CN107093643A - 一种氮化镓位置灵敏辐射探测器及其制备方法 - Google Patents

一种氮化镓位置灵敏辐射探测器及其制备方法 Download PDF

Info

Publication number
CN107093643A
CN107093643A CN201710205623.6A CN201710205623A CN107093643A CN 107093643 A CN107093643 A CN 107093643A CN 201710205623 A CN201710205623 A CN 201710205623A CN 107093643 A CN107093643 A CN 107093643A
Authority
CN
China
Prior art keywords
gallium nitride
type gallium
prepared
layer
radiation detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710205623.6A
Other languages
English (en)
Other versions
CN107093643B (zh
Inventor
夏晓川
崔兴柱
梁红伟
梁晓华
刘雅清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Institute of High Energy Physics of CAS
Original Assignee
Dalian University of Technology
Institute of High Energy Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology, Institute of High Energy Physics of CAS filed Critical Dalian University of Technology
Priority to CN201710205623.6A priority Critical patent/CN107093643B/zh
Publication of CN107093643A publication Critical patent/CN107093643A/zh
Application granted granted Critical
Publication of CN107093643B publication Critical patent/CN107093643B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • H01L31/117Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation of the bulk effect radiation detector type, e.g. Ge-Li compensated PIN gamma-ray detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供了一种氮化镓位置灵敏辐射探测器及其制备方法,属于半导体器件制备技术领域。探测器以半绝缘氮化镓单晶为衬底,其上依次生长n型氮化镓层、InGaN插入层、高阻氮化镓探测灵敏区、图形化p型氮化镓层和绝缘介质保护层;其中,InGaN插入层的宽度小于n型氮化镓层的宽度,InGaN插入层和高阻氮化镓探测灵敏区的宽度相同;多个图形化p型氮化镓层间隔排布在高阻氮化镓探测灵敏区上,图形化p型氮化镓层上制备上欧姆接触电极,n型氮化镓层上未被覆盖区域制备下欧姆接触电极;图形化p型氮化镓层外部为绝缘介质保护层。本发明解决了高性能氮化镓位置灵敏辐射探测器的制备难题,实现新型氮化镓位置灵敏辐射探测器的研制。

Description

一种氮化镓位置灵敏辐射探测器及其制备方法
技术领域
本发明属于半导体器件制备技术领域,涉及一种基于氮化镓材料的辐射探测器及其制备方法。
背景技术
以氧化镓为代表的第三代宽禁带半导体材料因其禁带宽度大、击穿场强高、电子饱和漂移速度高、耐腐蚀和抗辐照等突出优点,在高频、高功率、抗辐射等电子器件方面具有重要应用。GaN带隙宽度为3.39eV,可以在室温和更高温度下稳定存在,同时具有出色的化学稳定性。另外,GaN耐辐照能力为Si的10000倍,具有更好的耐辐照特性。GaN的密度为6.2g/cm3,对于相同的探测能区,可以将GaN探测器做得更薄,提高探测器的灵敏性。GaN材料理论内禀能量分辨率(@60keV)也可达到0.643keV。GaN的这些优异特性使得其成为制备耐高温、耐辐照探测器的理想材料。然而,目前还未见到制备基于氮化镓材料的位置灵敏辐射探测器的相关报道。主要原因是:1、高质量氮化镓单晶衬底在最近才得以研制成功,2、辐射源所发出的粒子或者射线具有极高的穿透能力,在半导体中的能量沉积率低,产生的信号极小,传统半导体探测器的结构和参数已经不能作为参考,3、氮化镓是一种新型宽带隙半导体,其材料特性与传统半导体不同,需要利用材料特性进行能够实现位置分辨功能的器件结构创新设计。
发明内容
本发明的目的在于,针对上述制备氮化镓位置灵敏辐射探测器过程中所面临的诸多技术难题,提出一种基于氮化镓单晶衬底的新型辐射探测器及其制备方法,器件的结构如图1所示,包括:上接触电极、图形化p型氮化镓层、绝缘介质保护层、高阻氮化镓探测灵敏区、InGaN插入层、n型氮化镓层、下接触电极、半绝缘氮化镓单晶衬底。
本发明的技术方案:
一种氮化镓位置灵敏辐射探测器,所述的氮化镓位置灵敏辐射探测器以半绝缘氮化镓单晶为衬底,其上依次生长n型氮化镓层、InGaN插入层、高阻氮化镓探测灵敏区、图形化p型氮化镓层和绝缘介质保护层;其中,InGaN插入层的宽度小于n型氮化镓层的宽度,InGaN插入层和高阻氮化镓探测灵敏区的宽度相同;多个图形化p型氮化镓层间隔排布在高阻氮化镓探测灵敏区上,图形化p型氮化镓层上制备上欧姆接触电极,n型氮化镓层上未被覆盖区域制备下欧姆接触电极;图形化p型氮化镓层外部为绝缘介质保护层;
所述的绝缘介质护层材料可以是氧化镓、二氧化硅、氮化铝或者氮化硅,其厚度为10nm~100μm;
所述的n型氮化镓层的厚度为100nm~10μm;
所述的InGaN插入层的厚度为10nm~5μm;
所述的高阻氮化镓探测灵敏区的厚度为1μm~500μm;
所述的图形化p型氮化镓层的厚度为10nm~10μm;单个图形化p型氮化镓区域的条宽为100nm~100μm,间距范围为100nm~100μm。
一种氮化镓位置灵敏辐射探测器的制备方法,步骤如下:
步骤1:在半绝缘氮化镓单晶衬底上生长n型氮化镓层;
步骤2:在步骤1所制备的n型氮化镓层上生长InGaN插入层;
步骤3:在步骤2所制备的InGaN插入层上生长高阻氮化镓探测灵敏区;
步骤4:在步骤3所制备的高阻氮化镓探测灵敏区生长p型氮化镓层;
步骤5:对步骤4中制备出的p型氮化镓层利用掩膜进行刻蚀(或腐蚀)图形化处理;
步骤6:在步骤5中制备出的图形化p型氮化镓层上制备绝缘介质保护层;
步骤7:利用掩膜和腐蚀(或刻蚀)技术对p型氮化镓上制备的绝缘介质保护层进行开口处理;
步骤8:利用掩膜、镀膜和剥离技术在每个p型氮化镓开口区域上制备上欧姆接触电极;
步骤9:利用掩膜、刻蚀(或腐蚀)和镀膜技术在n型氮化镓区域上制备下欧姆接触电极。
本发明的有益效果:本发明创新在于设计了一种基于氮化镓材料的新型辐射探测器结构,并提出了一种有效的工艺制造技术,解决了高性能氮化镓位置灵敏辐射探测器的制备难题,实现新型氮化镓位置灵敏辐射探测器的研制。
附图说明
图1是氮化镓位置灵敏辐射探测器的结构示意图。
图中:1半绝缘氮化镓单晶衬底;2n型氮化镓层;3InGaN插入层;
4高阻氮化镓探测灵敏区;5图形化p型氮化镓层;6绝缘介质保护层;
7上欧姆接触电极;8下欧姆接触电极。
具体实施方式
以下结合技术方案和附图,进一步说明本发明的具体实施方式。
实施例1
步骤1:在半绝缘氮化镓单晶衬底上采用金属有机物化学气相沉积技术外延生长n型氮化镓层,厚度为3μm;
步骤2:在步骤1所制备的n型氮化镓层上采用金属有机物化学气相沉积技术外延生长InGaN插入层,厚度为60nm;
步骤3:在步骤2所制备的InGaN插入层上采用金属有机物化学气相沉积技术外延生长高阻氮化镓探测灵敏区,厚度为20μm;
步骤4:在步骤3所制备的高阻氮化镓探测灵敏区上采用金属有机物化学气相沉积技术外延生长p型氮化镓层,厚度为200nm;
步骤5:对步骤4中制备出的p型氮化镓层利用光刻技术制备掩膜图形,利用感应耦合等离子体刻蚀技术对p型氮化镓层进行刻蚀,制备出单个p型氮化镓区域的条宽为20μm,间距范围为5μm的图形;
步骤6:在步骤5中制备出的图形上制备二氧化硅绝缘介质保护层厚度为100nm;
步骤7:利用光刻掩膜技术和氢氟酸湿法腐蚀技术对p型氮化镓上制备的二氧化硅绝缘介质保护层进行开口处理,开后大小为15μm;
步骤8:利用光刻掩膜、电子束镀膜和化学剥离技术在每个p型氮化镓开口区域上制备镍金上欧姆接触电极;
步骤9:利用光刻掩膜、感应耦合等离子体刻蚀技术和电子束镀膜技术在n型氮化镓区域上制备钛铝金下欧姆接触电极。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (8)

1.一种氮化镓位置灵敏辐射探测器,其特征在于,所述的氮化镓位置灵敏辐射探测器以半绝缘氮化镓单晶为衬底,其上依次生长n型氮化镓层、InGaN插入层、高阻氮化镓探测灵敏区、图形化p型氮化镓层和绝缘介质保护层;其中,InGaN插入层的宽度小于n型氮化镓层的宽度,InGaN插入层和高阻氮化镓探测灵敏区的宽度相同;多个图形化p型氮化镓层间隔排布在高阻氮化镓探测灵敏区上,图形化p型氮化镓层上制备上欧姆接触电极,n型氮化镓层上未被覆盖区域制备下欧姆接触电极;图形化p型氮化镓层外部为绝缘介质保护层。
2.根据权利要求1所述的氮化镓位置灵敏辐射探测器,其特征在于,所述的n型氮化镓层的厚度为100nm~10μm。
3.根据权利要求2所述的氮化镓位置灵敏辐射探测器,其特征在于,所述的InGaN插入层的厚度为10nm~5μm。
4.根据权利要求3所述的氮化镓位置灵敏辐射探测器,其特征在于,所述的高阻氮化镓探测灵敏区的厚度为1μm~500μm。
5.根据权利要求4所述的氮化镓位置灵敏辐射探测器,其特征在于,所述的图形化p型氮化镓层的厚度为10nm~10μm;单个图形化p型氮化镓区域的条宽为100nm~100μm,间距范围为100nm~100μm。
6.根据权利要求1-5所述的氮化镓位置灵敏辐射探测器,其特征在于,所述的绝缘介质护层的材料是氧化镓、二氧化硅、氮化铝或氮化硅,其厚度为10nm~100μm。
7.一种权利要求1-5所述的氮化镓位置灵敏辐射探测器的制备方法,其特征在于,步骤如下:
步骤1:在半绝缘氮化镓单晶衬底上生长n型氮化镓层;
步骤2:在步骤1所制备的n型氮化镓层上生长InGaN插入层;
步骤3:在步骤2所制备的InGaN插入层上生长高阻氮化镓探测灵敏区;
步骤4:在步骤3所制备的高阻氮化镓探测灵敏区生长p型氮化镓层;
步骤5:对步骤4中制备出的p型氮化镓层利用掩膜进行刻蚀或腐蚀图形化处理;
步骤6:在步骤5中制备出的图形化p型氮化镓层上制备绝缘介质保护层;
步骤7:利用掩膜、腐蚀或刻蚀方法对p型氮化镓上制备的绝缘介质保护层进行开口处理;
步骤8:利用掩膜、镀膜和剥离方法在每个p型氮化镓开口区域上制备上欧姆接触电极;
步骤9:利用掩膜、刻蚀或腐蚀、镀膜方法在n型氮化镓区域上制备下欧姆接触电极。
8.一种权利要求6所述的氮化镓位置灵敏辐射探测器的制备方法,其特征在于,步骤如下:
步骤1:在半绝缘氮化镓单晶衬底上生长n型氮化镓层;
步骤2:在步骤1所制备的n型氮化镓层上生长InGaN插入层;
步骤3:在步骤2所制备的InGaN插入层上生长高阻氮化镓探测灵敏区;
步骤4:在步骤3所制备的高阻氮化镓探测灵敏区生长p型氮化镓层;
步骤5:对步骤4中制备出的p型氮化镓层利用掩膜进行刻蚀或腐蚀图形化处理;
步骤6:在步骤5中制备出的图形化p型氮化镓层上制备绝缘介质保护层;
步骤7:利用掩膜、腐蚀或刻蚀方法对p型氮化镓上制备的绝缘介质保护层进行开口处理;
步骤8:利用掩膜、镀膜和剥离方法在每个p型氮化镓开口区域上制备上欧姆接触电极;
步骤9:利用掩膜、刻蚀或腐蚀、镀膜方法在n型氮化镓区域上制备下欧姆接触电极。
CN201710205623.6A 2017-04-05 2017-04-05 一种氮化镓位置灵敏辐射探测器及其制备方法 Active CN107093643B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710205623.6A CN107093643B (zh) 2017-04-05 2017-04-05 一种氮化镓位置灵敏辐射探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710205623.6A CN107093643B (zh) 2017-04-05 2017-04-05 一种氮化镓位置灵敏辐射探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN107093643A true CN107093643A (zh) 2017-08-25
CN107093643B CN107093643B (zh) 2019-04-19

Family

ID=59649129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710205623.6A Active CN107093643B (zh) 2017-04-05 2017-04-05 一种氮化镓位置灵敏辐射探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN107093643B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644165A (zh) * 2021-08-11 2021-11-12 全磊光电股份有限公司 一种低暗电流高灵敏度光电探测器结构及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001335A (en) * 1989-01-31 1991-03-19 Kabushiki Kaisha Toshiba Semiconductor photodetector device and method of manufacturing the same
CN102593233A (zh) * 2012-03-19 2012-07-18 中国科学院上海技术物理研究所 基于图形化蓝宝石衬底的GaN基PIN探测器及制备方法
US20120280350A1 (en) * 2011-05-03 2012-11-08 Raytheon Company Barrier device position sensitive detector
US20130009045A1 (en) * 2011-07-07 2013-01-10 Raytheon Company Self-Aligned Contacts for Photosensitive Detection Devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001335A (en) * 1989-01-31 1991-03-19 Kabushiki Kaisha Toshiba Semiconductor photodetector device and method of manufacturing the same
US20120280350A1 (en) * 2011-05-03 2012-11-08 Raytheon Company Barrier device position sensitive detector
US20130009045A1 (en) * 2011-07-07 2013-01-10 Raytheon Company Self-Aligned Contacts for Photosensitive Detection Devices
CN102593233A (zh) * 2012-03-19 2012-07-18 中国科学院上海技术物理研究所 基于图形化蓝宝石衬底的GaN基PIN探测器及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644165A (zh) * 2021-08-11 2021-11-12 全磊光电股份有限公司 一种低暗电流高灵敏度光电探测器结构及其制造方法
CN113644165B (zh) * 2021-08-11 2023-12-08 全磊光电股份有限公司 一种低暗电流高灵敏度光电探测器结构及其制造方法

Also Published As

Publication number Publication date
CN107093643B (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
JP2022065153A (ja) ショットキーバリアダイオード及びpn接合部
CN106711253B (zh) 一种iii族氮化物半导体雪崩光电二极管探测器
CN110571301B (zh) 氧化镓基日盲探测器及其制备方法
CN104465913B (zh) 具有双InGaN子量子阱的共振隧穿二极管及其制作方法
CN109119508B (zh) 一种背入射日盲紫外探测器及其制备方法
Yamada et al. Reduction of plasma-induced damage in n-type GaN by multistep-bias etching in inductively coupled plasma reactive ion etching
CN106449894A (zh) 基于双异质结的Ga2O3/GaN/SiC光电探测二极管及其制备方法
CN103605150B (zh) 一种肖特基型中子探测器及其制作方法
CN104993009A (zh) 补偿掺杂阻挡杂质带太赫兹探测器芯片及其制备方法
CN108538866A (zh) 一种高温环境原位探测GaN基功率器件工作温度的传感器及其制备方法
CN105161551A (zh) 一种可以降低InAs/GaSb超晶格长波红外探测器暗电流的表面钝化方法
CN111785797A (zh) 一种超薄量子阱结构AlGaN日盲紫外探测器及其制备方法
CN108321256A (zh) 一种基于p型透明栅极GaN基紫外探测器的制备方法
CN107093643B (zh) 一种氮化镓位置灵敏辐射探测器及其制备方法
JP3755904B2 (ja) ダイヤモンド整流素子
US11495707B2 (en) AlGaN unipolar carrier solar-blind ultraviolet detector and manufacturing method thereof
Mukhopadhyay et al. Self-powered ultraviolet photodiode based on lateral polarity structure GaN films
WO2019196050A1 (zh) 一种基于碳化硅单晶的 x 射线探测器及其制备方法
CN111370508B (zh) 基于bn的光电导型同质集成紫外/红外双色探测器及其制备方法
CN106711273A (zh) 一种变掺杂变组分AlGaAsGaAs核辐射探测器
CN206480639U (zh) 一种变掺杂变组分AlGaAsGaAs核辐射探测器
WO2019218907A1 (zh) 基于二维电子气调控背栅的二维材料晶体管、制法和应用
CN109585326A (zh) 氮化镓外延片垂直漏电流与霍尔效应复合测试方法
CN107481935A (zh) 金刚石基场效应晶体管的制备方法
US11828820B2 (en) High-temperature three-dimensional hall sensor with real-time working temperature monitoring function and manufacturing method therefor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant