CN107116232A - 一种锌铜合金纳米簇的合成方法 - Google Patents

一种锌铜合金纳米簇的合成方法 Download PDF

Info

Publication number
CN107116232A
CN107116232A CN201710446517.7A CN201710446517A CN107116232A CN 107116232 A CN107116232 A CN 107116232A CN 201710446517 A CN201710446517 A CN 201710446517A CN 107116232 A CN107116232 A CN 107116232A
Authority
CN
China
Prior art keywords
solution
cluster
pltine
nano
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710446517.7A
Other languages
English (en)
Inventor
赵媛
李好
孙雅丽
杨亚鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201710446517.7A priority Critical patent/CN107116232A/zh
Publication of CN107116232A publication Critical patent/CN107116232A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明属纳米材料技术领域,具体涉及一种锌铜合金纳米簇的制备方法。包括如下步骤:首先将硝酸锌溶液和硫酸铜溶液加入到牛血清蛋白溶液中,室温下搅拌混合均匀;再向所得混合溶液中加入氢氧化钠溶液调节pH为碱性,将混合溶液在加热水浴条件下搅拌反应一段时间后得到锌铜合金簇。本发明在温和条件下合成了稳定的锌铜合金纳米簇。

Description

一种锌铜合金纳米簇的合成方法
技术领域
本发明属于纳米材料技术领域。
背景技术
近年来,性质介于分子和纳米粒子之间的金属纳米簇因为其独特的光学性质和电子学性质而受到了广泛的关注和研究。金属纳米簇的粒径一般小于2nm,原子个数一般低于100个。金属材料的尺寸很大程度地影响着金属材料的性质变化,当金属纳米粒子的尺寸减小到接近电子的费米波长时,电子的运动受到限制,连续的能级结构变成与分子类似的不连续的电子能级结构,由此使得金属纳米簇产生独特的光学性质和电子学性质。在这个尺寸范围内,因为分离的能级结构,金属纳米簇不具有金属纳米粒子表面等离子体共振吸收的特性;另一方面,其与光的相互作用可以通过电子在能级间的跃迁实现,因而,金属纳米簇可以发射出荧光,且该荧光具有较强的尺寸依赖性。因此,金属纳米簇被认为是连接金属原子与纳米颗粒的桥梁。
目前研究较为广泛的主要是金、银等贵金属纳米簇。相比于有机荧光染料、半导体量子点、聚合物纳米颗粒等荧光纳米探针,贵金属纳米簇作为一种新型的荧光探针具有诸多优点,如光稳定性好、具有超细尺寸,具有低毒性等。而除了优越的荧光性能,关于贵金属纳米团簇更多的结构特性也被相继研究和报道,特别是光学,催化,电、磁特性等相关的特性,金属独特的物理化学性质与纳米材料特殊性能的有机结合使得金属纳米簇在化学催化、能源、电子及生物传感等方面有着十分广阔的应用前景。而锌、铜纳米簇的研究比较稀少,因为锌、铜本身性质不稳定导致很难合成性质稳定且荧光性能良好的锌、铜纳米簇。
发明内容
本发明旨在提供一种锌铜合金纳米簇的制备方法。本发明的技术方案如下:
首先取一定量的硝酸锌溶液和硫酸铜溶液加入到牛血清蛋白溶液中,室温下搅拌混合均匀。其中硝酸锌的浓度范围为2.0~4.0mmol/L;硫酸铜溶液的浓度为2.0~4.0mmol/L;牛血清蛋白的浓度为15~30mg/mL。且硝酸锌溶液、硫酸铜溶液和牛血清蛋白溶液的体积比为1:1:10。然后向所得混合溶液中加入氢氧化钠溶液调节pH至11~12,将混合溶液在加热水浴55℃条件下搅拌反应一8小时后得到锌铜合金簇。
具体实施方式
为了更清楚地理解本发明的技术方案,下面通过实施例子对本发明作进一步详细说明。需要说明的是,以下是发明人给出的具体实施例子,但本发明不限于这些实施例。
实施例1:
取0.5mL浓度为2.0mmol/L的硝酸锌溶液和0.5mL浓度为4.0mmol/L的硫酸铜溶液加入浓度为15mg/mL的5mL牛血清蛋白溶液中,室温下搅拌5min混合均匀后加入氢氧化钠溶液调节混合溶液pH至12,溶液颜色由淡蓝色变为浅紫色,最后将混合溶液在55℃条件下反应8小时后得到浅棕色溶液即为锌铜合金簇。其荧光激发光谱和发射光谱如图1所示。
实施例2:
取0.5mL浓度为2.0mmol/L的硝酸锌溶液和0.5mL浓度为4.0mmol/L的硫酸铜溶液加入浓度为22.5mg/mL的5mL牛血清蛋白溶液中,室温下搅拌5min混合均匀后加入氢氧化钠溶液调节混合溶液pH至12,溶液颜色由淡蓝色变为浅紫色,最后将混合溶液在55℃条件下反应8小时后得到浅棕色溶液即为锌铜合金簇。其荧光激发光谱和发射光谱如图2所示。
实施例3:
取0.5mL浓度为2.0mmol/L的硝酸锌溶液和0.5mL浓度为6.0mmol/L的硫酸铜溶液加入浓度为22.5mg/mL的5mL牛血清蛋白溶液中,室温下搅拌5min混合均匀后加入氢氧化钠溶液调节混合溶液pH至12,溶液颜色由淡蓝色变为浅紫色,最后将混合溶液在55℃条件下反应8小时后得到浅棕色溶液即为锌铜合金簇。其荧光激发光谱和发射光谱如图3所示。
实施例4:
取0.5mL浓度为4.0mmol/L的硝酸锌溶液和0.5mL浓度为4.0mmol/L的硫酸铜溶液加入浓度为30mg/mL的5mL牛血清蛋白溶液中,室温下搅拌5min混合均匀后加入氢氧化钠溶液调节混合溶液pH至12,溶液颜色由淡蓝色变为浅紫色,最后将混合溶液在55℃条件下反应8小时后得到浅棕色溶液即为锌铜合金簇。其荧光激发光谱和发射光谱如图4所示。
附图说明
图1为按实施例1.方法合成的锌铜合金纳米簇的荧光激发光谱和发射光谱。
图2为按实施例2.方法合成的锌铜合金纳米簇的荧光激发光谱和发射光谱。
图3为按实施例3.方法合成的锌铜合金纳米簇的荧光激发光谱和发射光谱。
图4为按实施例4.方法合成的锌铜合金纳米簇的荧光激发光谱和发射光谱。

Claims (5)

1.本发明为温和条件下一种锌铜合金纳米簇的制备方法,其特征在于,它的制备步骤如下:
1)将硝酸锌溶液和硫酸铜溶液加入到牛血清蛋白溶液中,室温下搅拌混合均匀;
2)向步骤1)所得混合溶液中加入氢氧化钠溶液调节pH为碱性,将混合溶液在加热水浴条件下搅拌反应一段时间后得到锌铜合金簇。
2.根据权利1要求所述的制备方法,其特征在于加入的硝酸锌的浓度范围为2.0~4.0mmol/L;硫酸铜溶液的浓度为2.0~4.0mmol/L;牛血清蛋白的浓度为15~30mg/mL。
3.根据权利1要求所述的制备方法,其特征在于硝酸锌溶液、硫酸铜溶液和牛血清蛋白溶液的体积比为1:1:10。
4.根据权利1要求所述的制备方法,其特征在于氢氧化钠溶液的浓度为1mol/L,调节混合溶液的最终pH为11~12。
5.根据权利1要求所述的制备方法,其特征在于水浴加热的温度为55℃,反应时间为8h。
CN201710446517.7A 2017-06-14 2017-06-14 一种锌铜合金纳米簇的合成方法 Pending CN107116232A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710446517.7A CN107116232A (zh) 2017-06-14 2017-06-14 一种锌铜合金纳米簇的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710446517.7A CN107116232A (zh) 2017-06-14 2017-06-14 一种锌铜合金纳米簇的合成方法

Publications (1)

Publication Number Publication Date
CN107116232A true CN107116232A (zh) 2017-09-01

Family

ID=59718339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710446517.7A Pending CN107116232A (zh) 2017-06-14 2017-06-14 一种锌铜合金纳米簇的合成方法

Country Status (1)

Country Link
CN (1) CN107116232A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107812957A (zh) * 2017-10-26 2018-03-20 太原工业学院 一种基于银镜反应制备荧光银纳米颗粒的方法
CN109596581A (zh) * 2018-11-19 2019-04-09 江苏大学 利用牛血清蛋白--金银合金纳米簇检测碱性磷酸酶的用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221598A (ja) * 2008-01-17 2009-10-01 Mitsubishi Materials Corp 金属ナノ粒子の合成方法
CN101591445A (zh) * 2008-05-30 2009-12-02 中国海洋大学 磁性壳聚糖金属配合物微粒的制备工艺
CN104383919A (zh) * 2014-09-30 2015-03-04 江南大学 具有可见光光活性的纳米簇模拟酶的制备及其比色法检测胰蛋白酶应用
CN104807795A (zh) * 2015-05-06 2015-07-29 江南大学 一种亲生物性铜纳米簇的快速制备方法
CN104817104A (zh) * 2015-04-20 2015-08-05 河南师范大学 一种水溶性硫化铜锌量子点的制备方法
CN105505383A (zh) * 2016-01-18 2016-04-20 大连理工大学 一种荧光铜纳米簇的合成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221598A (ja) * 2008-01-17 2009-10-01 Mitsubishi Materials Corp 金属ナノ粒子の合成方法
CN101591445A (zh) * 2008-05-30 2009-12-02 中国海洋大学 磁性壳聚糖金属配合物微粒的制备工艺
CN104383919A (zh) * 2014-09-30 2015-03-04 江南大学 具有可见光光活性的纳米簇模拟酶的制备及其比色法检测胰蛋白酶应用
CN104817104A (zh) * 2015-04-20 2015-08-05 河南师范大学 一种水溶性硫化铜锌量子点的制备方法
CN104807795A (zh) * 2015-05-06 2015-07-29 江南大学 一种亲生物性铜纳米簇的快速制备方法
CN105505383A (zh) * 2016-01-18 2016-04-20 大连理工大学 一种荧光铜纳米簇的合成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107812957A (zh) * 2017-10-26 2018-03-20 太原工业学院 一种基于银镜反应制备荧光银纳米颗粒的方法
CN109596581A (zh) * 2018-11-19 2019-04-09 江苏大学 利用牛血清蛋白--金银合金纳米簇检测碱性磷酸酶的用途

Similar Documents

Publication Publication Date Title
Yu et al. Observation of cluster size growth in CO-directed synthesis of Au25 (SR) 18 nanoclusters
Hesari et al. A grand avenue to Au nanocluster electrochemiluminescence
Santiago Gonzalez et al. One step synthesis of the smallest photoluminescent and paramagnetic PVP-protected gold atomic clusters
Kalyuzhny et al. Ligand effects on optical properties of CdSe nanocrystals
Myung et al. Enhancement of the photoluminescence of CdSe nanocrystals dispersed in CHCl3 by oxygen passivation of surface states
Díaz et al. Understanding energy transfer with luminescent gold nanoclusters: a promising new transduction modality for biorelated applications
Jin et al. Size focusing: a methodology for synthesizing atomically precise gold nanoclusters
Zou et al. Graphitic carbon nitride-based nanocomposites electrochemiluminescence systems and their applications in biosensors
Wang et al. Chemiluminescence of CdTe nanocrystals induced by direct chemical oxidation and its size-dependent and surfactant-sensitized effect
Qian et al. High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition
Lu et al. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries
Chen et al. Synthesis of thiolate-stabilized platinum nanoparticles in protolytic solvents as isolable colloids
Ganguly et al. Synthesis of highly fluorescent silver clusters on gold (I) surface
EP2830795B1 (en) Nano aggregates of molecular ultra small clusters of noble metals and a process for the preparation thereof
Mishra et al. Aqueous growth of gold clusters with tunable fluorescence using photochemically modified lipoic acid-based ligands
Ge et al. Synthesis of CdSe, ZnSe, and Zn x Cd1-x Se nanocrystals and their silica sheathed core/shell structures
US7875352B2 (en) Stabilized inorganic nanoparticle, stabilized inorganic nanoparticle material, method for producing stabilized inorganic nanoparticle, and method for using stabilized inorganic nanoparticle
Cheng et al. Enhanced photocatalytic hydrogen evolution based on efficient electron transfer in triphenylamine-based dye functionalized Au@ Pt bimetallic core/shell nanocomposite
Yuan et al. Traveling through the desalting column spontaneously transforms thiolated Ag nanoclusters from nonluminescent to highly luminescent
CN109181678B (zh) 一种合成巯基-β-环糊精稳定的绿色荧光金纳米簇的方法及其应用
Santiago-González et al. “Quantized” Doping of Individual Colloidal Nanocrystals Using Size-Focused Metal Quantum Clusters
Muhammed et al. Reactivity of Au25 clusters with Au3+
Zhou et al. Fluorescent Au nanoclusters stabilized by silane: facile synthesis, color-tunability and photocatalytic properties
Wojnicki et al. Quantum materials made in microfluidics-critical review and perspective
Pattabi et al. Photoluminescence from gold and silver nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170901

WD01 Invention patent application deemed withdrawn after publication