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>F</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>&amp;lsqb;</mo> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>d</mi> <mi>e</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
处理后,得到压头的压入力时程曲线findent(t)、压入速度时程曲线vindent(t)和压入位移时程曲线uindent(t),实现对材料动态力学性能的测试,上述关系式(1)、(2)中,Er-indent(ω)表示频域中由压痕发生所产生的反射波信号成份,Vindent(ω)表示频域中的压头压入速度,Findent(ω)表示频域中的压头压入力,符号F-1[]表示傅立叶逆变换。
2.如权利要求1所述的一种单波导杆材料动态压痕实验方法,其特征在于:所述的压杆和所述的压头的材料均为硬质合金。
3.如权利要求1所述的一种单波导杆材料动态压痕实验方法,其特征在于:所述的压杆的直径与所述的压头的直径之比为1~6:1,所述的撞击杆的直径与所述的压杆的直径相等,所述的压杆的长度与所述的撞击杆的长度之比大于等于5。
4.如权利要求1所述的一种单波导杆材料动态压痕实验方法,其特征在于:所述的脉冲整形器为铜或铝质薄片,厚度为0.1~0.5mm。
5.如权利要求1所述的一种单波导杆材料动态压痕实验方法,其特征在于:所述的被测试件为圆盘状,且直径D大于10倍的压头直径,当被测试件的厚度L≤2CpTf或被测试件的直径D≤2CpTf时,其中:Cp表示被测试件的材料中P波波速,Tf表示被测试件的加载脉冲宽度,在所述的被测试件的右侧设置支撑重块,所述的支撑重块与所述的被测试件的右端面紧密接触。
CN201710370833.0A 2017-05-24 2017-05-24 一种单波导杆材料动态压痕实验方法 Active CN107121335B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710370833.0A CN107121335B (zh) 2017-05-24 2017-05-24 一种单波导杆材料动态压痕实验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710370833.0A CN107121335B (zh) 2017-05-24 2017-05-24 一种单波导杆材料动态压痕实验方法

Publications (2)

Publication Number Publication Date
CN107121335A true CN107121335A (zh) 2017-09-01
CN107121335B CN107121335B (zh) 2019-05-10

Family

ID=59728663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710370833.0A Active CN107121335B (zh) 2017-05-24 2017-05-24 一种单波导杆材料动态压痕实验方法

Country Status (1)

Country Link
CN (1) CN107121335B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072579A (zh) * 2017-11-23 2018-05-25 吉林大学 可变速率的冲击压痕测试装置及方法
CN108717024A (zh) * 2018-03-16 2018-10-30 太原理工大学 基于霍普金森压杆系统的可变压头动态压入测试装置
CN109001062A (zh) * 2018-06-07 2018-12-14 东南大学 一种材料密实度的压杆测量装置及测量方法
CN111579409A (zh) * 2020-04-28 2020-08-25 杭州电子科技大学 一种新鲜金属表层动态流变力学特性测试装置及方法
CN115493950A (zh) * 2022-10-27 2022-12-20 西南石油大学 一种岩石动态力学性能测试装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1422095A1 (ru) * 1987-01-26 1988-09-07 Институт сверхтвердых материалов АН УССР Устройство дл ударных испытаний материалов
US6324915B1 (en) * 1999-12-03 2001-12-04 Test Measurements Systems Inc. Driving point impedance head for measurement of elastomeric mechanical properties
CN101672636A (zh) * 2009-10-23 2010-03-17 佛山科学技术学院 测量试件在周期性载荷作用下的磨损量的方法
CN201607372U (zh) * 2010-02-23 2010-10-13 昆明理工大学 一种新型高精度金属丝杨氏模量测量装置
CN102135480A (zh) * 2010-12-17 2011-07-27 北京理工大学 微型试件冲击加载与动态力学性能测量系统及方法
CN102353593A (zh) * 2011-05-31 2012-02-15 哈尔滨工业大学 多普勒振镜正弦调制多光束激光外差测量杨氏模量的装置及方法
CN102928309A (zh) * 2012-09-28 2013-02-13 宁波大学 一种材料动态压痕实验方法
CN103018123A (zh) * 2012-12-07 2013-04-03 宁波大学 一种高速加载材料动态压痕实验方法
CN202903630U (zh) * 2012-09-28 2013-04-24 宁波大学 一种材料动态压痕实验装置
CN104345168A (zh) * 2014-11-07 2015-02-11 中国工程物理研究院激光聚变研究中心 一种扫描频域干涉仪
CN104406846A (zh) * 2014-11-28 2015-03-11 西安交通大学 利用挠曲电效应的霍普金森杆应力波测量系统和测量方法
US20150308932A1 (en) * 2014-04-23 2015-10-29 Mississippi State University Research And Technology Corporation Serpentine Load Monitoring Apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1422095A1 (ru) * 1987-01-26 1988-09-07 Институт сверхтвердых материалов АН УССР Устройство дл ударных испытаний материалов
US6324915B1 (en) * 1999-12-03 2001-12-04 Test Measurements Systems Inc. Driving point impedance head for measurement of elastomeric mechanical properties
CN101672636A (zh) * 2009-10-23 2010-03-17 佛山科学技术学院 测量试件在周期性载荷作用下的磨损量的方法
CN201607372U (zh) * 2010-02-23 2010-10-13 昆明理工大学 一种新型高精度金属丝杨氏模量测量装置
CN102135480A (zh) * 2010-12-17 2011-07-27 北京理工大学 微型试件冲击加载与动态力学性能测量系统及方法
CN102353593A (zh) * 2011-05-31 2012-02-15 哈尔滨工业大学 多普勒振镜正弦调制多光束激光外差测量杨氏模量的装置及方法
CN102928309A (zh) * 2012-09-28 2013-02-13 宁波大学 一种材料动态压痕实验方法
CN202903630U (zh) * 2012-09-28 2013-04-24 宁波大学 一种材料动态压痕实验装置
CN103018123A (zh) * 2012-12-07 2013-04-03 宁波大学 一种高速加载材料动态压痕实验方法
US20150308932A1 (en) * 2014-04-23 2015-10-29 Mississippi State University Research And Technology Corporation Serpentine Load Monitoring Apparatus
CN104345168A (zh) * 2014-11-07 2015-02-11 中国工程物理研究院激光聚变研究中心 一种扫描频域干涉仪
CN104406846A (zh) * 2014-11-28 2015-03-11 西安交通大学 利用挠曲电效应的霍普金森杆应力波测量系统和测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
梁浩哲 等: "基于SHPB的球形压痕实验方法", 《爆炸与冲击》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072579A (zh) * 2017-11-23 2018-05-25 吉林大学 可变速率的冲击压痕测试装置及方法
CN108717024A (zh) * 2018-03-16 2018-10-30 太原理工大学 基于霍普金森压杆系统的可变压头动态压入测试装置
CN108717024B (zh) * 2018-03-16 2020-06-23 太原理工大学 基于霍普金森压杆系统的可变压头动态压入测试装置
CN109001062A (zh) * 2018-06-07 2018-12-14 东南大学 一种材料密实度的压杆测量装置及测量方法
CN109001062B (zh) * 2018-06-07 2019-12-13 东南大学 一种材料密实度的压杆测量装置及测量方法
CN111579409A (zh) * 2020-04-28 2020-08-25 杭州电子科技大学 一种新鲜金属表层动态流变力学特性测试装置及方法
CN111579409B (zh) * 2020-04-28 2023-07-04 杭州电子科技大学 一种新鲜金属表层动态流变力学特性测试装置及方法
CN115493950A (zh) * 2022-10-27 2022-12-20 西南石油大学 一种岩石动态力学性能测试装置

Also Published As

Publication number Publication date
CN107121335B (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
CN107121335B (zh) 一种单波导杆材料动态压痕实验方法
Doyle Determining the contact force during the transverse impact of plates
Thuillier et al. Comparison of the work-hardening of metallic sheets using tensile and shear strain paths
Zhao Material behaviour characterisation using SHPB techniques, tests and simulations
CN108896230B (zh) 一种基于有限元的螺栓紧固力超声检测及关键检测参数确定方法
CN108375501A (zh) 一种基于分离式霍普金森压杆实验技术的数据处理方法
CN106644711B (zh) 一种延性材料单轴本构关系测试方法
CN101710046B (zh) 仪器化微米压入测试材料杨氏模量的方法
CN104198313A (zh) 一种基于仪器化压入技术的残余应力检测方法
CN103674834A (zh) 热轧带钢表面氧化铁皮附着性的快速检测方法
CN108627388B (zh) 一种瞬时冲击力的测量方法
CN105335610B (zh) 一种计算实时混合模拟试验瞬时时滞和幅值误差的方法
Roth et al. Compact SHPB system for intermediate and high strain rate plasticity and fracture testing of sheet metal
CN111665152A (zh) 材料动态压缩循环加载装置及其方法
CN201555769U (zh) 拉压应力应变检测装置
CN108133082A (zh) 一种基于有限元模拟确定压痕应变法中应力测量常数的方法
CN103760044A (zh) 一种水泥基材料动态劈拉力学性能试验装置与方法
CN108414379A (zh) 一种原位压入测试提取金属弹塑性参数的方法
CN107631949A (zh) 一种基于单锥压入的板料各向异性塑性参数识别方法
CN109708969A (zh) 一种确定金属材料各向异性和拉压非对称性特征的方法
CN104807566A (zh) 基于涡流响应曲面的铝合金板材残余应力检测方法
CN203643264U (zh) 一种钢绞线最大力伸长率测量装置
CN102928309B (zh) 一种材料动态压痕实验方法
CN108918253B (zh) 测量落锤撕裂试验材料真实断裂能的方法
Liu et al. Viscosity transient phenomenon during drop impact testing and its simple dynamics model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant