CN107091081A - 钻井过程中钻遇断层的预警方法及系统 - Google Patents
钻井过程中钻遇断层的预警方法及系统 Download PDFInfo
- Publication number
- CN107091081A CN107091081A CN201710409754.6A CN201710409754A CN107091081A CN 107091081 A CN107091081 A CN 107091081A CN 201710409754 A CN201710409754 A CN 201710409754A CN 107091081 A CN107091081 A CN 107091081A
- Authority
- CN
- China
- Prior art keywords
- tomography
- reservoir
- depth
- model
- drill bit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 title claims abstract description 88
- 238000006243 chemical reaction Methods 0.000 claims abstract description 75
- 238000004364 calculation method Methods 0.000 claims abstract description 33
- 238000012544 monitoring process Methods 0.000 claims abstract description 15
- 238000003325 tomography Methods 0.000 claims description 204
- 239000011435 rock Substances 0.000 claims description 16
- 238000004088 simulation Methods 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 241001074085 Scophthalmus aquosus Species 0.000 description 15
- 238000002474 experimental method Methods 0.000 description 10
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000004575 stone Substances 0.000 description 2
- 206010019233 Headaches Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B44/00—Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明提供一种钻井过程中钻遇断层的预警方法及系统,该方法包括:建立有断层储层力学模型;在实际井眼轨迹上布置深度计算点,计算所述深度计算点在所述有断层储层力学模型中的第一畸变能密度;根据所述第一畸变能密度,获得所述有断层储层力学模型中钻头反扭矩随钻井深度的第一变化趋势;监测实际钻井过程中钻头反扭矩随钻井深度的实际变化趋势,若所述实际变化趋势与所述第一变化趋势相同,则抛出预警。本发明可在钻井过程中没有随钻地震的情况下预测断层,操作简单且成本低。
Description
技术领域
本发明涉及油气田勘探开发技术领域,尤其涉及一种钻井过程中钻遇断层的预警方法及系统。
背景技术
在油气田勘探开发领域中,储层岩石受到地应力作用,其中存贮了一定的形变能,称为畸变能密度。有断层储层中断层周边的地应力场不同于无断层储层的地应力场,地应力的不同会造成储层畸变能密度的差异,进而影响钻头钻进过程中的反扭矩。
在钻井作业中,钻头钻遇断层易引发钻井液漏失等工程问题,会导致严重的事故和经济损失。现有的随钻地震技术可以预测断层,然而费用昂贵且操作复杂。钻遇断层预警一直是国际难题,有效预警钻遇断层备受石油公司和钻井工程师的关注。
发明内容
本发明提供一种钻井过程中钻遇断层的预警方法及系统,用于解决现有的随钻地震技术预测断层的费用昂贵且操作复杂的问题。
本发明的第一个方面是提供一种钻井过程中钻遇断层的预警方法,包括:
建立有断层储层力学模型;
在实际井眼轨迹上布置深度计算点,计算所述深度计算点在所述有断层储层力学模型中的第一畸变能密度;
根据所述第一畸变能密度,获得所述有断层储层力学模型中钻头反扭矩随钻井深度的第一变化趋势;
监测实际钻井过程中钻头反扭矩随钻井深度的实际变化趋势,若所述实际变化趋势与所述第一变化趋势相同,则抛出预警。
本发明的第二个方面是提供一种钻井过程中钻遇断层的预警系统,包括:
构建模块,用于建立有断层储层力学模型;
第一计算模块,用于在实际井眼轨迹上布置深度计算点,计算所述深度计算点在所述有断层储层力学模型中的第一畸变能密度;
第二计算模块,用于根据所述第一畸变能密度,获得所述有断层储层力学模型中钻头反扭矩随钻井深度的第一变化趋势;
监测模块,用于监测实际钻井过程中钻头反扭矩随钻井深度的实际变化趋势,若所述实际变化趋势与所述第一变化趋势相同,则抛出预警。
本发明提供的钻井过程中钻遇断层的预警方法及系统,通过建立有断层储层力学模型,并计算实际井眼轨迹上的深度计算点在有断层储层力学模型中的畸变能密度,从而获得有断层储层力学模型中钻头反扭矩随钻井深度的第一变化趋势,监测实际钻井过程中钻头反扭矩随钻井深度的实际变化趋势与第一变化趋势相同时,则抛出预警。上述方案可在钻井过程中没有随钻地震的情况下预测断层,操作简单且成本低。
附图说明
图1A为本发明实施例一提供的一种钻井过程中钻遇断层的预警方法的流程示意图;
图1B为本发明实施例一提供的另一种钻井过程中钻遇断层的预警方法的流程示意图;
图1C为本发明实施例一提供的又一种钻井过程中钻遇断层的预警方法的流程示意图;
图1D为本发明实施例一提供的又一种钻井过程中钻遇断层的预警方法的流程示意图;
图2为本发明实施例二提供的一种钻井过程中钻遇断层的预警方法的流程示意图;
图3A为本发明实施例三提供的一种钻井过程中钻遇断层的预警系统的结构示意图;
图3B为本发明实施例三提供的另一种钻井过程中钻遇断层的预警系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下获得的所有其他实施例,都属于本发明保护的范围。
图1A为本发明实施例一提供的一种钻井过程中钻遇断层的预警方法的流程示意图,如图1A所示,所述方法包括如下步骤:
11、建立有断层储层力学模型。
具体的,建立有断层储层力学模型的方法可以有多种,举例来说,建立有断层储层的力学模型,需要建立断层及围岩的几何模型与边界条件。具体如图1B所示,图1B为本发明实施例一提供的另一种钻井过程中钻遇断层的预警方法的流程示意图,在图1A所示实施方式的基础上,11可以包括:
111、确定模型尺寸、边界条件和储层的物理力学参数,所述边界条件包括边界的上覆岩层压力、边界的水平最大主地应力和边界的水平最小主地应力。
实际应用中,储层的物理力学参数包括但不限于:弹性模量、泊松比、内摩擦角、黏聚力、抗拉强度。上述参数的获取方法可以有多种,以碳酸盐岩储层为例,可以参考国际岩石力学学会《岩石力学试验建议方法》来测定获得碳酸盐岩储层的弹性模量、泊松比、内摩擦角、黏聚力、抗拉强度。
112、根据所述模型尺寸和断层的深度、厚度、倾角、倾向特征参数,建立有断层储层的几何模型,并根据所述有断层储层的几何模型、所述边界条件和所述储层的物理力学参数,建立有断层储层力学模型。
12、在实际井眼轨迹上布置深度计算点,计算所述深度计算点在所述有断层储层力学模型中的第一畸变能密度。
以实际应用举例来说,12中所述在实际井眼轨迹上布置深度计算点,具体可包括:在实际井眼轨迹上从所述断层所在的深度以上10米的深度位置到所述断层所在的深度以上2米的深度位置之间布置所述深度计算点。从而同时获得较小的计算量和足够的预警距离。
进一步的,储层各点的畸变能密度取决于储层地应力和储层岩石的物理力学性质,计算畸变能密度的方式可以有多种,举例来说,12中所述计算所述深度计算点在所述有断层储层力学模型中的第一畸变能密度,具体可以包括:
计算所述深度计算点在所述有断层储层力学模型下的上覆岩层压力、水平最大主地应力以及水平最小主地应力,并利用第一公式,计算所述第一畸变能密度。
其中,所述第一公式为:
其中,Ud为畸变能密度,μ为岩石泊松比,E为岩石弹性模量,σv为上覆岩层压力,σH为水平最大主地应力,σh为水平最小主地应力。
具体的,
其中,ρi为地层岩石密度,g为重力加速度,hi为地层岩石厚度,Pp为储层孔隙压力,α为Biot系数,εH、εh为构造应变系数。
13、根据所述第一畸变能密度,获得所述有断层储层力学模型中钻头反扭矩随钻井深度的第一变化趋势。
具体的,根据畸变能密度获得钻头反扭矩随钻井深度的变化趋势的方法可以有多种,例如,可以利用相似原理实验确定畸变能密度对钻头反扭矩的影响规律。相应的,如图1C所示,图1C为本发明实施例一提供的又一种钻井过程中钻遇断层的预警方法的流程示意图,在前述任一实施方式的基础上,13具体可以包括:
131、确定第一定量关系,所述第一定量关系为有断层储层下畸变能密度和钻头反扭矩的定量关系;
132、根据所述第一畸变能密度和所述第一定量关系,计算获得所述深度计算点在所述有断层储层力学模型中的第一钻头反扭矩;
133、根据所述第一钻头反扭矩,获得所述第一变化趋势。
其中,所述第一定量关系可以通过多种方法获得,例如,可以通过进行多次实验分析获得。相应的,如图1D所示,图1D为本发明实施例一提供的又一种钻井过程中钻遇断层的预警方法的流程示意图,在图1C所示实施方式的基础上,131具体可以包括:
1311、根据实际钻井装置和有断层储层力学模型,建造等比例缩小的钻井装置模型和有断层储层的岩块模型;
1312、设计模拟井眼轨迹,在所述模拟井眼轨迹上布置深度测量点;
1313、根据所述有断层储层力学模型,计算所述深度测量点的有断层畸变能密度;
1314、测量所述钻井装置模型钻进所述有断层储层的岩块模型时所述深度测量点的有断层钻头反扭矩;
1315、根据所述有断层畸变能密度和所述有断层钻头反扭矩,拟合获得所述第一定量关系。
14、监测实际钻井过程中钻头反扭矩随钻井深度的实际变化趋势,若所述实际变化趋势与所述第一变化趋势相同,则抛出预警。
实际应用中,储层岩石受到地应力作用,其中存贮了一定的形变能,即畸变能密度。有断层储层的储层中断层周边的地应力场不同于无断层储层的地应力场。地应力的不同会造成储层畸变能密度的差异,进而影响钻头钻进过程中的反扭矩。本方案中,建立有断层储层的力学模型,计算有断层储层中井眼轨迹各个位置的畸变能密度,以获得有断层储层的力学模型中钻头反扭矩的变化规律。在实钻过程中监测钻头反扭矩变化规律,并与有断层储层的力学模型中钻头反扭矩的变化规律对比,若符合有断层变化模式,则抛出预警,实现钻井过程中钻遇断层的及时预警。本方案提供的钻井过程中钻遇断层的预警方法,可在钻井过程中没有随钻地震的情况下预测断层,操作简单且成本低。
图2为本发明实施例二提供的一种钻井过程中钻遇断层的预警方法的流程示意图,如图2所示,在实施例一的基础上,所述方法还包括如下步骤:
21、建立无断层储层力学模型;
建立无断层储层力学模型的方法可以有多种,举例来说,建立无断层储层的力学模型,需要建立围岩的几何模型与边界条件。具体的,21可以包括:
根据所述模型尺寸,建立无断层储层的几何模型,并根据所述无断层储层的几何模型、所述边界条件和所述储层的物理力学参数,建立无断层储层力学模型。
22、计算所述深度计算点在所述无断层储层力学模型中的第二畸变能密度;
计算畸变能密度的方式可以有多种,举例来说,22具体可以包括:
计算所述深度计算点在所述无断层储层力学模型下的上覆岩层压力、水平最大主地应力以及水平最小主地应力,并利用第一公式,计算所述第二畸变能密度。
23、根据所述第二畸变能密度,获得所述无断层储层力学模型中钻头反扭矩随钻井深度的第二变化趋势;
进一步的,根据畸变能密度获得钻头反扭矩随钻井深度的变化趋势的方法可以有多种,例如,可以利用相似原理实验确定畸变能密度对钻头反扭矩的影响规律。举例来说,23具体可以包括:
确定第二定量关系,所述第二定量关系为无断层储层下畸变能密度和钻头反扭矩的定量关系;
根据所述第二定量关系和所述第二畸变能密度,计算获得所述深度计算点在所述无断层储层力学模型中的第二钻头反扭矩;
根据所述第二钻头反扭矩,获得所述第二变化趋势。
其中,所述第二定量关系可以通过多种方法获得,例如,可以通过进行多次实验分析获得。举例来说,所述确定第二定量关系具体可以包括:
根据实际钻井装置和无断层储层力学模型,建造等比例缩小的钻井装置模型和无断层储层的岩块模型;
设计模拟井眼轨迹,在所述模拟井眼轨迹上布置深度测量点;
根据所述无断层储层力学模型,计算所述深度测量点的无断层畸变能密度;
测量所述钻井装置模型钻进所述无断层储层的岩块模型时所述深度测量点的无断层钻头反扭矩;
根据所述无断层畸变能密度和所述无断层钻头反扭矩,拟合获得所述第二定量关系式。
24、监测实际钻井过程中钻头反扭矩随钻井深度的实际变化趋势,若所述实际变化趋势与所述第二变化趋势相同,则正常钻井。
本实施例提供的钻井过程中钻遇断层的预警方法,通过建立无断层储层力学模型,从而获得无断层储层力学模型中钻头反扭矩随钻井深度的第二变化趋势,监测实际钻井过程中钻头反扭矩随钻井深度的实际变化趋势,若与第二变化趋势相同,则正常钻井。上述方案预测断层的精准度更高,进一步提高预警的可靠性。
图3A为本发明实施例三提供的一种钻井过程中钻遇断层的预警系统的结构示意图,如图3A所示,所述系统包括:
构建模块31,用于建立有断层储层力学模型;
第一计算模块32,用于在实际井眼轨迹上布置深度计算点,计算所述深度计算点在所述有断层储层力学模型中的第一畸变能密度;
第二计算模块33,用于根据所述第一畸变能密度,获得所述有断层储层力学模型中钻头反扭矩随钻井深度的第一变化趋势;
监测模块34,用于监测实际钻井过程中钻头反扭矩随钻井深度的实际变化趋势,若所述实际变化趋势与所述第一变化趋势相同,则抛出预警。
具体的,建立有断层储层力学模型的方法可以有多种,举例来说,建立有断层储层的力学模型,需要建立断层及围岩的几何模型与边界条件。图3B为本发明实施例三提供的另一种钻井过程中钻遇断层的预警系统的结构示意图,如图3B所示,在图3A所示实施方式的基础上,构建模块31可以包括:
初始化单元311,用于确定模型尺寸、边界条件和储层的物理力学参数,所述边界条件包括边界的上覆岩层压力、边界的水平最大主地应力和边界的水平最小主地应力;
处理单元312,用于根据所述模型尺寸和断层的深度、厚度、倾角、倾向特征参数,建立有断层储层的几何模型,并根据所述有断层储层的几何模型、所述边界条件和所述储层的物理力学参数,建立有断层储层力学模型。
实际应用中,储层的物理力学参数包括但不限于:弹性模量、泊松比、内摩擦角、黏聚力、抗拉强度。上述参数的获取方法可以有多种,以碳酸盐岩储层为例,可以参考国际岩石力学学会《岩石力学试验建议方法》来测定获得碳酸盐岩储层的弹性模量、泊松比、内摩擦角、黏聚力、抗拉强度。
以实际应用举例来说,所述第一计算模块32可包括布置单元,所述布置单元用于在实际井眼轨迹上从所述断层所在的深度以上10米的深度位置到所述断层所在的深度以上2米的深度位置之间布置所述深度计算点。从而同时获得较小的计算量和足够的预警距离。
进一步的,所述第一计算模块32还可以包括应力单元,所述应力单元用于计算所述深度计算点在所述有断层储层力学模型下的上覆岩层压力、水平最大主地应力以及水平最小主地应力,并利用第一公式,计算所述第一畸变能密度。
具体的,根据畸变能密度获得钻头反扭矩随钻井深度的变化趋势的方法可以有多种,例如,可以利用相似原理实验确定畸变能密度对钻头反扭矩的影响规律。以实际应用举例来说,第二计算模块33具体可以包括:
定量单元,用于确定第一定量关系,所述第一定量关系为有断层储层下畸变能密度和钻头反扭矩的定量关系;
反扭矩单元,用于根据所述第一畸变能密度和所述第一定量关系,计算获得所述深度计算点在所述有断层储层力学模型中的第一钻头反扭矩;
变化单元,用于根据所述第一钻头反扭矩,获得所述第一变化趋势。
其中,所述第一定量关系可以通过多种方法获得,例如,可以通过进行多次实验分析获得。相应的,在上述实施方式的基础上,定量单元具体可以包括:
模型子单元,用于根据实际钻井装置和有断层储层力学模型,建造等比例缩小的钻井装置模型和有断层储层的岩块模型;
设计子单元,用于设计模拟井眼轨迹,在所述模拟井眼轨迹上布置深度测量点;
计算子单元,用于根据所述有断层储层力学模型,计算所述深度测量点的有断层畸变能密度;
测量子单元,用于测量所述钻井装置模型钻进所述有断层储层的岩块模型时所述深度测量点的有断层钻头反扭矩;
拟合子单元,用于根据所述有断层畸变能密度和所述有断层钻头反扭矩,拟合获得所述第一定量关系。
本实施例提供的钻井过程中钻遇断层的预警系统,通过构建模块建立有断层储层的力学模型,第一计算模块计算有断层储层中井眼轨迹各个位置的畸变能密度,第二计算模块获得有断层储层的力学模型中钻头反扭矩的变化规律,在实钻过程中通过监测模块监测钻头反扭矩变化规律,并与有断层储层的力学模型中钻头反扭矩的变化规律对比,若符合有断层变化模式,则抛出预警,实现钻井过程中钻遇断层的及时预警。本方案提供的钻井过程中钻遇断层的预警系统,可在钻井过程中没有随钻地震的情况下预测断层,操作简单且成本低。
作为一种可选的实施方式,本发明实施例三还提供又一种钻井过程中钻遇断层的预警系统,在图3A所示实施方式的基础上,构建模块31,还用于建立无断层储层力学模型;第一计算模块32,还用于计算所述深度计算点在所述无断层储层力学模型中的第二畸变能密度;第二计算模块33,还用于根据所述第二畸变能密度,获得所述无断层储层力学模型中钻头反扭矩随钻井深度的第二变化趋势;监测模块34,还用于监测实际钻井过程中钻头反扭矩随钻井深度的实际变化趋势,若所述实际变化趋势与所述第二变化趋势相同,则正常钻井。
本实施例中,建立无断层储层力学模型的方法可以有多种,举例来说,建立无断层储层的力学模型,需要建立围岩的几何模型与边界条件。具体的,在图3B所示实施方式的基础上,处理单元312,还用于根据所述模型尺寸,建立无断层储层的几何模型,并根据所述无断层储层的几何模型、所述边界条件和所述储层的物理力学参数,建立无断层储层力学模型。
可选的,第一计算模块32计算畸变能密度的方式可以有多种,相应的,所述应力单元,还用于计算所述深度计算点在所述无断层储层力学模型下的上覆岩层压力、水平最大主地应力以及水平最小主地应力,并利用第一公式,计算所述第二畸变能密度。
进一步的,根据畸变能密度获得钻头反扭矩随钻井深度的变化趋势的方法可以有多种,例如,可以利用相似原理实验确定畸变能密度对钻头反扭矩的影响规律。相应的,所述定量单元,还用于确定第二定量关系,所述第二定量关系为无断层储层下畸变能密度和钻头反扭矩的定量关系。所述反扭矩单元,还用于根据所述第二定量关系和所述第二畸变能密度,计算获得所述深度计算点在所述无断层储层力学模型中的第二钻头反扭矩。所述变化单元,还用于根据所述第二钻头反扭矩,获得所述第二变化趋势。
其中,所述第二定量关系可以通过多种方法获得,例如,可以通过进行多次实验分析获得。举例来说,所述模型子单元,还用于根据实际钻井装置和无断层储层力学模型,建造等比例缩小的钻井装置模型和无断层储层的岩块模型;所述计算子单元,还用于根据所述无断层储层力学模型,计算所述深度测量点的无断层畸变能密度;所述测量子单元,还用于测量所述钻井装置模型钻进所述无断层储层的岩块模型时所述深度测量点的无断层钻头反扭矩;所述拟合子单元,还用于根据所述无断层畸变能密度和所述无断层钻头反扭矩,拟合获得所述第二定量关系式。
本实施例提供的钻井过程中钻遇断层的预警系统,通过构建模块建立无断层储层力学模型,从而获得无断层储层力学模型中钻头反扭矩随钻井深度的第二变化趋势,监测模块监测实际钻井过程中钻头反扭矩随钻井深度的实际变化趋势,若与第二变化趋势相同,则正常钻井。上述方案预测断层的精准度更高,进一步提高预警的可靠性。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (10)
1.一种钻井过程中钻遇断层的预警方法,其特征在于,包括:
建立有断层储层力学模型;
在实际井眼轨迹上布置深度计算点,计算所述深度计算点在所述有断层储层力学模型中的第一畸变能密度;
根据所述第一畸变能密度,获得所述有断层储层力学模型中钻头反扭矩随钻井深度的第一变化趋势;
监测实际钻井过程中钻头反扭矩随钻井深度的实际变化趋势,若所述实际变化趋势与所述第一变化趋势相同,则抛出预警。
2.根据权利要求1所述的方法,其特征在于,所述方法还包括:
建立无断层储层力学模型;
计算所述深度计算点在所述无断层储层力学模型中的第二畸变能密度;
根据所述第二畸变能密度,获得所述无断层储层力学模型中钻头反扭矩随钻井深度的第二变化趋势;
监测实际钻井过程中钻头反扭矩随钻井深度的实际变化趋势,若所述实际变化趋势与所述第二变化趋势相同,则正常钻井。
3.根据权利要求2所述的方法,其特征在于,所述建立无断层储层力学模型和有断层储层力学模型,包括:
确定模型尺寸、边界条件和储层的物理力学参数,所述边界条件包括边界的上覆岩层压力、边界的水平最大主地应力和边界的水平最小主地应力;
根据所述模型尺寸和断层的深度、厚度、倾角、倾向特征参数,建立有断层储层的几何模型,并根据所述有断层储层的几何模型、所述边界条件和所述储层的物理力学参数,建立有断层储层力学模型;
根据所述模型尺寸,建立无断层储层的几何模型,并根据所述无断层储层的几何模型、所述边界条件和所述储层的物理力学参数,建立无断层储层力学模型。
4.根据权利要求2所述的方法,其特征在于,所述计算所述深度计算点在所述有断层储层力学模型中的第一畸变能密度,和所述计算所述深度计算点在所述无断层储层力学模型中的第二畸变能密度,包括:
计算所述深度计算点在所述有断层储层力学模型下的上覆岩层压力、水平最大主地应力以及水平最小主地应力,并利用第一公式,计算所述第一畸变能密度;
计算所述深度计算点在所述无断层储层力学模型下的上覆岩层压力、水平最大主地应力以及水平最小主地应力,并利用所述第一公式,计算所述第二畸变能密度;
所述第一公式为:
其中,Ud为畸变能密度,μ为岩石泊松比,E为岩石弹性模量,σv为上覆岩层压力,σH为水平最大主地应力,σh为水平最小主地应力。
5.根据权利要求2所述的方法,其特征在于,所述根据所述第一畸变能密度,获得所述有断层储层力学模型中钻头反扭矩随钻井深度的第一变化趋势,和所述根据所述第二畸变能密度,获得所述无断层储层力学模型中钻头反扭矩随钻井深度的第二变化趋势,包括:
确定第一定量关系和第二定量关系,所述第一定量关系为有断层储层下畸变能密度和钻头反扭矩的定量关系,所述第二定量关系为无断层储层下畸变能密度和钻头反扭矩的定量关系;
根据所述第一畸变能密度和所述第一定量关系,计算获得所述深度计算点在所述有断层储层力学模型中的第一钻头反扭矩;
根据所述第二定量关系和所述第二畸变能密度,计算获得所述深度计算点在所述无断层储层力学模型中的第二钻头反扭矩;
根据所述第一钻头反扭矩和第二钻头反扭矩,获得所述第一变化趋势和所述第二变化趋势。
6.根据权利要求5所述的方法,其特征在于,所述确定第一定量关系和第二定量关系,包括:
根据实际钻井装置、有断层储层力学模型和无断层储层力学模型,建造等比例缩小的钻井装置模型、有断层储层的岩块模型,以及无断层储层的岩块模型;
设计模拟井眼轨迹,在所述模拟井眼轨迹上布置深度测量点;
根据所述有断层储层力学模型和所述无断层储层力学模型,计算所述深度测量点的有断层畸变能密度和无断层畸变能密度;
测量所述钻井装置模型钻进所述有断层储层的岩块模型时所述深度测量点的有断层钻头反扭矩,以及所述钻井装置模型钻进所述无断层储层的岩块模型时所述深度测量点的无断层钻头反扭矩;
根据所述有断层畸变能密度和所述有断层钻头反扭矩,拟合获得所述第一定量关系;
根据所述无断层畸变能密度和所述无断层钻头反扭矩,拟合获得所述第二定量关系式。
7.根据权利要求1-6中任一项所述的方法,其特征在于,所述在实际井眼轨迹上布置深度计算点,包括:
在实际井眼轨迹上从所述断层所在的深度以上10米的深度位置到所述断层所在的深度以上2米的深度位置之间布置所述深度计算点。
8.一种钻井过程中钻遇断层的预警系统,其特征在于,包括:
构建模块,用于建立有断层储层力学模型;
第一计算模块,用于在实际井眼轨迹上布置深度计算点,计算所述深度计算点在所述有断层储层力学模型中的第一畸变能密度;
第二计算模块,用于根据所述第一畸变能密度,获得所述有断层储层力学模型中钻头反扭矩随钻井深度的第一变化趋势;
监测模块,用于监测实际钻井过程中钻头反扭矩随钻井深度的实际变化趋势,若所述实际变化趋势与所述第一变化趋势相同,则抛出预警。
9.根据权利要求8所述的系统,其特征在于,
所述构建模块,还用于建立无断层储层力学模型;
所述第一计算模块,还用于计算所述深度计算点在所述无断层储层力学模型中的第二畸变能密度;
所述第二计算模块,还用于根据所述第二畸变能密度,获得所述无断层储层力学模型中钻头反扭矩随钻井深度的第二变化趋势;
所述监测模块,还用于监测实际钻井过程中钻头反扭矩随钻井深度的实际变化趋势,若所述实际变化趋势与所述第二变化趋势相同,则正常钻井。
10.根据权利要求9所述的系统,其特征在于,所述构建模块包括:
初始化单元,用于确定模型尺寸、边界条件和储层的物理力学参数,所述边界条件包括边界的上覆岩层压力、边界的水平最大主地应力和边界的水平最小主地应力;
处理单元,用于根据所述模型尺寸和断层的深度、厚度、倾角、倾向特征参数,建立有断层储层的几何模型,并根据所述有断层储层的几何模型、所述边界条件和所述储层的物理力学参数,建立有断层储层力学模型;
所述处理单元,还用于根据所述模型尺寸,建立无断层储层的几何模型,并根据所述无断层储层的几何模型、所述边界条件和所述储层的物理力学参数,建立无断层储层力学模型。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710409754.6A CN107091081B (zh) | 2017-06-02 | 2017-06-02 | 钻井过程中钻遇断层的预警方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710409754.6A CN107091081B (zh) | 2017-06-02 | 2017-06-02 | 钻井过程中钻遇断层的预警方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107091081A true CN107091081A (zh) | 2017-08-25 |
CN107091081B CN107091081B (zh) | 2020-11-03 |
Family
ID=59639251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710409754.6A Active CN107091081B (zh) | 2017-06-02 | 2017-06-02 | 钻井过程中钻遇断层的预警方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107091081B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8682586B1 (en) * | 2013-01-17 | 2014-03-25 | Selman and Associates, Ltd. | System for creating a near real time surface log |
CN104265279A (zh) * | 2014-07-30 | 2015-01-07 | 中国石油集团川庆钻探工程有限公司 | 断层条件下随钻测井曲线预测方法 |
CN104459801A (zh) * | 2014-12-10 | 2015-03-25 | 中国石油天然气集团公司 | 用于识别断层的相干增强处理方法 |
CN105652339A (zh) * | 2014-12-02 | 2016-06-08 | 中国石油天然气股份有限公司 | 基于目结土实验的裂缝预测方法和系统 |
US20170002640A1 (en) * | 2015-06-30 | 2017-01-05 | Schlumberger Technology Corporation | Fault Detection and Tolerance in Downhole Tool String Assemblies |
-
2017
- 2017-06-02 CN CN201710409754.6A patent/CN107091081B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8682586B1 (en) * | 2013-01-17 | 2014-03-25 | Selman and Associates, Ltd. | System for creating a near real time surface log |
CN104265279A (zh) * | 2014-07-30 | 2015-01-07 | 中国石油集团川庆钻探工程有限公司 | 断层条件下随钻测井曲线预测方法 |
CN105652339A (zh) * | 2014-12-02 | 2016-06-08 | 中国石油天然气股份有限公司 | 基于目结土实验的裂缝预测方法和系统 |
CN104459801A (zh) * | 2014-12-10 | 2015-03-25 | 中国石油天然气集团公司 | 用于识别断层的相干增强处理方法 |
US20170002640A1 (en) * | 2015-06-30 | 2017-01-05 | Schlumberger Technology Corporation | Fault Detection and Tolerance in Downhole Tool String Assemblies |
Non-Patent Citations (2)
Title |
---|
《第二届中国石油工业录井技术交流会论文集》编委会: "裂缝型储集层评价方法探讨", 《第二届中国石油工业录井技术交流会论文集》 * |
郭战胜: "《材料力学》", 31 October 2015, 同济大学出版社 * |
Also Published As
Publication number | Publication date |
---|---|
CN107091081B (zh) | 2020-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108868748B (zh) | 一种页岩气水平井重复压裂裂缝开启压力的计算方法 | |
CN109033504B (zh) | 一种油水井套管损坏预测方法 | |
CN104500054B (zh) | 地层孔隙压力的确定方法及装置 | |
Li et al. | Performance assessment and optimization of seepage control system: a numerical case study for Kala underground powerhouse | |
Guo et al. | Simulating research on pressure distribution of floor pore water based on fluid-solid coupling | |
CN113175302A (zh) | 一种岩体质量智能感知小型钻机系统及评估方法 | |
EP3433467A1 (en) | Downhole rebound hardness measurement while drilling or wireline logging | |
Zhang et al. | Estimation of fracture stiffness, in situ stresses, and elastic parameters of naturally fractured geothermal reservoirs | |
Hassani et al. | A novel model for wellbore stability analysis during reservoir depletion | |
Kim et al. | Effects of surface roughness on lateral load–carrying capacities of piles embedded in sand | |
CN112446560A (zh) | 一种页岩气水平井井眼清洁综合监测与评价系统 | |
Al Dushaishi | Investigation of drillstring vibration reduction tools | |
Shang et al. | Research on influencing factors of effective gas extraction radius in coal mine based on multiple linear regression | |
Shen et al. | Trajectory optimization for offshore wells and numerical prediction of casing failure due to production-induced compaction | |
CN204371324U (zh) | 地层孔隙压力的确定装置 | |
CN107091081A (zh) | 钻井过程中钻遇断层的预警方法及系统 | |
CN107060747A (zh) | 钻井过程中钻遇裂缝发育带的预警方法及系统 | |
CN214997436U (zh) | 一种岩体质量智能感知小型钻机系统 | |
de Mello Franco et al. | Determination of the natural stress state in a Brazilian rock mass by back analysing excavation measurements: a case study | |
Wu et al. | Application of a Discrete‐Continuum Model to Karst Aquifers in North China | |
Mattsson et al. | On internal erosion in embankment dams: a literature survey of the phenomenon and the prospect to model it numerically | |
Perchikolaee et al. | Building a Precise Mechanical Earth Model and its Application in Drilling Operation Optimization: A Case Study of Asmari Formation in Mansuri Oil Field. | |
Sousa et al. | Evaluation of geomechanical properties of soft rock masses by laboratory and in situ testing | |
CN107016219A (zh) | 一种碳酸盐岩储层钻井放空的预警方法及系统 | |
CN112418597B (zh) | 一种适用于页岩气老区开发调整井的储层可压性评价方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |