CN107097101B - 基于机床主轴‑刀柄‑刀具模态耦合技术的切削力测量方法 - Google Patents

基于机床主轴‑刀柄‑刀具模态耦合技术的切削力测量方法 Download PDF

Info

Publication number
CN107097101B
CN107097101B CN201710322151.2A CN201710322151A CN107097101B CN 107097101 B CN107097101 B CN 107097101B CN 201710322151 A CN201710322151 A CN 201710322151A CN 107097101 B CN107097101 B CN 107097101B
Authority
CN
China
Prior art keywords
knife
handle
represent
measurement point
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710322151.2A
Other languages
English (en)
Other versions
CN107097101A (zh
Inventor
张卫红
万敏
原恒
殷伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201710322151.2A priority Critical patent/CN107097101B/zh
Publication of CN107097101A publication Critical patent/CN107097101A/zh
Application granted granted Critical
Publication of CN107097101B publication Critical patent/CN107097101B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/002Arrangements for observing, indicating or measuring on machine tools for indicating or measuring the holding action of work or tool holders
    • B23Q17/005Arrangements for observing, indicating or measuring on machine tools for indicating or measuring the holding action of work or tool holders by measuring a force, a pressure or a deformation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

本发明公开了一种基于机床主轴‑刀柄‑刀具模态耦合技术的切削力测量方法,用于解决现有切削力测量方法测量精度低的技术问题。技术方案是首先沿刀杆竖直方向选取位移传感器测量点,将位移传感器固定安装在选定位置处。然后分别采集空转和加工过程中刀杆测量点的变形位移,将二者相减,即可得到刀杆测量点处的实际变形位移。最后,利用结构模态耦合技术确定刀具刚度,结合得到的位移,即可计算获得切削力。本发明分别在空转和加工过程中采集刀杆测量点P的位移变形信号,确定出刀杆测量点P的实际位移变形信号δc‑δac,然后利用结构模态耦合技术确定刀杆测量点P处的刚度Kδ,最后将Kδ与δc‑δac相乘得到切削力。与背景技术相比,获得的切削力更加准确。

Description

基于机床主轴-刀柄-刀具模态耦合技术的切削力测量方法
技术领域
本发明涉及一种切削力测量方法,特别涉及一种基于机床主轴-刀柄-刀具模态耦合技术的切削力测量方法。
背景技术
文献1“朱坚民,王健,张统超等。基于刀具振动位移的动态铣削力测量方法。仪器仪表学报,2014,35(12):2772–2782。”公开了一种基于刀具变形的切削力测量方法,该方法通过测量加工过程中的刀具单点变形量,并且利用悬臂梁理论确定相对应的刀具刚度,从而间接获取切削力。但该方法提出的确定刀具刚度的方法忽略了主轴-刀柄部分的变形,当刀具材料杨氏模量很大时,该方法确定的刀具刚度将严重偏离真实值,使得间接测得切削力不准确。
文献2“Albrecht A,Park S S,Altintas Y,et al.High frequency bandwidthcutting force measurement in milling using capacitance displacementsensors.International Journal of Machine Tools and Manufacture,2005,45:993–1008.”公开了一种基于主轴变形的切削力测量方法,该方法通过电容位移传感器测量加工过程中的主轴变形间接获取切削力。但该方法确定刀具刚度时,存在刀尖点到主轴的变形位移传递率较低以及主轴自身的振动影响测量准确度,导致测量力偏差大。
以上文献的典型特点是:在使用测量位移信号间接获得切削力的方法时,由于现有确定刀具刚度的方法误差大,导致材料杨氏模量很大的刀具或主轴振动影响大时,测量精度偏低。
发明内容
为了克服现有切削力测量方法测量精度低的不足,本发明提供一种基于机床主轴-刀柄-刀具模态耦合技术的切削力测量方法。该方法首先沿刀杆竖直方向选取位移传感器测量点,将位移传感器固定安装在选定位置处。然后分别采集空转和加工过程中刀杆测量点的变形位移,将二者相减,即可得到刀杆测量点处的实际变形位移。最后,利用结构模态耦合技术确定刀具刚度,结合得到的位移,即可计算获得切削力。本发明分别在空转和加工过程中采集刀杆测量点P的位移变形信号,确定出刀杆测量点P的实际位移变形信号δcac,然后利用结构模态耦合技术确定刀杆测量点P处的刚度Kδ,最后将Kδ与δcac相乘得到切削力。与背景技术相比,获得的切削力更加准确。
本发明解决其技术问题所采用的技术方案:一种基于机床主轴-刀柄-刀具模态耦合技术的切削力测量方法,其特点是包括以下步骤:
步骤一、将刀具装夹在机床上,在刀杆上选取测量点P;过测量点P所测位移在切削进给方向,测得切削力为进给方向切削力;在切削进给法向,测得切削力为进给法向切削力;
步骤二、将电容式位移传感器固定在刀杆的测量点P处,调节电容式位移传感器探头与测量点P之间的距离,使之达到传感器的测量范围,并将电容位移传感器与其配套驱动器、数据采集设备以及计算机连接好;
步骤三、采集机床空转时的刀杆测量点P的变形位移信号δac
步骤四、采集机床加工过程中的刀杆测量点P的变形位移信号δc
步骤五、计算刀杆测量点P的实际变形位移信号δcac
步骤六、将机床-刀具系统划分为机床主轴-刀柄、刀柄与刀具接合面、刀具柄部和刀具刃部四个子结构,并对四个子结构建立有限元模型;
步骤七、机床主轴-刀柄的动力学方程为Zs(ω)Qs(ω)=Fs-a(ω);其中,Zs(ω)表示机床主轴-刀柄的刚度矩阵,Qs(ω)表示机床主轴-刀柄的位移向量,Fs-a(ω)表示刀柄-刀具接合面对机床主轴-刀柄的力向量。
步骤八、刀柄-刀具接合面的动力学方程为其中,Qa(t)表示刀柄-刀具接合面的位移向量,Fa-s(t)表示机床主轴-刀柄对刀柄-刀具接合面的力向量,Fa-k(t)表示刀具柄部对刀柄-刀具接合面的力向量,Ca表示刀柄-刀具接合面的阻尼矩阵,Ka表示刀柄-刀具接合面的刚度矩阵。
步骤九、刀具柄部的动力学方程为其中,Qk(t)表示刀具柄部的位移向量,Fk-a(t)表示刀柄-刀具接合面对刀具柄部的力向量,Fk-e(t)表示刀具刃部对刀具柄部的力向量,Mk表示刀具柄部的质量矩阵,Ck表示刀具柄部的阻尼矩阵,Kk表示刀具柄部的刚度矩阵;
步骤十、刀具刃部的动力学方程为其中,Qe(t)表示刀具刃部的位移向量,Fe-k(t)表示刀具柄部对刀具刃部的力向量,FA(t)表示施加在刀尖点的外力向量,Me表示刀具刃部的质量矩阵,Ce表示刀具刃部的阻尼矩阵,Ke表示刀具刃部的刚度矩阵;
步骤十一、将步骤八、步骤九和步骤十的方程进行傅里叶变换,结合步骤七的方程,机床-刀具系统的动态刚度矩阵通过下式计算:
其中,U为转换矩阵;
步骤十二、机床-刀具系统的频率响应函数矩阵,通过公式H(ω)=Z-1(ω)计算;
步骤十三、从步骤十二得到的机床-刀具系统的频率响应函数矩阵H(ω)中提取刀具柄部测量点P处的频率响应函数;
步骤十四、选取步骤十三的频率响应函数幅值平稳段的频率响应函数,计算所述平稳段内频率响应函数的平均值Φ;
步骤十五、用公式计算刀杆测量点P的刚度;
步骤十六、由步骤五确定的δcac和步骤十五确定的Kδ,用公式F=Kδacc)计算得到切削力。
本发明的有益效果是:该方法首先沿刀杆竖直方向选取位移传感器测量点,将位移传感器固定安装在选定位置处。然后分别采集空转和加工过程中刀杆测量点的变形位移,将二者相减,即可得到刀杆测量点处的实际变形位移。最后,利用结构模态耦合技术确定刀具刚度,结合得到的位移,即可计算获得切削力。本发明分别在空转和加工过程中采集刀杆测量点P的位移变形信号,确定出刀杆测量点P的实际位移变形信号δcac,然后利用结构模态耦合技术确定刀杆测量点P处的刚度Kδ,最后将Kδ与δcac相乘得到切削力。与背景技术相比,获得的切削力更加准确。
下面结合附图和具体实施方式对本发明作详细说明。
附图说明
图1是本发明基于机床主轴-刀柄-刀具模态耦合技术的切削力测量方法实施例的切削力结果图。
具体实施方式
参照图1。本发明基于机床主轴-刀柄-刀具模态耦合技术的切削力测量方法具体步骤如下:
步骤一、将刀具装夹在刀柄上,并一起安装于机床之后,在刀杆上选取测量点P。
步骤二、电容位移传感器安装在切削力进给方向上的刀杆测量点P,调节电容式位移传感器探头与刀杆测量点之间的距离,使之达到传感器的测量范围,并将电容位移传感器与其配套驱动器、数据采集设备、计算机连接好,进行切削力的测量。加工工件材料为铝合金7050,使用刀具为4刃硬质合金铣刀,刀具直径为12mm,加工参数为:主轴转速为1000rpm,轴向切深2mm,径向切深3mm,进给速度320mm/min,切削力方向为进给方向;
步骤三、采集机床空转时的刀杆测量点P的变形位移信号δac
步骤四、采集机床加工过程中的刀杆测量点P的变形位移信号δc
步骤五、计算刀杆测量点P的实际变形位移信号δcac
步骤六、首先将机床-刀具系统划分为机床主轴-刀柄、刀柄与刀具接合面、刀具柄部和刀具刃部四个子结构,并对四个子结构建立有限元模型;
步骤七、对机床主轴-刀柄子结构,机床主轴-刀柄的动力学方程为:
Zs(ω)Qs(ω)=Fs-a(ω)
其中,Zs(ω)表示机床主轴-刀柄的刚度矩阵,Qs(ω)表示机床主轴-刀柄的位移向量,Fs-a(ω)表示刀柄-刀具接合面对机床主轴-刀柄的力向量。
步骤八、对刀柄-刀具接合面子结构,刀柄-刀具接合面动力学方程为:
其中,Qa(t)表示刀柄-刀具接合面的位移向量,Fa-s(t)表示机床主轴-刀柄对刀柄-刀具接合面的力向量,Fa-k(t)表示刀具柄部对刀柄-刀具接合面的力向量,Ca表示刀柄-刀具接合面的阻尼矩阵,Ka表示刀柄-刀具接合面的刚度矩阵。
步骤九、对刀具柄部子结构,刀具柄部的动力学方程为:
其中,Qk(t)表示刀具柄部的位移向量,Fk-a(t)表示刀柄-刀具接合面对刀具柄部的力向量,Fk-e(t)表示刀具刃部对刀具柄部的力向量,Mk表示刀具柄部的质量矩阵,Ck表示刀具柄部的阻尼矩阵,Kk表示刀具柄部的刚度矩阵;
步骤十、对刀具刃部子结构,刀具刃部的动力学方程为:
其中,Qe(t)表示刀具刃部的位移向量,Fe-k(t)表示刀具柄部对刀具刃部的力向量,FA(t)表示施加在刀尖点的外力向量,Me表示刀具刃部的质量矩阵,Ce表示刀具刃部的阻尼矩阵,Ke表示刀具刃部的刚度矩阵;
步骤十一、将步骤八、步骤九和步骤十得到的方程进行傅里叶变换,结合步骤七的方程,机床-刀具系统的动态刚度矩阵通过下式计算:
其中,U为转换矩阵;
步骤十二、机床-刀具系统的频率响应函数矩阵,通过下式计算:H(ω)=Z-1(ω)
步骤十三、从步骤十二得到的机床-刀具系统的频率响应函数矩阵H(ω)中提取刀具柄部测量点P处的频率响应函数;
步骤十四、选取切削稳定段,求得该段内频率响应函数幅值的平均值Φ=1.110μm/N;
步骤十五、求得刀杆测量点P的刚度Kδ=9.010N/μm;
步骤十六、将确定的Kδ与δcac相乘,得到切削力。
从图1可以看到本方法最终得到的切削力。

Claims (1)

1.一种基于机床主轴-刀柄-刀具模态耦合技术的切削力测量方法,其特征在于包括以下步骤:
步骤一、将刀具装夹在机床上,在刀杆上选取测量点P;过测量点P所测位移在切削进给方向,测得切削力为进给方向切削力;在切削进给法向,测得切削力为进给法向切削力;
步骤二、将电容式位移传感器固定在刀杆的测量点P处,调节电容式位移传感器探头与测量点P之间的距离,使之达到传感器的测量范围,并将电容式位移传感器与其配套驱动器、数据采集设备以及计算机连接好;
步骤三、采集机床空转时的刀杆测量点P的变形位移信号δac
步骤四、采集机床加工过程中的刀杆测量点P的变形位移信号δc
步骤五、计算刀杆测量点P的实际变形位移信号δcac
步骤六、将机床-刀具系统划分为机床主轴-刀柄、刀柄与刀具接合面、刀具柄部和刀具刃部四个子结构,并对四个子结构建立有限元模型;
步骤七、机床主轴-刀柄的动力学方程为Zs(ω)Qs(ω)=Fs-a(ω);其中,Zs(ω)表示机床主轴-刀柄的刚度矩阵,Qs(ω)表示机床主轴-刀柄的位移向量,Fs-a(ω)表示刀柄-刀具接合面对机床主轴-刀柄的力向量;
步骤八、刀柄-刀具接合面的动力学方程为其中,Qa(t)表示刀柄-刀具接合面的位移向量,Fa-s(t)表示机床主轴-刀柄对刀柄-刀具接合面的力向量,Fa-k(t)表示刀具柄部对刀柄-刀具接合面的力向量,Ca表示刀柄-刀具接合面的阻尼矩阵,Ka表示刀柄-刀具接合面的刚度矩阵;
步骤九、刀具柄部的动力学方程为其中,Qk(t)表示刀具柄部的位移向量,Fk-a(t)表示刀柄-刀具接合面对刀具柄部的力向量,Fk-e(t)表示刀具刃部对刀具柄部的力向量,Mk表示刀具柄部的质量矩阵,Ck表示刀具柄部的阻尼矩阵,Kk表示刀具柄部的刚度矩阵;
步骤十、刀具刃部的动力学方程为其中,Qe(t)表示刀具刃部的位移向量,Fe-k(t)表示刀具柄部对刀具刃部的力向量,FA(t)表示施加在刀尖点的外力向量,Me表示刀具刃部的质量矩阵,Ce表示刀具刃部的阻尼矩阵,Ke表示刀具刃部的刚度矩阵;
步骤十一、将步骤八、步骤九和步骤十的方程进行傅里叶变换,结合步骤七的方程,机床-刀具系统的动态刚度矩阵通过下式计算:其中,U为转换矩阵;
步骤十二、机床-刀具系统的频率响应函数矩阵,通过公式H(ω)=Z-1(ω)计算;
步骤十三、从步骤十二得到的机床-刀具系统的频率响应函数矩阵H(ω)中提取刀具柄部测量点P处的频率响应函数;
步骤十四、选取步骤十三的频率响应函数幅值平稳段的频率响应函数,计算所述平稳段内频率响应函数的平均值Φ;
步骤十五、用公式计算刀杆测量点P的刚度;
步骤十六、由步骤五确定的δcac和步骤十五确定的Kδ,用公式F=Kδacc)计算得到切削力。
CN201710322151.2A 2017-05-09 2017-05-09 基于机床主轴‑刀柄‑刀具模态耦合技术的切削力测量方法 Active CN107097101B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710322151.2A CN107097101B (zh) 2017-05-09 2017-05-09 基于机床主轴‑刀柄‑刀具模态耦合技术的切削力测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710322151.2A CN107097101B (zh) 2017-05-09 2017-05-09 基于机床主轴‑刀柄‑刀具模态耦合技术的切削力测量方法

Publications (2)

Publication Number Publication Date
CN107097101A CN107097101A (zh) 2017-08-29
CN107097101B true CN107097101B (zh) 2018-02-06

Family

ID=59669382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710322151.2A Active CN107097101B (zh) 2017-05-09 2017-05-09 基于机床主轴‑刀柄‑刀具模态耦合技术的切削力测量方法

Country Status (1)

Country Link
CN (1) CN107097101B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108747589B (zh) * 2018-06-21 2019-11-29 湖南工学院 切削过程中加工阻尼系数的快速准确识别方法
CN109375578B (zh) * 2018-10-31 2020-06-16 湖南工学院 一种机油泵壳体内深孔高效加工控制方法
CN115255415A (zh) * 2022-08-12 2022-11-01 华侨大学 一种车削中吃刀抗力的测量方法、装置、设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102896557A (zh) * 2012-09-17 2013-01-30 东北大学 一种车铣复合加工切削力测量方法
JP2014014914A (ja) * 2012-07-11 2014-01-30 Kashiwagi Tekko Kk 切削加工装置および切削加工方法
CN103970065A (zh) * 2014-04-24 2014-08-06 华中科技大学 一种基于切削激励的数控机床频响函数获取方法
CN105678043A (zh) * 2014-11-17 2016-06-15 天津职业技术师范大学 一种考虑刚度时变的大切除率铣削颤振监测方法
CN106541302A (zh) * 2015-09-21 2017-03-29 王丹丹 一种数控车床车刀加工切削力检测装置
CN106563973A (zh) * 2015-10-13 2017-04-19 桂林市君威机电科技有限公司 一种基于刀具振动位移的动态铣削力测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014914A (ja) * 2012-07-11 2014-01-30 Kashiwagi Tekko Kk 切削加工装置および切削加工方法
CN102896557A (zh) * 2012-09-17 2013-01-30 东北大学 一种车铣复合加工切削力测量方法
CN103970065A (zh) * 2014-04-24 2014-08-06 华中科技大学 一种基于切削激励的数控机床频响函数获取方法
CN105678043A (zh) * 2014-11-17 2016-06-15 天津职业技术师范大学 一种考虑刚度时变的大切除率铣削颤振监测方法
CN106541302A (zh) * 2015-09-21 2017-03-29 王丹丹 一种数控车床车刀加工切削力检测装置
CN106563973A (zh) * 2015-10-13 2017-04-19 桂林市君威机电科技有限公司 一种基于刀具振动位移的动态铣削力测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于刀具振动位移的动态铣削力测量方法;朱坚民,王健,张统超,李孝茹;《仪器仪表学报》;20141215;第35卷(第12期);第2772-2782页 *

Also Published As

Publication number Publication date
CN107097101A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
CN107097101B (zh) 基于机床主轴‑刀柄‑刀具模态耦合技术的切削力测量方法
CN103567815B (zh) 基于铣削小孔的数控机床切削热误差测试和评价方法
CN102248209B (zh) 薄壁复杂曲面工件铣削加工时机床极限稳定工艺参数的确定方法
US9983564B2 (en) Thermal displacement correcting apparatus and method for a machine tool
CN106863009B (zh) 基于刀杆两点变形的切削力测量方法
US8950507B2 (en) Device for preventing vibrations in a tool spindle
CN103234481A (zh) 一种金刚石刀具刀尖圆弧圆度的高效高精度检测装置
CN205426517U (zh) 机床主轴综合性能检测/监测试验系统
CN105643024A (zh) 一种车削大螺距螺纹轴向分层切削方法、刀具磨损测试方法及其力热载荷计算方法
CN103551921B (zh) 一种压阻式集成化三维车削力传感器
CN102896557A (zh) 一种车铣复合加工切削力测量方法
Liu et al. Investigation of the milling stability based on modified variable cutting force coefficients
CN106503318B (zh) 一种机床主轴工作状态下的刀具端频响函数辨识方法
CN204621695U (zh) 基于隔振式电涡流传感器测量动态铣削力装置
CN103268430B (zh) 基于机床刀具动刚度测量的铣削工艺参数优化方法
CN103217308A (zh) 一种数控机床整机动刚度测试系统
CN105108583A (zh) 基于隔振式电涡流传感器测量动态铣削力装置及测量方法
Wan et al. Industry-oriented method for measuring the cutting forces based on the deflections of tool shank
CN108647413B (zh) 一种微细表面位置误差与稳定性综合预测方法
CN104850061B (zh) 外覆盖件模具复杂曲面铣削稳定域预测装置及预测方法
CN101187623B (zh) 适用于扩管成形加工中多轴应力状态动摩擦系数测量装置
CN107414599A (zh) 车削刀具弯曲形变检测方法及系统
JP5782899B2 (ja) 切削条件設定装置
CN105081881A (zh) 一种测量高转速/超高转速三维切削力的装置和方法
CN114462156A (zh) 随动气浮支撑的基于壳理论的薄壁筒镜像切削建模方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant