CN107103138A - 一种激光喷丸变刚度轻量化方法 - Google Patents

一种激光喷丸变刚度轻量化方法 Download PDF

Info

Publication number
CN107103138A
CN107103138A CN201710285284.7A CN201710285284A CN107103138A CN 107103138 A CN107103138 A CN 107103138A CN 201710285284 A CN201710285284 A CN 201710285284A CN 107103138 A CN107103138 A CN 107103138A
Authority
CN
China
Prior art keywords
component
laser peening
light weight
weight method
variation rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710285284.7A
Other languages
English (en)
Other versions
CN107103138B (zh
Inventor
张永康
张峥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201710285284.7A priority Critical patent/CN107103138B/zh
Priority to PCT/CN2017/094099 priority patent/WO2018196185A1/zh
Publication of CN107103138A publication Critical patent/CN107103138A/zh
Priority to US16/153,717 priority patent/US10909282B2/en
Application granted granted Critical
Publication of CN107103138B publication Critical patent/CN107103138B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/20Configuration CAD, e.g. designing by assembling or positioning modules selected from libraries of predesigned modules
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种激光喷丸变刚度轻量化方法,包括以下步骤:确定构件的极限尺寸;对构件进行激光喷丸强化试验,设置多组强化参数;对构件进行材料性能测试,获取材料性能提升数据;确定拓扑优化强化区域;根据材料性能提升数据对构件的截面尺寸进行优化;评估优化后构件的静/动强度、刚度、承载能力、可靠性指标,并判断是否符合设计要求,如果否,则重复确定拓扑优化强化区域步骤;如果是,则完成构件的设计。本发明所提供的激光喷丸变刚度轻量化方法,构件处理可靠性强,利用激光喷丸强化和结构优化设计,对已经轻量化设计的航天整体构件进一步的轻量化改进,提升减重效率,增大有效载荷,适用于航空长期服役构件和汽车轻量化构件的处理。

Description

一种激光喷丸变刚度轻量化方法
技术领域
本发明涉及航天构件设计领域,特别是涉及一种激光喷丸变刚度轻量化方法。
背景技术
结构优化设计(Optimum Structural Design)指在给定约束条件下,按某种目标(如重量最轻、成本最低、刚度最大等)求出最好的设计方案,曾称为结构最佳设计或结构最优设计,相对于“结构分析”而言,又称“结构综合”,例如,以结构的重量最小为目标,则称为最小重量设计。
在航天、航空及汽车工业中,结构重量关系到有效载荷比、燃油消耗率等关键性参数,轻量化设计在结构优化中占有至关重要的地位。结构优化设计的特点是基于数值仿真技术的多学科综合设计理念,采用遗传算法、神经网络、并行计算等先进算法,对构件进行尺寸优化、形状优化和拓扑优化。
目前,航天、航空领域中,广泛采用的结构轻量化设计主要有:1)夹层结构,其基本构造形式是由上下两块薄而强的面板和填在其中并与面板牢固连接起来的轻质芯材所组成;夹层结构的特点是抗弯刚度大、可提高材料有效利用率、可减轻重量;2)格栅结构,又称材料网格结构,其基本构型是由加强筋构成的多边形网格;格栅结构的特点:自稳定性高,结构抗屈曲能力强,比强度和比刚度高,检测和修补方便等;3)点阵结构,其构型是由节点和连接节点的杆单元组成的类似于桁架体系的三维空间周期性结构;点阵结构特点是:自稳定性高,结构抗屈曲能力强,承载力高,材料利用效率高;4)桁架结构,其构型特点是由平行于桁架纵向中心轴的纵向肋条和围绕中心轴均匀布置的螺旋向肋条相互交织构成的一种轴对称桁架结构;桁架结构特点是结构减重高,整体性强,承载能高等。
然而,目前的结构轻量化设计,主要集中于构件空间结构的拓扑优化、尺寸优化等算法理论方向,设计阶段与制造阶段缺乏信息反馈,构件轻量化设计的潜力还未完全开发。
因此,如何在保证构件性能的同时,实现构件的轻量化设计,是本领域技术人员目前需要解决的技术问题。
发明内容
本发明的目的是提供一种激光喷丸变刚度轻量化方法,利用激光喷丸强化和结构优化设计,可以对已经轻量化设计的航天整体构件进行进一步的高性能轻量化改进,提升减重效率,增大有效载荷。
为实现上述目的,本发明提供如下技术方案:
一种激光喷丸变刚度轻量化方法,包括以下步骤:
步骤S1:对构件进行结构设计,确定所述构件的极限尺寸;
步骤S2:采用相同牌号和热处理状态的材料截取所述构件,并对所述构件进行激光喷丸强化试验,设置多组强化参数;
步骤S3:对所述构件进行材料性能测试,获取材料性能提升数据;
步骤S4:确定拓扑优化强化区域,建立数学模型、设定目标函数和约束条件,采用有限元求解激光喷丸强化区域面积、数量和布局形式;
步骤S5:根据所述材料性能提升数据对所述构件的截面尺寸进行优化;
步骤S6:评估优化后所述构件的静/动强度、刚度、承载能力、可靠性指标,并判断是否符合设计要求,如果否,则重复所述步骤S4;如果是,则完成所述构件的设计。
优选的,所述步骤S1包括:
步骤S11:建立所述构件的模型,获得所述构件的几何外形;
步骤S12:确定所述构件的外载荷和边界条件;
步骤S13:根据所述构件的几何外形、外载荷和边界条件进行结构应力、应变分析,并根据分析结果确定所述构件的极限尺寸。
优选的,所述步骤S11具体为:采用CATIA软件建立铝合金单蒙皮格栅整体壁板模型。
优选的,所述步骤S13具体为:由理论分析和数值仿真可确定构件各个部分的极限尺寸,并进行结构失稳分析,确定格栅结构极限深宽比。
优选的,所述步骤S3中,所述材料性能提升数据包括材料拉伸强度、杨氏模量、疲劳寿命提升数据。
优选的,所述步骤S4中,还包括:设计不同形式的激光喷丸强化处理方式,并获得不同形式下的结构应力特性。
优选的,所述激光喷丸强化处理方式包括铝合金单蒙皮格栅整体壁板的外蒙皮全处理、区域等间隔处理或区域不等间隔处理。
优选的,所述步骤S5具体为:
设置目标函数和约束条件,以最小质量为目标,约束条件为结构强度、刚度变化量小于0.01%,采用并行计算和数值仿真方法进行所述构件的截面尺寸优化。
本发明所提供的激光喷丸变刚度轻量化方法,包括以下步骤:对构件进行结构设计,确定所述构件的极限尺寸;采用相同牌号和热处理状态的材料截取所述构件,并对所述构件进行激光喷丸强化试验,设置多组强化参数;对所述构件进行材料性能测试,获取材料性能提升数据;确定拓扑优化强化区域,建立数学模型、设定目标函数和约束条件,采用有限元求解激光喷丸强化区域面积、数量和布局形式;根据所述材料性能提升数据对所述构件的截面尺寸进行优化;评估优化后所述构件的静/动强度、刚度、承载能力、可靠性指标,并判断是否符合设计要求,如果否,则重复所述确定拓扑优化强化区域步骤;如果是,则完成所述构件的设计。该激光喷丸变刚度轻量化方法,利用激光喷丸强化技术提升材料强度、刚度和疲劳寿命等参数,属于冷加工无热效应损伤,构件处理可靠性强;同时,利用激光喷丸强化和结构优化设计,可以对已经轻量化设计的航天整体构件进行进一步的高性能轻量化改进,提升减重效率,增大有效载荷;同时,利用激光喷丸强化处理构件,可以实现构件疲劳寿命的提升,不仅仅适用于单次任务的航天整体构件,也适用于航空长期服役构件和汽车轻量化构件的处理。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所提供的激光喷丸变刚度轻量化方法一种具体实施方式的流程图;
图2为本发明所提供的激光喷丸变刚度轻量化方法一种具体实施方式的原理图;
图3为本发明所提供的航天器铝合金单蒙皮格栅整体壁板的结构示意图;
图4为图3所示航天器铝合金单蒙皮格栅整体壁板的截面图;
其中:1-外蒙皮、2-格栅部分、3-激光喷丸强化层、4-原始材料层。
具体实施方式
本发明的核心是提供一种激光喷丸变刚度轻量化方法,用于提升构件的性能,实现构件的轻量化,进而提升航天器或飞行器的综合性能。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
请参考图1至图4,图1为本发明所提供的激光喷丸变刚度轻量化方法一种具体实施方式的流程图;图2为本发明所提供的激光喷丸变刚度轻量化方法一种具体实施方式的原理图;图3为本发明所提供的航天器铝合金单蒙皮格栅整体壁板的结构示意图;图4为图3所示航天器铝合金单蒙皮格栅整体壁板的截面图。
在该实施方式中,激光喷丸变刚度轻量化方法包括以下步骤:
步骤S1:对构件进行结构设计,确定构件的极限尺寸;
步骤S2:采用相同牌号和热处理状态的材料截取构件,并对构件进行激光喷丸强化试验,设置多组强化参数;
步骤S3:对构件进行材料性能测试,获取材料性能提升数据;
步骤S4:确定拓扑优化强化区域,建立数学模型、设定目标函数和约束条件,采用有限元求解激光喷丸强化区域面积、数量和布局形式;
步骤S5:根据材料性能提升数据对构件的截面尺寸进行优化;
步骤S6:评估优化后构件的静/动强度、刚度、承载能力、可靠性指标,并判断是否符合设计要求,如果否,则重复步骤S4;如果是,则完成构件的设计。
该激光喷丸变刚度轻量化方法,利用激光喷丸强化技术提升材料强度、刚度和疲劳寿命等参数,属于冷加工无热效应损伤,构件处理可靠性强;同时,利用激光喷丸强化和结构优化设计,可以对已经轻量化设计的航天整体构件进行进一步的高性能轻量化改进,提升减重效率,增大有效载荷;同时,利用激光喷丸强化处理构件,可以实现构件疲劳寿命的提升,不仅仅适用于单次任务的航天整体构件,也适用于航空长期服役构件和汽车轻量化构件的处理。该方法主要利用激光喷丸强化提升材料强度、刚度和疲劳寿命,通过优化分布强化处理区域实现构件刚度梯度的调控和结构重量的降低,适用于航天整体构件的减重。
进一步,步骤S1:对构件进行结构设计,确定构件的极限尺寸,具体包括:
步骤S11:建立构件的模型,获得构件的几何外形;更具体的,建立构件的模型,可以具体为采用CATIA软件建立铝合金单蒙皮格栅整体壁板模型,如图3所示,格栅结构2位于外蒙皮1的内周部,当然,CATIA软件为优选软件,采用其他形式的模型建立软件亦可。
步骤S12:确定构件的外载荷和边界条件;具体的,圆柱形整体壁板主要起到保持结构外形和稳定性的作用,承载方式以轴向载荷为主,根据航天器设计运动姿态设计确定惯性力,边界条件为轴向限制位移。
步骤S13:根据构件的几何外形、外载荷和边界条件进行结构应力、应变分析,并根据分析结果确定构件的极限尺寸,具体的,步骤S13可以为:由理论分析和数值仿真可确定构件各个部分的极限尺寸,并进行结构失稳分析,确定格栅结构极限深宽比。
具体的,步骤S2中,采用相同牌号和热处理状态的材料截取构件,并对构件进行激光喷丸强化试验,设置多组强化参数;通过设置多组强化参数作为备选,最终选取多组强化参数中强化效果最优的参数对产品进行加工,提高产品加工精度。
步骤S3中,对激光喷丸强化试验后的构件进行材料性能测试,获取材料性能提升数据;优选的,材料性能提升数据包括材料拉伸强度、杨氏模量、疲劳寿命提升数据等数据;铝合金材料经激光喷丸强化处理后,杨氏模量、抗拉强度、屈服强度平均提升12%,由结构几何特性可计算出刚度提升比率,即材料性能提升数据,如图4所示,激光喷丸强化后,激光喷丸强化层4与原始材料层3牢固结合。
步骤S4中,对确定拓扑优化强化区域,建立数学模型、设定目标函数和约束条件,采用有限元求解激光喷丸强化区域面积、数量和布局形式;具体还包括:设计不同形式的激光喷丸强化处理方式,并获得不同形式下的结构应力特性。
在经过了步骤S4与步骤S5的两个步骤的优化后,进行步骤S6:评估优化后构件的静/动强度、刚度、承载能力、可靠性指标,并判断是否符合设计要求,如果否,则重复步骤S4和步骤S5,重新优化激光喷丸强化区域和截面尺寸,直至设计符合要求;如果是,则完成构件的设计。
具体的,步骤S6包括:
步骤S61:对构件的性能进行评估;
步骤S62:判断构件的性能是否达标,如果否,则重复步骤S4和步骤S5,如果是,则完成构件的设计。
进一步,激光喷丸强化处理方式包括铝合金单蒙皮格栅整体壁板的外蒙皮全处理、区域等间隔处理或区域不等间隔处理。
在上述各实施方式的基础上,步骤S5具体为:
设置目标函数和约束条件,以最小质量为目标,约束条件为结构强度、刚度变化量小于0.01%,采用并行计算和数值仿真方法进行构件的截面尺寸优化。
具体的,本实施例所提供的激光喷丸变刚度轻量化方法,包含结构设计、工艺设计和优化设计三大部分,建立了设计与制造的信息交流,其中,结构设计依次包括:构件几何建模,外载荷、边界条件确定,结构应力、应变分析;工艺设计中包括:对构件进行激光喷丸强化试验和获取材料性能提升数据;优化设计包括:拓扑优化强化区域和尺寸优化截面尺寸。完成上述两种优化后,判断构件的性能是否达标,如果是,则完成设计,如果否,则继续进行上述两种优化方式,直至构件的性能达标,则完成设计,得到最佳强化参数。
在上述各实施方式的基础上,工艺设计中,在获得强化后材料性能提升数据后,可用于结构应力、应变分析,可定量衡量激光喷丸强化对构件性能的提升效果,实现工艺设计与结构设计中的相互联系。
该激光喷丸变刚度轻量化方法,为了实现航天、航空构件高性能轻量化设计,在已有的轻量化设计基础上进一步降低构件重量,提升航天器、飞行器的性能。本发明利用激光喷丸强化技术提升材料的强度、疲劳性能,借助拓扑优化方法合理布局强化处理区域,使得构件具有变化的截面刚度、抗拉强度。采用尺寸优化方法,将激光喷丸强化增益用于两个方面,第一保证构件设计性能恒定不变,第二用于构件的轻量化设计,降低构件的截面尺寸,最终实现构件进一步的轻量化设计,提升航天器、飞行器的综合性能。
以上对本发明所提供的激光喷丸变刚度轻量化方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (8)

1.一种激光喷丸变刚度轻量化方法,其特征在于,包括以下步骤:
步骤S1:对构件进行结构设计,确定所述构件的极限尺寸;
步骤S2:采用相同牌号和热处理状态的材料截取所述构件,并对所述构件进行激光喷丸强化试验,设置多组强化参数;
步骤S3:对所述构件进行材料性能测试,获取材料性能提升数据;
步骤S4:确定拓扑优化强化区域,建立数学模型、设定目标函数和约束条件,采用有限元求解激光喷丸强化区域面积、数量和布局形式;
步骤S5:根据所述材料性能提升数据对所述构件的截面尺寸进行优化;
步骤S6:评估优化后所述构件的静/动强度、刚度、承载能力、可靠性指标,并判断是否符合设计要求,如果否,则重复所述步骤S4;如果是,则完成所述构件的设计。
2.根据权利要求1所述的激光喷丸变刚度轻量化方法,其特征在于,所述步骤S1包括:
步骤S11:建立所述构件的模型,获得所述构件的几何外形;
步骤S12:确定所述构件的外载荷和边界条件;
步骤S13:根据所述构件的几何外形、外载荷和边界条件进行结构应力、应变分析,并根据分析结果确定所述构件的极限尺寸。
3.根据权利要求2所述的激光喷丸变刚度轻量化方法,其特征在于,所述步骤S11具体为:采用CATIA软件建立铝合金单蒙皮格栅整体壁板模型。
4.根据权利要求3所述的激光喷丸变刚度轻量化方法,其特征在于,所述步骤S13具体为:由理论分析和数值仿真可确定构件各个部分的极限尺寸,并进行结构失稳分析,确定格栅结构极限深宽比。
5.根据权利要求1所述的激光喷丸变刚度轻量化方法,其特征在于,所述步骤S3中,所述材料性能提升数据包括材料拉伸强度、杨氏模量、疲劳寿命提升数据。
6.根据权利要求1所述的激光喷丸变刚度轻量化方法,其特征在于,所述步骤S4中,还包括:设计不同形式的激光喷丸强化处理方式,并获得不同形式下的结构应力特性。
7.根据权利要求6所述的激光喷丸变刚度轻量化方法,其特征在于,所述激光喷丸强化处理方式包括铝合金单蒙皮格栅整体壁板的外蒙皮全处理、区域等间隔处理或区域不等间隔处理。
8.根据权利要求1至7任意一项所述的激光喷丸变刚度轻量化方法,其特征在于,所述步骤S5具体为:
设置目标函数和约束条件,以最小质量为目标,约束条件为结构强度、刚度变化量小于0.01%,采用并行计算和数值仿真方法进行所述构件的截面尺寸优化。
CN201710285284.7A 2017-04-25 2017-04-25 一种激光喷丸变刚度轻量化方法 Active CN107103138B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710285284.7A CN107103138B (zh) 2017-04-25 2017-04-25 一种激光喷丸变刚度轻量化方法
PCT/CN2017/094099 WO2018196185A1 (zh) 2017-04-25 2017-07-24 一种激光喷丸变刚度轻量化方法
US16/153,717 US10909282B2 (en) 2017-04-25 2018-10-06 Method for rigidity enhancement and weight reduction using laser peening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710285284.7A CN107103138B (zh) 2017-04-25 2017-04-25 一种激光喷丸变刚度轻量化方法

Publications (2)

Publication Number Publication Date
CN107103138A true CN107103138A (zh) 2017-08-29
CN107103138B CN107103138B (zh) 2021-01-26

Family

ID=59657331

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710285284.7A Active CN107103138B (zh) 2017-04-25 2017-04-25 一种激光喷丸变刚度轻量化方法

Country Status (3)

Country Link
US (1) US10909282B2 (zh)
CN (1) CN107103138B (zh)
WO (1) WO2018196185A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707744A (zh) * 2018-06-19 2018-10-26 广东工业大学 一种轻量化骨科支架的加工方法
CN109359321A (zh) * 2018-08-24 2019-02-19 南京理工大学 一种拓扑优化与点阵结构结合的轻量化连接铰优化方法
CN112597610A (zh) * 2020-12-28 2021-04-02 深圳市优必选科技股份有限公司 机械臂结构轻量化设计的优化方法、装置及设备
CN112733267A (zh) * 2020-12-30 2021-04-30 中国特种飞行器研究所 一种先进增强结构部件级试验件的设计方法和装置
CN113312825A (zh) * 2021-06-18 2021-08-27 广东工业大学 一种激光喷丸强化效果监测方法及装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109766638B (zh) * 2019-01-11 2023-03-24 中国科学院工程热物理研究所 一种燃油喷嘴及其轻量化设计方法
CN110377952A (zh) * 2019-06-13 2019-10-25 潍柴动力股份有限公司 客车底架轻量化设计的cae分析方法及分析系统
CN111062094B (zh) * 2019-10-08 2021-06-18 珠海格力电器股份有限公司 一种加工中心主轴箱的拓扑优化设计方法
CN110765681B (zh) * 2019-10-10 2023-06-13 陕西理工大学 一种基于有限元分析的磨粉机机座的轻量化设计方法
CN111222264B (zh) * 2019-11-01 2023-03-03 长春英利汽车工业股份有限公司 一种复合连续玻璃纤维增强前端模块的制造方法
CN110826222B (zh) * 2019-11-05 2023-03-24 上海波客实业有限公司 一种汽车碳纤维增强复合材料覆盖件正向开发方法
CN110837682A (zh) * 2019-11-11 2020-02-25 江苏科技大学 一种基于正交试验的工业机器人大臂的结构优化方法
CN111177861B (zh) * 2019-12-12 2023-05-05 西安航天发动机有限公司 适用于增材制造成形技术的常平环结构轻量化设计方法
CN111159943B (zh) * 2019-12-25 2023-07-21 中国航空工业集团公司西安飞机设计研究所 一种动翼面封严结构的屈曲处理方法
CN112100885B (zh) * 2020-08-28 2022-08-16 北京航空航天大学 一种高能喷丸表面硬度数值模拟方法
CN112287469A (zh) * 2020-08-31 2021-01-29 北京工业大学 一种基于三维拓扑优化的激光追踪测量系统机械结构减重优化方法
CN112906269B (zh) * 2021-02-08 2023-09-26 南通中远海运船务工程有限公司 一种提高原油转驳船复杂结构疲劳寿命的方法
CN114912209B (zh) * 2021-02-08 2024-03-22 广汽埃安新能源汽车有限公司 一种电池模组端板设计方法
CN113255057B (zh) * 2021-05-17 2022-06-17 中国第一汽车股份有限公司 一种针对狭长类斜楔翻边整形镶块结构刚度验证方法
CN113636098B (zh) * 2021-10-18 2022-01-25 成都飞机工业(集团)有限责任公司 一种飞机部件用工艺增刚件的设计方法
CN115048612B (zh) * 2022-08-15 2022-11-04 季华实验室 激光喷丸固有应变确定方法、装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070068605A1 (en) * 2005-09-23 2007-03-29 U.I.T., Llc Method of metal performance improvement and protection against degradation and suppression thereof by ultrasonic impact
CN101275177A (zh) * 2007-11-30 2008-10-01 江苏大学 一种面向抗疲劳制造的受控激光喷丸强化方法和装置
US7776165B1 (en) * 2000-06-09 2010-08-17 Lsp Technologies, Inc. Method of modifying a workpiece following laser shock processing
CN103255268A (zh) * 2013-06-07 2013-08-21 江苏大学 一种优化双面激光同时冲击合金厚度的方法
CN103920999A (zh) * 2013-12-24 2014-07-16 江苏大学 一种磁控激光仿生复合强化方法
CN105184390A (zh) * 2015-08-12 2015-12-23 中国运载火箭技术研究院 一种壁板结构静强度、刚度、稳定性的综合优化方法
CN105528503A (zh) * 2016-02-17 2016-04-27 中国科学院沈阳自动化研究所 一种基于结构分解的大型构件动态优化设计方法
CN105975734A (zh) * 2016-07-12 2016-09-28 中国航空工业集团公司沈阳发动机设计研究所 一种发动机外部支架优化设计方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203633B1 (en) * 1998-08-14 2001-03-20 Lsp Technologies, Inc. Laser peening at elevated temperatures
US6914215B2 (en) * 2003-06-27 2005-07-05 General Electric Company Real time laser shock peening quality assurance by natural frequency analysis

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776165B1 (en) * 2000-06-09 2010-08-17 Lsp Technologies, Inc. Method of modifying a workpiece following laser shock processing
US20070068605A1 (en) * 2005-09-23 2007-03-29 U.I.T., Llc Method of metal performance improvement and protection against degradation and suppression thereof by ultrasonic impact
CN101275177A (zh) * 2007-11-30 2008-10-01 江苏大学 一种面向抗疲劳制造的受控激光喷丸强化方法和装置
CN103255268A (zh) * 2013-06-07 2013-08-21 江苏大学 一种优化双面激光同时冲击合金厚度的方法
CN103920999A (zh) * 2013-12-24 2014-07-16 江苏大学 一种磁控激光仿生复合强化方法
CN105184390A (zh) * 2015-08-12 2015-12-23 中国运载火箭技术研究院 一种壁板结构静强度、刚度、稳定性的综合优化方法
CN105528503A (zh) * 2016-02-17 2016-04-27 中国科学院沈阳自动化研究所 一种基于结构分解的大型构件动态优化设计方法
CN105975734A (zh) * 2016-07-12 2016-09-28 中国航空工业集团公司沈阳发动机设计研究所 一种发动机外部支架优化设计方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
LI XINGCHENG,ETC: "Mechanism of Grain Refinement Induced by Laser Shock Processing in AZ31 Magnesium Alloy", 《JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION》 *
NIE, BAOHUA,ETC: "Very high cycle fatigue behavior of shot-peened 3Cr13 high strength spring steel", 《MATERIALS & DESIGN》 *
XIANGFAN NIE,ETC: "Experiment investigation of laser shock peening on TC6 titanium alloy to improve high cycle fatigue performance", 《MATERIALS SCIENCE AND ENGINEERING: A》 *
胡琛: "激光冲击钛合金薄壁件的强化与变形研究", 《全国优秀硕士论文全文数据库 工程科技Ⅰ辑》 *
赵恒章,等: "钛合金激光冲击强化技术的研究与应用", 《钛工业发展》 *
陈菊芳,等: "提高金属抗应力腐蚀开裂的激光喷丸技术", 《激光技术》 *
鲁金忠: "激光冲击强化铝合金力学性能及微观塑性变形机理研究", 《全国博士论文全文数据库 信息科技辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707744A (zh) * 2018-06-19 2018-10-26 广东工业大学 一种轻量化骨科支架的加工方法
CN109359321A (zh) * 2018-08-24 2019-02-19 南京理工大学 一种拓扑优化与点阵结构结合的轻量化连接铰优化方法
CN112597610A (zh) * 2020-12-28 2021-04-02 深圳市优必选科技股份有限公司 机械臂结构轻量化设计的优化方法、装置及设备
CN112597610B (zh) * 2020-12-28 2024-02-13 优必康(青岛)科技有限公司 机械臂结构轻量化设计的优化方法、装置及设备
CN112733267A (zh) * 2020-12-30 2021-04-30 中国特种飞行器研究所 一种先进增强结构部件级试验件的设计方法和装置
CN113312825A (zh) * 2021-06-18 2021-08-27 广东工业大学 一种激光喷丸强化效果监测方法及装置
CN113312825B (zh) * 2021-06-18 2022-03-22 广东工业大学 一种激光喷丸强化效果监测方法及装置

Also Published As

Publication number Publication date
CN107103138B (zh) 2021-01-26
US20190042680A1 (en) 2019-02-07
US10909282B2 (en) 2021-02-02
WO2018196185A1 (zh) 2018-11-01

Similar Documents

Publication Publication Date Title
CN107103138A (zh) 一种激光喷丸变刚度轻量化方法
Locatelli et al. Wing-box weight optimization using curvilinear spars and ribs (SpaRibs)
Barnes et al. Structural optimisation of composite wind turbine blade structures with variations of internal geometry configuration
Bottasso et al. Integrated aero-structural optimization of wind turbines
CN103366070B (zh) 一种可用于直升机和固定翼飞行器的复合材料梁设计方法
CN102750410A (zh) 一种水平轴风力机叶片铺层的优化设计方法
Herath et al. Design of shape-adaptive wind turbine blades using Differential Stiffness Bend–Twist coupling
Ghazlane et al. Aerostructural adjoint method for flexible wing optimization
CN112131656A (zh) 一种飞机结构方案快速设计的优化方法
Rajpal et al. Aeroelastic optimization of composite wings including fatigue loading requirements
Fugate et al. Aero-Structural Modeling of the Truss-Braced Wing Aircraft Using Potential Method with Correction Methods for Transonic Viscous Flow and Wing-Strut Interference Aerodynamics
Morris et al. High‐fidelity aerodynamic shape optimization of modern transport wing using efficient hierarchical parameterization
Schuhmacher et al. Multidisciplinary design optimization of a regional aircraft wing box
Moors et al. Weight trades in the design of a composite wing box: effect of various design choices
CN108563916A (zh) 飞行器机翼机身薄壁结构初始尺寸优化设计方法
CN111737908B (zh) 一种基于动载荷静力等效的蒙皮桁条结构快速动态优化设计方法
CN115374543B (zh) 一种Lambda机翼的气动/结构多学科设计优化方法
Seeger et al. Multi-objective design of complex aircraft structures using evolutionary algorithms
Rao Advances in aero structures
CN105117541A (zh) 一种正向型架外形优化设计方法
Murugan et al. Morping helicopter rotor blade with curvilinear fiber composites
CN117874928B (zh) 固定翼无人机v型尾翼轻量化设计方法
Hanif et al. Optimization Design of an Aircraft Wing Structure based on Response Surface Method
Mostakim et al. Comparison of vibration analysis among NACA airfoil wings based on natural frequencies
Kong et al. Optimization of Helicopter Rotor Airfoil Wind Tunnel Test Model Based on Intelligent Algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant