CN107113752B - 一种指示同步信号周期的方法及装置 - Google Patents

一种指示同步信号周期的方法及装置 Download PDF

Info

Publication number
CN107113752B
CN107113752B CN201580071292.0A CN201580071292A CN107113752B CN 107113752 B CN107113752 B CN 107113752B CN 201580071292 A CN201580071292 A CN 201580071292A CN 107113752 B CN107113752 B CN 107113752B
Authority
CN
China
Prior art keywords
synchronization signal
signal period
period
physical channel
synchronous signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580071292.0A
Other languages
English (en)
Other versions
CN107113752A (zh
Inventor
曲秉玉
贺传峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN107113752A publication Critical patent/CN107113752A/zh
Application granted granted Critical
Publication of CN107113752B publication Critical patent/CN107113752B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7087Carrier synchronisation aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

一种指示同步信号周期的方法及装置,在该方案中,基站会向终端指示同步信号周期,终端确定出同步信号周期后,就根据同步信号周期去接收对应波束的同步信号即可,不需要盲检测同步信号,这样,就避免了目前终端在接入小区过程中存在的同步性能差、功耗较大的缺陷。

Description

一种指示同步信号周期的方法及装置
技术领域
本发明涉及通信技术领域,尤其涉及一种指示同步信号周期的方法及装置。
背景技术
低频场景下,每个天线端口形成的波束如图1A所示的宽波束,由于该场景下无线信号的路径损耗比较小,因此可以覆盖整个小区的用户。
但是高频场景下,无线信号的路径损耗增大,如果仍然用宽波束发射的话,小区的覆盖范围非常小,无法覆盖到距离较远的终端,如图1B所示,宽波束无法覆盖终端1和终端2。在高频场景下,天线间距可以变小,因此单位面积可容纳的天线数增多,为了使得距离较远的终端也可以接收到无线信号,可以利用Massive MIMO(Multiple-Input Multiple-Output,多输入多输出)的波束成形(Beam Forming)技术形成很高的天线增益来弥补路径损耗,如图1C所示。
采用Massive MIMO技术的基站的天线有很多,甚至可以达到上百根,在形成大的天线增益的同时,形成的波束的宽度很窄,一个窄波束只能覆盖部分区域,无法覆盖到小区中的所有用户,例如图1C中,对于波束B2,只能覆盖到终端1,无法覆盖终端2。
在采用Massive MIMO技术的高频场景下,终端具有移动性,不同的波束可能需要分时为小区服务,各个波束下需要广播同步信号,使得小区内的终端可以根据同步信号接入小区。
现有LTE(Long Term Evolution,长期演进)系统的同步信号包括PSS(PrimarySynchronous Signal,主同步信号)和SSS(Secondary Synchronous Signal,辅同步信号),无线帧承载同步信号的示意图为图1D。LTE系统中,基站周期性的发送同步信号,终端检测同步信号,根据检测到的同步信号获得初始同步和物理小区标识,进而接入小区。
在高频场景下,终端主要通过单环路和双环路的方式接入小区,由于双环路接入的方式具有开销较低、干扰较小及基站能耗较少的缺陷,因此,双环路接入为目前终端接入小区的主要方式。
双环路接入的主要思想为:基站在第一环路周期性进行波束扫描,终端检测所有波束的同步信号,并向基站反馈对应的波束标识,基站根据接收到的波束标识,确定有效波束,然后,在第二环路发送有效波束的同步信号。如图1E所示,假设经过第一环路波束的扫描,终端反馈B0~B3对应的波束标识,基站确定B0~B3为有效波束,则基站在第二环路循环发送B0~B3的同步信号。
但是,由于终端不知道其检测到的基站周期性发送有效波束的同步信号的周期,所以终端需要一直持续的盲检测有效波束的同步信号,因此,存在同步性能差、功耗较大的缺陷。
发明内容
本发明实施例提供了一种指示同步信号周期的方法及装置,用以解决现在技术中终端接入小区过程中存在的同步性能差、功耗较大的缺陷。
第一方面,提供一种指示同步信号周期的方法,包括:
基站确定同步信号周期;
所述基站指示所述同步信号周期。
结合第一方面,在第一种可能的实现方式中,所述基站指示所述同步信号周期之前,还包括:
所述基站发送同步信号;
所述基站指示所述同步信号周期,包括:
所述基站通过所述同步信号指示所述同步信号周期。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述基站发送所述同步信号,包括:
所述基站确定与所述同步信号周期对应的同步信号序列,并发送采用所述同步信号序列的同步信号。
结合第一方面的第一种或者第二种可能的实现方式,在第三种可能的实现方式中,所述基站指示所述同步信号周期之前,还包括:
所述基站发送与所述同步信号对应的物理信道;
所述基站指示所述同步信号周期,包括:
所述基站通过与所述同步信号对应的物理信道,指示所述同步信号周期。
结合第一方面的第三种可能的实现方式,在第四种可能的实现方式中,所述基站通过与所述同步信号对应的物理信道,指示所述同步信号周期,包括:
所述基站通过所述物理信道承载包括所述同步信号周期的信息,指示所述同步信号周期;或者
所述基站根据设置的同步信号周期与扰码的对应关系,确定与指示的同步信号周期对应的扰码,并通过确定的扰码对所述物理信道进行加扰,以指示所述同步信号周期;或者
所述基站根据设置的同步信号周期与掩码的对应关系,确定与指示的同步信号周期对应的掩码,并通过所述掩码对所述物理信道对应的循环冗余校验码CRC进行加掩,以指示所述同步信号周期;或者
所述基站根据设置的同步信号周期与CRC计算方式的对应关系,确定与指示的同步信号周期对应的CRC计算方式,并采用确定出的CRC计算方式对一初始信息进行CRC计算得到CRC值,并通过所述物理信道发送所述初始信息和计算得到的CRC值,以指示所述同步信号周期;或者
所述基站根据设置的同步信号周期与时频资源位置的对应关系,确定与指示的同步信号周期对应的时频资源位置,并通过在确定出的时频资源位置承载所述物理信道,以指示所述同步信号周期。。
第二方面,提供一种指示同步信号周期的方法,包括:
终端检测同步信号;
所述终端通过检测到的同步信号确定同步信号周期。
结合第二方面,在第一种可能的实现方式中,所述终端通过检测到的同步信号确定同步信号周期,包括:
所述终端确定检测到的同步信号所采用的同步信号序列;
所述终端确定与所述同步信号序列对应的同步信号周期。
结合第二方面,在第二种可能的实现方式中,终端通过检测到的同步信号确定同步信号周期之前,还包括:
所述终端确定与所述同步信号对应的物理信道;
所述终端通过检测到的同步信号确定同步信号周期,包括:
所述终端通过所述物理信道确定所述同步信号周期。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述终端通过所述物理信道确定所述同步信号周期,包括:
所述终端确定所述物理信道所承载的包括所述同步信号周期的信息,并从所述信息中确定出所述同步信号周期;或者
所述终端确定加扰所述物理信道的扰码,并从设置的同步信号周期与扰码的对应关系中查找出与所述扰码对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
所述终端确定加掩所述物理信道对应的循环冗余校验码CRC的掩码,并从设置的同步信号周期与掩码的对应关系中查找出与所述掩码对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
所述终端通过所述物理信道接收一初始信息和CRC值,并将存储的每一种CRC计算方式对所述初始信息进行CRC计算,得到对应的CRC值,将计算得到的CRC值中与接收到的CRC值相同的CRC值作为目标CRC值,将所述目标CRC值对应的CRC计算方式作为目标CRC计算方式,从设置的同步信号周期与CRC计算方式的对应关系中查找出与所述目标CRC计算方式对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
所述终端确定承载所述物理信道的时频资源位置,并从设置的同步信号周期与时频资源位置的对应关系中,查找与承载所述物理信道的时频资源位置对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期。
第三方面,提供一种基站,包括:
确定单元,用于确定同步信号周期;
指示单元,用于指示所述同步信号周期。
结合第三方面,在第一种可能的实现方式中,还包括发送单元,用于发送同步信号;
所述指示单元指示所述同步信号周期时,具体为:
通过所述同步信号指示所述同步信号周期。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述确定单元还用于,确定与所述同步信号周期对应的同步信号序列;
所述发送单元发送所述同步信号时,具体为:
发送采用所述同步信号序列的同步信号。
结合第三方面的第一种或者第二种可能的实现方式,在第三种可能的实现方式中,所述发送单元还用于,发送与所述同步信号对应的物理信道;
所述指示单元指示所述同步信号周期时,具体为:
通过与所述同步信号对应的物理信道,指示所述同步信号周期。
结合第三方面的第三种可能的实现方式,在第四种可能的实现方式中,所述指示单元通过与所述同步信号对应的物理信道,指示所述同步信号周期时,具体为:
通过所述物理信道承载包括所述同步信号周期的信息,指示所述同步信号周期;或者
根据设置的同步信号周期与扰码的对应关系,确定与指示的同步信号周期对应的扰码,并通过确定的扰码对所述物理信道进行加扰,以指示所述同步信号周期;或者
根据设置的同步信号周期与掩码的对应关系,确定与指示的同步信号周期对应的掩码,并通过所述掩码对所述物理信道对应的循环冗余校验码CRC进行加掩,以指示所述同步信号周期;或者
根据设置的同步信号周期与CRC计算方式的对应关系,确定与指示的同步信号周期对应的CRC计算方式,并采用确定出的CRC计算方式对一初始信息进行CRC计算得到CRC值,并通过所述物理信道发送所述初始信息和计算得到的CRC值,以指示所述同步信号周期;或者
根据设置的同步信号周期与时频资源位置的对应关系,确定与指示的同步信号周期对应的时频资源位置,并通过在确定出的时频资源位置承载所述物理信道,以指示所述同步信号周期。
第四方面,提供一种终端,包括:
接收单元,用于检测同步信号;
确定单元,用于通过检测到的同步信号确定同步信号周期。
结合第四方面,在第一种可能的实现方式中,所述确定单元通过检测到的同步信号确定同步信号周期时,具体为:
确定检测到的同步信号所采用的同步信号序列;
确定与所述同步信号序列对应的同步信号周期。
结合第四方面,在第二种可能的实现方式中,所述确定单元还用于,确定与所述同步信号对应的物理信道;
所述确定单元通过检测到的同步信号确定同步信号周期时,具体为:
通过所述物理信道确定所述同步信号周期。
结合第四方面的第二种可能的实现方式,在第三种可能的实现方式中,所述确定单元确定通过所述物理信道确定所述同步信号周期时,具体为:
确定所述物理信道所承载的包括所述同步信号周期的信息,并从所述信息中确定出所述同步信号周期;或者
确定加扰所述物理信道的扰码,并从设置的同步信号周期与扰码的对应关系中查找出与所述扰码对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
确定加掩所述物理信道对应的循环冗余校验码CRC的掩码,并从设置的同步信号周期与掩码的对应关系中查找出与所述掩码对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
通过所述物理信道接收一初始信息和CRC值,并将存储的每一种CRC计算方式对所述初始信息进行CRC计算,得到对应的CRC值,将计算得到的CRC值中与接收到的CRC值相同的CRC值作为目标CRC值,将所述目标CRC值对应的CRC计算方式作为目标CRC计算方式,从设置的同步信号周期与CRC计算方式的对应关系中查找出与所述目标CRC计算方式对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
确定承载所述物理信道的时频资源位置,并从设置的同步信号周期与时频资源位置的对应关系中,查找与承载所述物理信道的时频资源位置对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期
本发明实施例中提出一种指示同步信号周期的方法,在该方案中,基站会向终端指示同步信号周期,终端确定出同步信号周期后,就根据同步信号周期去接收对应波束的同步信号即可,不需要盲检测同步信号,这样,就避免了目前终端在接入小区过程中存在的同步性能差、功耗较大的缺陷。
附图说明
图1A为现有技术提供的低频场景下宽波束的示意图;
图1B为现有技术提供的高频场景下宽波束的示意图;
图1C为现有技术提供的高频场景下窄波束的示意图;
图1D为现有技术提供的承载同步信号的无线帧的示意图;
图1E为现有技术提供的双环路发送同步信号的示意图;
图2A为本发明实施例提供的一种指示同步信号周期的流程图;
图2B为本发明实施例提供的同步信号和物理信道对应的示意图;
图3为本发明实施例提供的另一种指示同步信号周期的流程图;
图4A为本发明实施例提供的基站的一种示意图;
图4B为本发明实施例提供的基站的另一种示意图;
图5A为本发明实施例提供的终端的一种示意图;
图5B为本发明实施例提供的终端的另一种示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字母“/”,一般表示前后关联对象是一种“或”的关系。
下面结合说明书附图对本发明优选的实施方式进行详细说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明,并且在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
参阅图2A所示,本发明实施例中,指示同步信号周期的一种流程如下:
步骤200:基站确定同步信号周期;
步骤210:基站指示同步信号周期。
这样,基站指示同步信号周期后,终端根据基站指示的同步信号周期检测同步信号,终端就知道间隔多长时间去检测同步信号,避免终端盲检测同步信号,避免了目前终端在接入小区过程中存在的同步性能差、功耗较大的缺陷。
本发明实施例中,基站指示同步信号周期之前,还包括如下操作:
基站发送同步信号。
本发明实施例中,基站指示同步信号周期的方式有多种,可选的,可以采用如下几种方式:
基站通过同步信号指示同步信号周期。
其中,基站通过同步信号指示同步信号周期时,可选的,可以采用如下方式:
基站确定与同步信号周期对应的同步信号序列,并发送采用同步信号序列的同步信号。
例如,同步信号可以采用同步信号序列1和同步信号序列2,其中,同步信号序列1与同步信号周期1相对应,同步信号序列2与同步信号周期2相对应,如果基站确定的同步信号周期为同步信号周期1,则基站发送采用同步信号序列1的同步信号。
又例如,同步信号可以采用同步信号序列1和同步信号序列2,其中,同步信号序列1与同步信号周期1相对应,同步信号序列2与同步信号周期2相对应,如果基站确定的同步信号周期为同步信号周期2,则基站发送采用同步信号序列2的同步信号。
本发明实施例中,每一个同步信号都有对应的物理信道,这样,可以根据与同步信号对应的物理信道来指示同步信号周期。
本发明实施例中,可选的,物理信道可以为PBCH(Physical Broadcast Channel,物理广播信道),当然,也可以为其他物理信道,在此不再进行详述。
如图2B所示,从图2B可以看出,PSS0/SSS0与PBCH0对应,PSS1/SSS1与PBCH1对应,PSS2/SSS2与PBCH2对应,PSS3/SSS3与PBCH3对应,PSS4/SSS4与PBCH4对应,这样,可以根据与同步信号对应的物理信道来指示同步信号周期。
因此,本发明实施例中,基站指示同步信号周期之前,还包括如下操作:
基站发送与同步信号对应的物理信道;
基站指示同步信号周期时,可选的,可以采用如下方式:
基站通过与同步信号对应的物理信道,指示同步信号周期。
本发明实施例中,物理信道可以采用如下几种方式:
物理信道承载包括同步信号周期的信息;或者
物理信道通过与同步信号周期对应的扰码加扰;或者
物理信道对应的CRC(Cyclic Redundancy Check,循环冗余校验码)通过与同步信号周期对应的掩码进行加掩;或者
物理信道对应的CRC计算方式与同步信号周期对应;或者
物理信道通过与同步信号周期对应的时频资源位置承载。
也就是说,基站通过与同步信号对应的物理信道,指示同步信号周期时,可选的,可以采用如下方式:
基站通过物理信道承载包括同步信号周期的信息,指示同步信号周期;或者
基站根据设置的同步信号周期与扰码的对应关系,确定与指示的同步信号周期对应的扰码,并通过确定的扰码对物理信道进行加扰,以指示同步信号周期;或者
基站根据设置的同步信号周期与掩码的对应关系,确定与指示的同步信号周期对应的掩码,并通过掩码对物理信道对应的循环冗余校验码CRC进行加掩,以指示同步信号周期;或者
基站根据设置的同步信号周期与CRC计算方式的对应关系,确定与指示的同步信号周期对应的CRC计算方式,并采用确定出的CRC计算方式对一初始信息进行CRC计算得到CRC值,并通过物理信道发送初始信息和计算得到的CRC值,以指示同步信号周期;或者
基站根据设置的同步信号周期与时频资源位置的对应关系,确定与指示的同步信号周期对应的时频资源位置,并通过在确定出的时频资源位置承载物理信道,以指示同步信号周期。
例如,物理信道可以承载14比特的信息,其中有4比特承载的信息用于指示下行系统带宽、系统帧号、PHICH(Physical HARQ Indication Channel,物理混合自动请求重传指示信道)配置,那么,还有10个比特空闲。如果同步信号周期共有4种,则需要增加2比特来指示同步信号周期,例如,2比特位“01”,同步信号周期为第一同步信号周期;2比特位“10”,同步信号周期为第二同步信号周期;2比特位“00”,同步信号周期为第三同步信号周期;2比特位“11”,同步信号周期为第四同步信号周期。
又例如,加扰物理信道的扰码包括扰码1和扰码2,其中,扰码1与同步信号周期1相对应,扰码2与同步信号周期2相对应,基站确定同步信号周期为同步信号周期1,则基站采用扰码1对物理信道进行加扰,基站确定同步信号周期为同步信号周期1,则基站采用扰码1对物理信道进行加扰。
这样,终端检测物理信道时,通过扰码1实现CRC校验正确,则认为同步信号周期为同步信号周期1,通过扰码2实现CRC校验正确,则认为同步信号周期为同步信号周期2。
又例如,对CRC加掩的掩码包括掩码1和掩码2,其中,掩码1与同步信号周期1相对应,掩码2与同步信号周期2相对应,基站确定同步信号周期为同步信号周期1,则基站采用扰码1对CRC进行加掩,基站确定同步信号周期为同步信号周期2,则基站采用掩码2对CRC进行加掩。
这样,终端对CRC进行校验时,通过掩码1实现了CRC校验正确,则认为同步信号周期为同步信号周期1,通过掩码2实现CRC校验正确,则认为同步信号周期为同步信号周期2。
又例如,CRC计算方式有CRC计算方式1和CRC计算方式2,CRC计算方式1和同步信号周期1相对应,CRC计算方式2和同步信号周期2相对应,基站确定同步信号周期为同步信号周期1,则基站采用CRC计算方式1对CRC进行加掩,基站确定同步信号周期为同步信号周期2,则基站采用掩码2对CRC进行加掩。
这样,当终端盲检物理信道时通过CRC计算方式1和计算方式2对接收到信息进行CRC计算,并与接收到的CRC进行比较,如果通过CRC计算方式1检测CRC校验正确,则认为与该物理信道对应的同步信号周期为同步信号周期1,当通过CRC计算方式2检测CRC校验正确,则认为与该物理信道对应的同步信号周期为同步信号周期2。
本发明实施例中,可选的,与同步信号对应的物理信道指的是,在与同步信号相同的符号发送的物理信号;或者,在与同步信号关联的频域资源发送的物理信道;或者,使用与同步信号相同的波束发送的物理信道;或者,使用与同步信号关联的扰码发送的物理信道;或者,使用与同步信号关联的掩码发送的物理信道。
在该方案中,基站会向终端指示同步信号周期,终端确定出同步信号周期后,就根据同步信号周期去接收对应波束的同步信号即可,不需要盲检测同步信号,这样,就避免了目前终端在接入小区过程中存在的同步性能差、功耗较大的缺陷。
参阅图3所示,本发明实施例中,指示同步信号周期的一种流程如下:
步骤300:终端检测同步信号;
步骤310:终端通过检测到的同步信号确定同步信号周期。
这样,终端确定同步信号周期后,终端就知道间隔多长时间去检测同步信号,避免终端盲检测同步信号,进而可以避免目前终端在接入小区过程中存在的同步性能差、功耗较大的缺陷。
本发明实施例中,终端通过检测到的同步信号确定同步信号周期的方式有多种,可选的,可以采用如下方式:
终端确定检测到的同步信号所采用的同步信号序列;
终端确定与同步信号序列对应的同步信号周期。
例如,同步信号可以采用同步信号序列1和同步信号序列2,其中,同步信号序列1与同步信号周期1相对应,同步信号序列2与同步信号周期2相对应,如果终端检测到的同步信号周期为同步信号周期1,则终端接下来采用同步信号周期1来检测同步信号。
又例如,同步信号可以采用同步信号序列1和同步信号序列2,其中,同步信号序列1与同步信号周期1相对应,同步信号序列2与同步信号周期2相对应,如果终端检测到的同步信号周期为同步信号周期2,则终端接下来采用同步信号周期2来检测同步信号。
上述描述的是,终端通过同步信号的同步信号序列来确定同步信号周期,在应用中,每一个同步信号都有对应的物理信道,这样,可以根据与同步信号对应的物理信道来指示同步信号周期。
本发明实施例中,可选的,物理信道可以为PBCH(Physical Broadcast Channel,物理广播信道),当然,也可以为其他物理信道,在此不再进行详述。如图2B所示,从图2B可以看出,PSS0/SSS0与PBCH0对应,PSS1/SSS1与PBCH1对应,PSS2/SSS2与PBCH2对应,PSS3/SSS3与PBCH3对应,PSS4/SSS4与PBCH4对应,这样,可以根据与同步信号对应的物理信道来指示同步信号周期。
因此,本发明实施例中,终端通过检测到的同步信号确定同步信号周期之前,还包括如下操作:
终端确定与同步信号对应的物理信道;
此时,终端通过检测到的同步信号确定同步信号周期时,可以采用如下方式:
终端根据物理信道确定同步信号周期。
也就是说,终端可以通过同步信号的同步信号序列来确定同步信号周期,也可以通过同步信号对应的物理信道来确定同步信号周期。
期中,终端通过物理信道确定同步信号周期的时候,可选的,可以采用如下方式:
终端通过物理信道所承载的包括同步信号周期的信息,确定同步信号周期;或者
终端确定加扰物理信道的扰码,根据扰码确定同步信号周期;或者
终端确定加掩与物理信道对应的CRC的掩码,根据掩码确定同步信号周期;或者
终端确定对与物理信道对应的CRC校验正确的CRC计算方式,根据CRC计算方式确定同步信号周期;或者
终端确定承载物理信道的时频资源位置,根据时频资源位置确定同步信号周期。
也就是说,终端通过物理信道确定同步信号周期时,可选的,可以采用如下方式:
终端确定物理信道所承载的包括同步信号周期的信息,并从信息中确定出同步信号周期;或者
终端确定加扰物理信道的扰码,并从设置的同步信号周期与扰码的对应关系中查找出与扰码对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
终端确定加掩物理信道对应的循环冗余校验码CRC的掩码,并从设置的同步信号周期与掩码的对应关系中查找出与掩码对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
终端通过物理信道接收一初始信息和CRC值,并将存储的每一种CRC计算方式对初始信息进行CRC计算,得到对应的CRC值,将计算得到的CRC值中与接收到的CRC值相同的CRC值作为目标CRC值,将目标CRC值对应的CRC计算方式作为目标CRC计算方式,从设置的同步信号周期与CRC计算方式的对应关系中查找出与目标CRC计算方式对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
终端确定承载物理信道的时频资源位置,并从设置的同步信号周期与时频资源位置的对应关系中,查找与承载物理信道的时频资源位置对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期。
例如,物理信道可以承载14比特的信息,其中有4比特承载的信息用于指示下行系统带宽、系统帧号、PHICH配置,那么,还有10个比特空闲。如果同步信号周期共有4种,则需要增加2比特来指示同步信号周期,例如,2比特位“01”,同步信号周期为第一同步信号周期;2比特位“10”,同步信号周期为第二同步信号周期;2比特位“00”,同步信号周期为第三同步信号周期;2比特位“11”,同步信号周期为第四同步信号周期,那么,如果终端接收到的是物理信道承载的信息中在指定比特携带的是“00”,则终端确定出同步信号周期为第三同步信号周期,如果终端接收到的是物理信道承载的信息中在指定比特携带的是“01”,则终端确定出同步信号周期为第一同步信号周期。
又例如,加扰物理信道的扰码包括扰码1和扰码2,其中,扰码1与同步信号周期1相对应,扰码2与同步信号周期2相对应,终端通过扰码1对物理信道解扰,实现了CRC校验正确,则确定同步信号周期为同步信号周期1,终端通过扰码2对物理信道解扰,实现了CRC校验正确,则确定同步信号周期为同步信号周期2。
又例如,对CRC加掩的掩码包括掩码1和掩码2,其中,掩码1与同步信号周期1相对应,掩码2与同步信号周期2相对应,终端对CRC进行校验时,通过掩码1实现了CRC校验正确,则认为同步信号周期为同步信号周期1,通过掩码2实现CRC校验正确,则认为同步信号周期为同步信号周期2。
又例如,CRC计算方式有CRC计算方式1和CRC计算方式2,CRC计算方式1和同步信号周期1相对应,CRC计算方式2和同步信号周期2相对应,当终端盲检物理信道时通过CRC计算方式1和计算方式2对接收到信息进行CRC计算,并与接收到的CRC进行比较,如果通过CRC计算方式1检测CRC校验正确,则认为与该物理信道对应的同步信号周期为同步信号周期1,当通过CRC计算方式2检测CRC校验正确,则认为与该物理信道对应的同步信号周期为同步信号周期2。
本发明实施例中,可选的,与同步信号对应的物理信道指的是,在与同步信号相同的符号发送的物理信号;或者,在与同步信号关联的频域资源发送的物理信道;或者,使用与同步信号相同的波束发送的物理信道;或者,使用与同步信号关联的扰码发送的物理信道;或者,使用与同步信号关联的掩码发送的物理信道。
在该方案中,基站会向终端指示同步信号周期,终端确定出同步信号周期后,就根据同步信号周期去接收对应波束的同步信号即可,不需要盲检测同步信号,这样,就避免了目前终端在接入小区过程中存在的同步性能差、功耗较大的缺陷。
参阅图4A所示,本发明实施例中,提出一种基站,该基站包括确定单元40和指示单元41,其中:
确定单元40,用于确定同步信号周期;
指示单元41,用于指示同步信号周期。
进一步的,还包括发送单元42,用于发送同步信号;
指示单元41指示同步信号周期时,具体为:
通过同步信号指示同步信号周期。
进一步的,确定单元40还用于,确定与同步信号周期对应的同步信号序列;
发送单元42发送同步信号时,具体为:
发送采用同步信号序列的同步信号。
进一步的,发送单元42还用于,发送与同步信号对应的物理信道;
指示单元41指示同步信号周期时,具体为:
通过与同步信号对应的物理信道,指示同步信号周期。
可选的,指示单元41通过与同步信号对应的物理信道,指示同步信号周期时,具体为:
通过物理信道承载包括同步信号周期的信息,指示同步信号周期;或者
根据设置的同步信号周期与扰码的对应关系,确定与指示的同步信号周期对应的扰码,并通过确定的扰码对物理信道进行加扰,以指示同步信号周期;或者
根据设置的同步信号周期与掩码的对应关系,确定与指示的同步信号周期对应的掩码,并通过掩码对物理信道对应的循环冗余校验码CRC进行加掩,以指示同步信号周期;或者
根据设置的同步信号周期与CRC计算方式的对应关系,确定与指示的同步信号周期对应的CRC计算方式,并采用确定出的CRC计算方式对一初始信息进行CRC计算得到CRC值,并通过物理信道发送初始信息和计算得到的CRC值,以指示同步信号周期;或者
根据设置的同步信号周期与时频资源位置的对应关系,确定与指示的同步信号周期对应的时频资源位置,并通过在确定出的时频资源位置承载物理信道,以指示同步信号周期。
参阅图4B所示,本发明实施例还提出另一种基站,基站包括处理器400,其中:
处理器400,用于确定同步信号周期;并指示同步信号周期。
需要说明的是,处理器400还用于执行确定单元40和指示单元41所执行的其他操作。该基站还包括发射器410,发射器410用于执行发送单元42所执行的操作。
参阅图5A所示,本发明实施例中,提出一种终端,该终端包括接收单元50和确定单元51,其中:
接收单元50,用于检测同步信号;
确定单元51,用于通过检测到的同步信号确定同步信号周期。
本发明实施例中,可选的,确定单元51通过检测到的同步信号确定同步信号周期时,具体为:
确定检测到的同步信号所采用的同步信号序列;
确定与同步信号序列对应的同步信号周期。
进一步的,确定单元51还用于,确定与同步信号对应的物理信道;
确定单元51通过检测到的同步信号确定同步信号周期时,具体为:
通过物理信道确定同步信号周期。
可选的,确定单元51确定通过物理信道确定同步信号周期时,具体为:
确定单元确定通过物理信道确定同步信号周期时,具体为:
确定物理信道所承载的包括同步信号周期的信息,并从信息中确定出同步信号周期;或者
确定加扰物理信道的扰码,并从设置的同步信号周期与扰码的对应关系中查找出与扰码对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
确定加掩物理信道对应的循环冗余校验码CRC的掩码,并从设置的同步信号周期与掩码的对应关系中查找出与掩码对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
通过物理信道接收一初始信息和CRC值,并将存储的每一种CRC计算方式对初始信息进行CRC计算,得到对应的CRC值,将计算得到的CRC值中与接收到的CRC值相同的CRC值作为目标CRC值,将目标CRC值对应的CRC计算方式作为目标CRC计算方式,从设置的同步信号周期与CRC计算方式的对应关系中查找出与目标CRC计算方式对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
确定承载物理信道的时频资源位置,并从设置的同步信号周期与时频资源位置的对应关系中,查找与承载物理信道的时频资源位置对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期
参阅图5B所示,本发明实施例还提出另一种终端,终端包括接收器500、处理器510,其中:
接收器500,用于检测同步信号,
处理器510,用于通过检测到的同步信号确定同步信号周期。
需要说明的是,接收器500还用于执行接收单元50所执行的其他操作,处理器510还用于执行确定单元51所执行的其他操作。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (8)

1.一种指示同步信号周期的方法,其特征在于,包括:
基站确定同步信号周期;
所述基站发送同步信号,其中,所述基站发送同步信号,包括:所述基站确定与所述同步信号周期对应的同步信号序列,并发送采用所述同步信号序列的同步信号;
所述基站指示所述同步信号周期,其中,所述基站指示所述同步信号周期,包括:所述基站通过所述同步信号指示所述同步信号周期;
所述基站指示所述同步信号周期之前,还包括:所述基站发送与所述同步信号对应的物理信道;其中,所述基站指示所述同步信号周期,包括:所述基站通过与所述同步信号对应的物理信道,指示所述同步信号周期。
2.如权利要求1所述的方法,其特征在于,所述基站通过与所述同步信号对应的物理信道,指示所述同步信号周期,包括:
所述基站通过所述物理信道承载包括所述同步信号周期的信息,指示所述同步信号周期;或者
所述基站根据设置的同步信号周期与扰码的对应关系,确定与指示的同步信号周期对应的扰码,并通过确定的扰码对所述物理信道进行加扰,以指示所述同步信号周期;或者
所述基站根据设置的同步信号周期与掩码的对应关系,确定与指示的同步信号周期对应的掩码,并通过所述掩码对所述物理信道对应的循环冗余校验码CRC进行加掩,以指示所述同步信号周期;或者
所述基站根据设置的同步信号周期与CRC计算方式的对应关系,确定与指示的同步信号周期对应的CRC计算方式,并采用确定出的CRC计算方式对一初始信息进行CRC计算得到CRC值,并通过所述物理信道发送所述初始信息和计算得到的CRC值,以指示所述同步信号周期;或者
所述基站根据设置的同步信号周期与时频资源位置的对应关系,确定与指示的同步信号周期对应的时频资源位置,并通过在确定出的时频资源位置承载所述物理信道,以指示所述同步信号周期。
3.一种指示同步信号周期的方法,其特征在于,包括:
终端检测同步信号;
所述终端通过检测到的同步信号确定同步信号周期,其中,所述终端通过检测到的同步信号确定同步信号周期,包括:所述终端确定检测到的同步信号所采用的同步信号序列;所述终端确定与所述同步信号序列对应的同步信号周期;
所述终端监测同步信号之后,通过检测到的同步信号确定同步信号周期之前,还包括:所述终端确定与所述同步信号对应的物理信道;所述终端通过检测到的同步信号确定同步信号周期,包括:所述终端通过所述物理信道确定所述同步信号周期。
4.如权利要求3所述的方法,其特征在于,所述终端通过所述物理信道确定所述同步信号周期,包括:
所述终端确定所述物理信道所承载的包括所述同步信号周期的信息,并从所述信息中确定出所述同步信号周期;或者
所述终端确定加扰所述物理信道的扰码,并从设置的同步信号周期与扰码的对应关系中查找出与所述扰码对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
所述终端确定加掩所述物理信道对应的循环冗余校验码CRC的掩码,并从设置的同步信号周期与掩码的对应关系中查找出与所述掩码对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
所述终端通过所述物理信道接收一初始信息和CRC值,并将存储的每一种CRC计算方式对所述初始信息进行CRC计算,得到对应的CRC值,将计算得到的CRC值中与接收到的CRC值相同的CRC值作为目标CRC值,将所述目标CRC值对应的CRC计算方式作为目标CRC计算方式,从设置的同步信号周期与CRC计算方式的对应关系中查找出与所述目标CRC计算方式对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
所述终端确定承载所述物理信道的时频资源位置,并从设置的同步信号周期与时频资源位置的对应关系中,查找与承载所述物理信道的时频资源位置对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期。
5.一种基站,其特征在于,包括:
确定单元,用于确定同步信号周期;还用于,确定与所述同步信号周期对应的同步信号序列;
发送单元,用于发送同步信号,其中,所述发送单元发送所述同步信号时,具体为:发送采用所述同步信号序列的同步信号;
指示单元,用于指示所述同步信号周期,其中,所述指示单元指示所述同步信号周期,具体为:通过所述同步信号指示所述同步信号周期;
所述发送单元还用于,发送与所述同步信号对应的物理信道;所述指示单元指示所述同步信号周期时,具体为:通过与所述同步信号对应的物理信道,指示所述同步信号周期。
6.如权利要求5所述的基站,其特征在于,所述指示单元通过与所述同步信号对应的物理信道,指示所述同步信号周期时,具体为:
通过所述物理信道承载包括所述同步信号周期的信息,指示所述同步信号周期;或者
根据设置的同步信号周期与扰码的对应关系,确定与指示的同步信号周期对应的扰码,并通过确定的扰码对所述物理信道进行加扰,以指示所述同步信号周期;或者
根据设置的同步信号周期与掩码的对应关系,确定与指示的同步信号周期对应的掩码,并通过所述掩码对所述物理信道对应的循环冗余校验码CRC进行加掩,以指示所述同步信号周期;或者
根据设置的同步信号周期与CRC计算方式的对应关系,确定与指示的同步信号周期对应的CRC计算方式,并采用确定出的CRC计算方式对一初始信息进行CRC计算得到CRC值,并通过所述物理信道发送所述初始信息和计算得到的CRC值,以指示所述同步信号周期;或者
根据设置的同步信号周期与时频资源位置的对应关系,确定与指示的同步信号周期对应的时频资源位置,并通过在确定出的时频资源位置承载所述物理信道,以指示所述同步信号周期。
7.一种终端,其特征在于,包括:
接收单元,用于检测同步信号;
确定单元,用于通过检测到的同步信号确定同步信号周期,其中,所述确定单元确定检测到的同步信号确定同步信号周期,具体为:确定检测到的同步信号所采用的同步信号序列;确定与所述同步信号序列对应的同步信号周期;
所述确定单元还用于,确定与所述同步信号对应的物理信道;所述确定单元通过检测到的同步信号确定同步信号周期时,具体为:通过所述物理信道确定所述同步信号周期。
8.如权利要求7所述的终端,其特征在于,所述确定单元确定通过所述物理信道确定所述同步信号周期时,具体为:
确定所述物理信道所承载的包括所述同步信号周期的信息,并从所述信息中确定出所述同步信号周期;或者
确定加扰所述物理信道的扰码,并从设置的同步信号周期与扰码的对应关系中查找出与所述扰码对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
确定加掩所述物理信道对应的循环冗余校验码CRC的掩码,并从设置的同步信号周期与掩码的对应关系中查找出与所述掩码对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
通过所述物理信道接收一初始信息和CRC值,并将存储的每一种CRC计算方式对所述初始信息进行CRC计算,得到对应的CRC值,将计算得到的CRC值中与接收到的CRC值相同的CRC值作为目标CRC值,将所述目标CRC值对应的CRC计算方式作为目标CRC计算方式,从设置的同步信号周期与CRC计算方式的对应关系中查找出与所述目标CRC计算方式对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期;或者
确定承载所述物理信道的时频资源位置,并从设置的同步信号周期与时频资源位置的对应关系中,查找与承载所述物理信道的时频资源位置对应的同步信号周期,将查找出的同步信号周期作为确定出的同步信号周期。
CN201580071292.0A 2015-08-27 2015-08-27 一种指示同步信号周期的方法及装置 Active CN107113752B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/088282 WO2017031759A1 (zh) 2015-08-27 2015-08-27 一种指示同步信号周期的方法及装置

Publications (2)

Publication Number Publication Date
CN107113752A CN107113752A (zh) 2017-08-29
CN107113752B true CN107113752B (zh) 2020-08-14

Family

ID=58099431

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580071292.0A Active CN107113752B (zh) 2015-08-27 2015-08-27 一种指示同步信号周期的方法及装置

Country Status (5)

Country Link
US (1) US20180183488A1 (zh)
EP (1) EP3331292B1 (zh)
CN (1) CN107113752B (zh)
MY (1) MY194281A (zh)
WO (1) WO2017031759A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10880062B2 (en) 2017-06-29 2020-12-29 Qualcomm Incorporated Providing protection for information delivered in demodulation reference signals (DMRS)
WO2019080007A1 (zh) * 2017-10-25 2019-05-02 北京小米移动软件有限公司 用于发送和接收同步信号的方法、装置、发射机和接收机

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101424734B (zh) * 2007-10-31 2012-01-04 中国科学院微电子研究所 降低全球定位系统接收机的晶振成本的方法
CN101430372B (zh) * 2007-11-07 2011-12-07 中国科学院微电子研究所 全球定位系统接收机的低成本授时与同步方法及设备
JP5150830B2 (ja) * 2008-08-29 2013-02-27 株式会社Otsl 通信システム及び通信方法
EP2226964A1 (en) * 2009-03-04 2010-09-08 Sony Corporation Synchronization structure and method for a receiving apparatus of a communication system
CN105898857B (zh) * 2009-06-23 2021-05-07 北京三星通信技术研究有限公司 一种数据同步方法和系统
GB2487907B (en) * 2011-02-04 2015-08-26 Sca Ipla Holdings Inc Telecommunications method and system
CN103200665B (zh) * 2012-01-04 2016-03-30 中国移动通信集团公司 Tdd系统基站小区间同步方法及装置
CN103313378B (zh) * 2012-03-16 2016-03-09 华为技术有限公司 定时方法、定时参考确定方法、设备及系统
CN103795668B (zh) * 2012-11-02 2017-08-18 电信科学技术研究院 一种信号处理方法、基站、终端、及系统
US9277518B2 (en) * 2013-01-25 2016-03-01 Electronics And Telecommunications Research Institute Synchronization method and apparatus in device-to-device direct communication
KR20140117847A (ko) * 2013-03-27 2014-10-08 한국전자통신연구원 이동체의 핸드오버 방법 및 이를 이용하는 이동체의 통신 장치
US10405267B2 (en) * 2013-04-03 2019-09-03 Interdigital Patent Holdings, Inc. Cell detection, identification, and measurements for small cell deployments
KR102045339B1 (ko) * 2013-04-26 2019-11-15 삼성전자 주식회사 기기 대 기기 무선 통신에서의 발견 신호 자원 지시 방법
US20150011230A1 (en) * 2013-07-08 2015-01-08 Electronics & Telecommunications Research Institute Method for communication based on coordinator in wireless communication system and apparatus for the same
JP6336728B2 (ja) * 2013-08-20 2018-06-06 株式会社Nttドコモ 同期信号送信方法及び基地局装置
US20150078369A1 (en) * 2013-09-17 2015-03-19 Qualcomm Incorporated Method and apparatus for dissemination of timing information in distributed synchronization device to device networks
CN105557049B (zh) * 2013-09-24 2019-10-15 索尼公司 通信控制装置、通信控制方法、终端装置和信息处理装置
WO2015071025A1 (en) * 2013-11-14 2015-05-21 Sony Corporation Communications system, infrastructure equipment, communications devices and method
PT3123802T (pt) * 2014-03-25 2018-11-16 Ericsson Telefon Ab L M Sistema e método para acesso aleatório físico baseado em feixe
CN104219758A (zh) * 2014-08-08 2014-12-17 中兴通讯股份有限公司 D2d的通信方法及装置
CN104660362B (zh) * 2015-02-09 2017-09-08 大唐移动通信设备有限公司 一种主同步信号的检测方法和设备

Also Published As

Publication number Publication date
WO2017031759A1 (zh) 2017-03-02
EP3331292B1 (en) 2021-12-29
MY194281A (en) 2022-11-25
CN107113752A (zh) 2017-08-29
EP3331292A1 (en) 2018-06-06
EP3331292A4 (en) 2018-08-08
US20180183488A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
US9356727B2 (en) Method and system for intelligent jamming signal generation
US10080251B2 (en) Wireless communication system
US9980314B2 (en) Method and apparatus for irregular signal transmission in a system with reception gaps
WO2014109105A1 (ja) 無線通信システムおよび通信制御方法
US10484151B2 (en) Controlling random-access channel (RACH) retransmissions for wireless communication
US11089559B2 (en) Synchronization processing method and apparatus, and device
CN112335186B (zh) 波束管理
US20200022090A1 (en) Communication Method, Terminal, And Network Device
EP3499763B1 (en) Synchronous processing method, apparatus and device
WO2019048483A1 (en) INDICATION OF SYNCHRONIZATION SIGNAL BLOCK FOR WIRELESS NETWORKS
JP2019530273A (ja) 情報指示装置、方法及び通信システム
CN107113752B (zh) 一种指示同步信号周期的方法及装置
US20170047989A1 (en) Apparatus and method for transmitting and receiving signal in communication system
US20190364540A1 (en) Signal sending and receiving methods and devices
EP3282801B1 (en) Signal transmission method and network device
CN107947908B (zh) 一种同步信号发送方法、接收方法、网络设备及终端设备
CN111602458B (zh) 用于nprach检测的方法和设备
CN114727362A (zh) 一种同步信号的发送、接收方法、网络设备及终端
US10499365B2 (en) Paging decoding
CN112566245B (zh) 一种信号的发送、接收方法及终端
JP6422006B2 (ja) 通信装置及び通信方法
US11013012B2 (en) Base station device and communication method thereof
CN113904751A (zh) 一种终端的网络搜索方法和终端的无线通信基带芯片
CN108990026A (zh) 一种使用未许可频谱在设备上进行无线通信的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant