CN107089834B - 一种碳‑铝酸钙复合粉及其制备方法 - Google Patents
一种碳‑铝酸钙复合粉及其制备方法 Download PDFInfo
- Publication number
- CN107089834B CN107089834B CN201710159130.3A CN201710159130A CN107089834B CN 107089834 B CN107089834 B CN 107089834B CN 201710159130 A CN201710159130 A CN 201710159130A CN 107089834 B CN107089834 B CN 107089834B
- Authority
- CN
- China
- Prior art keywords
- carbon
- calcium
- composite powder
- calcium aluminate
- aluminate composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/66—Monolithic refractories or refractory mortars, including those whether or not containing clay
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/44—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/449—Organic acids, e.g. EDTA, citrate, acetate, oxalate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6586—Processes characterised by the flow of gas
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
本发明提供了一种碳‑铝酸钙复合粉的制备方法,该方法以氧化铝为原料,该方法还以有机酸钙为原料,在非氧化性气氛下,通过高温烧结法制得碳‑铝酸钙复合粉。本发明中的有机酸钙有两个作用,有机酸钙在作为钙源的同时充当碳源,利用这一特点,通过在高温非氧化气氛中,烧结有机酸钙和氧化铝,有机酸钙热解,碳被还原出来,新生成的氧化钙和原料中的氧化铝反应生成铝酸钙,利用这一特点一步合成出碳/铝酸钙复合粉。本发明的方法为原位合成,并且是通过化学反应的方式添加碳源,碳源在经过化学反应后进入复合材料中,使得碳的分散性大大提高,远远优于现有技术中通过物理渗透的方式添加的碳的分散性。
Description
技术领域
本发明属于无机非金属材料领域,涉及耐火浇筑材料,具体涉及一种碳-铝酸钙复合粉及其制备方法。
背景技术
随着耐火材料的不断发展,以铝酸钙水泥为主体的不定形耐火浇注料,更因节能环保、施工便捷、性能优良等特点被广泛应用在高炉出铁口、钢包、水泥回转窑内衬等。
对于传统耐火浇注料而言,铝酸钙水泥的含量越少,整体浇注料的强度、使用温度和寿命就会越好,因此耐火浇注料发展越来越趋于低水泥、超低水泥用量。
氧化物作为耐火浇注料的主要组成,不可避免会存在抗侵蚀性差、抗剥落性较差等问题。含碳浇注料具有抗熔渣侵蚀性与抗热震性良好等优点成为解决这一问题的关键。
但在实际应用过程中,存在碳在浇注料中分散性差,润湿性差和抗氧化性差,这限制备了含碳浇注料更广泛的应用。采用表面活性剂技术、人工造粒技术和涂层技术虽然对碳在浇注料中的分散性和润湿性有一定程度改善,但也会引起含碳浇注料的气孔率增加,碳的分布不均和涂层易脱落等问题,导致含碳浇注料性能劣化。
发明内容
针对现有技术存在的缺陷与不足,本发明的目的在于,提供一种碳-铝酸钙复合粉及其制备方法,解决现有技术中通过物理方法向耐火浇注料渗碳产生的分散性差,润湿性差和抗氧化性差的技术问题。
为了解决上述技术问题,本申请采用如下技术方案予以实现:
一种碳-铝酸钙复合粉的制备方法,该方法以氧化铝为原料,该方法还以有机酸钙为原料,在非氧化性气氛下,通过高温烧结法制得碳-铝酸钙复合粉。
所述的高温烧结法的具体过程为:将有机酸钙和氧化铝按氧化钙-氧化铝相图进行配料,混匀后置于刚玉坩埚中升温至1200℃~1600℃后保温,进行高温合成反应,反应后的试样粉碎、研磨,制得碳-铝酸钙复合粉。
所述的保温时间为3~4h。
所述的升温过程的升温速率为1℃~5℃/min。
优选的,在700℃以下,升温速率为5℃/min;
在700℃~1100℃,升温速率为4℃/min;
在1100℃~1200℃,升温速率为3℃/min;
在1200℃~1400℃,升温速率按2℃/min;
在1400℃~1600℃,升温速率按1℃/min。
按质量份数计,由以下原料制成:有机酸钙为55.65%~85.61%,氧化铝为14.39%~44.35%,原料的重量份数之和为100%。
所述有机酸钙为硬脂酸钙、葡萄糖酸钙或草酸钙。
按质量份数计,由以下原料制成:
硬脂酸钙为85.61%,氧化铝为14.39%;
或葡萄糖酸钙为80.8%,氧化铝为19.2%;
或草酸钙为55.65%,氧化铝为44.35%。
所述的非氧化性气氛为氮气气氛、氩气气氛或通过埋碳获得的非氧化性气氛。
一种碳-铝酸钙复合粉,所述的碳-铝酸钙复合粉为采用如上方法制得的碳-铝酸钙复合粉。
本发明与现有技术相比,有益的技术效果是:
(Ⅰ)本发明以有机酸钙为原料,采用高温固相烧结法制备碳-铝酸钙复合粉。本发明中的有机酸钙有两个作用,有机酸钙在作为钙源的同时充当碳源,利用这一特点,通过在高温非氧化气氛中,烧结有机酸钙和氧化铝,有机酸钙热解,碳被还原出来,新生成的氧化钙和原料中的氧化铝反应生成铝酸钙,利用这一特点一步合成出碳/铝酸钙复合粉。
(Ⅱ)本发明的方法为原位合成,并且是通过化学反应的方式添加碳源,碳源在经过化学反应后进入复合材料中,使得碳的分散性大大提高,远远优于现有技术中通过物理渗透的方式添加的碳的分散性。
颗粒的分散是指颗粒在一定环境下分离散开的过程,主要包括掺合、浸湿、颗粒群(团块和团粒)的解体以及已分离散开的颗粒再凝结四个阶段。实现颗粒在水中的分散的基础为:增大颗粒表面的Zeta电位,增强颗粒表面的亲水性,以及颗粒表面形成位阻效应等作用。
如图7所示,石墨的表面是疏水的,水对它的润湿能力差,这可用杨氏定理解释:润湿效率:BS=TSV-TSL或BS=TLV·cosθ;
其中TSV指固气表面张力,TSL是固液表面张力,TLV是液气表面张力,θ指液固之间的接触角。由上述润湿效率公式可以看出,接触角越小,润湿效果越好。由于水的表面张力较高(7.28dyn/cm),石墨的表面张力相对较低(小于1dyn/em),故润湿角很大,水对石墨的润湿性很差。
石墨在水中分散时有明显的团聚现象,且几乎不受介质pH值的影响。即使在Zeta电位很高的pH值处,经过超声波分散后,颗粒在水中仍处于强烈的团聚状态,如图8所示。其润湿性与分散行为有很好的一致关系。分散性越好,润湿性和抗氧化性能就会越好。
(Ⅲ)采用高温固相烧结法,制备出的原位碳/铝酸钙复合粉,反应过程中既生成了浇筑料必须的结合相铝酸钙,同时在铝酸钙中含有原位生成的碳,能很好的改善含碳在浇注料中的分散性、润湿性和抗氧化性。
(Ⅳ)本发明所用有机酸盐等原料廉价易得,无需进行其他处理,有利于更好的降低成本,且合成工艺流程简单,操作简便,影响因素少,便于控制。
附图说明
图1是本发明实施例1制备的碳-铝酸钙复合粉的XRD图。
图2是本发明实施例1制备的碳-铝酸钙复合粉的拉曼(Raman)图谱。
图3是本发明实施例2制备的碳-铝酸钙复合粉的XRD图。
图4是本发明实施例2制备的碳-铝酸钙复合粉的拉曼(Raman)图谱。
图5是本发明实施例4制备的碳-铝酸钙复合粉的XRD图。
图6是本发明实施例4制备的碳-铝酸钙复合粉的拉曼(Raman)图谱。
图7是固液接触角示意图。
图8是未处理石墨料浆的光学显微镜图。
以下结合实施例对本发明作进一步的详细说明。
具体实施方式
遵从上述技术方案,以下给出本发明的具体实施例,需要说明的是本发明并不局限于以下具体实施例,凡在本申请技术方案基础上做的等同变换均落入本发明的保护范围。下面结合实施例对本发明做进一步详细说明。
实施例1:
本实施例给出一种碳-铝酸钙复合粉的制备方法,该方法以氧化铝粉(纯度≥99.0%)和硬脂酸钙(纯度≥99.0%)为原料,按质量份数计,由以下原料制成:硬脂酸钙为85.61%,氧化铝为14.39%。将混合均匀的原料置于刚玉坩埚中,在电阻炉里埋碳烧结,升温至1600℃,在1600℃保温4h,待炉温温度降至室温后,关闭电源开启炉门将物料取出。对烧成的物料进行粉碎、研磨,即得到碳-铝酸钙复合粉。
具体的,升温过程的升温速率按照以下方式进行:
在700℃以下,升温速率为5℃/min;
在700℃~1100℃,升温速率为4℃/min;
在1100℃~1200℃,升温速率为3℃/min;
在1200℃~1400℃,升温速率按2℃/min;
在1400℃~1600℃,升温速率按1℃/min。
对本实施例中制得的碳-铝酸钙复合粉用XRD和拉曼光谱进行检测分析,其结果参见图1和图2。
由图1所知,本实施例制备的碳/铝酸钙复合粉主要成分包括一铝酸钙(CA)及二铝酸钙(CA2)。由图2所知,制备的碳/铝酸钙复合粉含有碳,且在1350cm-1与1580cm-1附近有很强的峰值,存在与碳的一级拉曼光谱相同的D谱峰和G谱峰。
将本实施例中制得的碳-铝酸钙复合粉用氧化称重法测定碳含量,碳-铝酸钙复合粉中的碳含量为2.79%。
实施例2:
本实施例给出一种碳-铝酸钙复合粉的制备方法,该方法以氧化铝粉(纯度≥99.0%)和葡萄糖酸钙(纯度≥99.0%)为原料,按质量份数计,由以下原料制成:葡萄糖酸钙为80.8%,氧化铝为19.2%。将混合均匀的原料置于刚玉坩埚中,在管式炉中,在氮气的保护下,升温至1400℃,在1400℃保温3h,待炉温温度降至室温后,关闭电源开启炉门将物料取出。对烧成的物料进行粉碎、研磨,即得到碳-铝酸钙复合粉。
具体的,升温过程与实施例1相同。
对本实施例中制得的碳-铝酸钙复合粉用XRD和拉曼光谱进行检测分析,其结果参见图3和图4。
由图3所知,本实施例制备的碳/铝酸钙复合粉主要成分包括一铝酸钙(CA)及二铝酸钙(CA2)。由图4所知,制备的碳/铝酸钙复合粉含有碳,且在1350cm-1与1580cm-1附近有很强的峰值,存在与碳的一级拉曼光谱相同的D谱峰和G谱峰。
将本实施例中制得的碳-铝酸钙复合粉用氧化称重法测定碳含量,碳-铝酸钙复合粉中的碳含量为2.11%。
实施例3:
本实施例给出一种碳-铝酸钙复合粉的制备方法,该方法以氧化铝粉(纯度≥99.0%)和葡萄糖酸钙(纯度≥99.0%)为原料,按质量份数计,由以下原料制成:葡萄糖酸钙为80.8%,氧化铝为19.2%。将混合均匀的原料置于刚玉坩埚中,在管式炉中,在氩气的保护下,升温至1200℃,在1200℃保温4h,待炉温温度降至室温后,关闭电源开启炉门将物料取出。对烧成的物料进行粉碎、研磨,即得到碳-铝酸钙复合粉。
具体的,升温过程与实施例1相同。
对本实施例中制得的碳-铝酸钙复合粉用XRD和拉曼光谱进行检测分析,其结果与图3和图4基本相同。
将本实施例中制得的碳-铝酸钙复合粉用氧化称重法测定碳含量,碳-铝酸钙复合粉中的碳含量为2.10%。
实施例4:
本实施例给出一种碳-铝酸钙复合粉的制备方法,该方法的其它过程与实施例1基本相同,区别在于:本实施例中采用草酸钙(纯度≥99.0%)替换实施例1中的硬脂酸钙,按质量份数计,由以下原料制成:草酸钙为55.65%,氧化铝为44.35%。
对本实施例中制得的碳-铝酸钙复合粉用XRD和拉曼光谱进行检测分析,其结果参见图5和图6。
由图5所知,本实施例制备的碳/铝酸钙复合粉主要成分包括一铝酸钙(CA)及二铝酸钙(CA2)。由图6所知,制备的碳/铝酸钙复合粉含有碳,且在1350cm-1与1580cm-1附近有很强的峰值,存在与碳的一级拉曼光谱相同的D谱峰和G谱峰。
将本实施例中制得的碳-铝酸钙复合粉用氧化称重法测定碳含量,碳-铝酸钙复合粉中的碳含量为4.09%。
Claims (8)
1.一种碳-铝酸钙复合粉的制备方法,该方法以氧化铝为原料,其特征在于,该方法还以有机酸钙为原料,在非氧化性气氛下,通过高温烧结法制得碳-铝酸钙复合粉;
按质量份数计,由以下原料制成:有机酸钙为55.65%~85.61%,氧化铝为14.39%~44.35%,原料的重量份数之和为100%;
所述的高温烧结法的具体过程为:将有机酸钙和氧化铝按氧化钙-氧化铝相图进行配料,混匀后置于刚玉坩埚中升温至1200℃~1600℃后保温,进行高温合成反应,反应后的试样粉碎、研磨,制得碳-铝酸钙复合粉。
2.如权利要求1所述的碳-铝酸钙复合粉的制备方法,其特征在于,所述的保温时间为3~4h。
3.如权利要求1所述的碳-铝酸钙复合粉的制备方法,其特征在于,所述的升温过程的升温速率为1℃~5℃/min。
4.如权利要求3所述的碳-铝酸钙复合粉的制备方法,其特征在于,在700℃以下,升温速率为5℃/min;
在700℃~1100℃,升温速率为4℃/min;
在1100℃~1200℃,升温速率为3℃/min;
在1200℃~1400℃,升温速率按2℃/min;
在1400℃~1600℃,升温速率按1℃/min。
5.如权利要求1至4任一权利要求所述的碳-铝酸钙复合粉的制备方法,其特征在于,所述有机酸钙为硬脂酸钙、葡萄糖酸钙或草酸钙。
6.如权利要求5所述的碳-铝酸钙复合粉的制备方法,其特征在于,按质量份数计,由以下原料制成:
硬脂酸钙为85.61%,氧化铝为14.39%;
或葡萄糖酸钙为80.8%,氧化铝为19.2%;
或草酸钙为55.65%,氧化铝为44.35%。
7.如权利要求1所述的碳-铝酸钙复合粉的制备方法,其特征在于,所述的非氧化性气氛为氮气气氛、氩气气氛或通过埋碳获得的非氧化性气氛。
8.一种碳-铝酸钙复合粉,其特征在于,所述的碳-铝酸钙复合粉为采用如权利要求1至7任一权利要求所述的方法制得的碳-铝酸钙复合粉。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710159130.3A CN107089834B (zh) | 2017-03-17 | 2017-03-17 | 一种碳‑铝酸钙复合粉及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710159130.3A CN107089834B (zh) | 2017-03-17 | 2017-03-17 | 一种碳‑铝酸钙复合粉及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107089834A CN107089834A (zh) | 2017-08-25 |
CN107089834B true CN107089834B (zh) | 2018-04-17 |
Family
ID=59646289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710159130.3A Active CN107089834B (zh) | 2017-03-17 | 2017-03-17 | 一种碳‑铝酸钙复合粉及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107089834B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109081617B (zh) * | 2018-07-30 | 2019-09-13 | 西安建筑科技大学 | 一种炭黑/铝酸钙水泥、制备方法及其应用 |
CN109336144A (zh) * | 2018-11-14 | 2019-02-15 | 江苏隆昌化工有限公司 | 一种三氯化铝废水制备碳铝酸钙的方法 |
CN109956742B (zh) * | 2019-04-29 | 2021-06-18 | 东北大学 | 一种高温埋碳法制备高纯度铝酸铈的方法 |
CN111847930B (zh) * | 2020-07-09 | 2022-05-27 | 西安建筑科技大学 | 一种碳纳米管/铝酸钙水泥、制备方法及应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101113082A (zh) * | 2007-06-30 | 2008-01-30 | 郑州大学 | 含纳米碳酸钙的铝酸钙水泥及其制备方法 |
CN103964871A (zh) * | 2014-05-05 | 2014-08-06 | 武汉科技大学 | 一种六铝酸钙-碳复合粉体及其制备方法 |
CN106007424A (zh) * | 2016-05-19 | 2016-10-12 | 西安建筑科技大学 | 一种含有铝酸钙纳米晶须的铝酸钙水泥及其制备方法 |
-
2017
- 2017-03-17 CN CN201710159130.3A patent/CN107089834B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101113082A (zh) * | 2007-06-30 | 2008-01-30 | 郑州大学 | 含纳米碳酸钙的铝酸钙水泥及其制备方法 |
CN103964871A (zh) * | 2014-05-05 | 2014-08-06 | 武汉科技大学 | 一种六铝酸钙-碳复合粉体及其制备方法 |
CN106007424A (zh) * | 2016-05-19 | 2016-10-12 | 西安建筑科技大学 | 一种含有铝酸钙纳米晶须的铝酸钙水泥及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107089834A (zh) | 2017-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107089834B (zh) | 一种碳‑铝酸钙复合粉及其制备方法 | |
CN102433454B (zh) | 一种热膨胀系数可控的金属基陶瓷材料Al-Zr2P2WO12的烧结合成方法 | |
CN105622104A (zh) | 一种高纯AlON透明陶瓷粉体的制备方法 | |
Wang et al. | Preparation of lanthanum zirconate nano-powders by molten salts method | |
CN101863663B (zh) | 燃烧法制备亚微米级碳化钛多晶粉末 | |
CN103724012A (zh) | 一种包含锆氧化物的组合物制成的微球及其制备方法 | |
CN102826851A (zh) | 一种硼化锆-碳化硅复相耐高温粉体材料的制备方法 | |
CN103950946A (zh) | 一种硼化铌纳米粉体的制备方法 | |
Wang et al. | Production of magnesium by vacuum aluminothermic reduction with magnesium aluminate spinel as a by-product | |
Wang et al. | Preparation and properties of AlON powders | |
Prusty et al. | Effect of MgO in the microstructure formation of zirconia mullite composites from sillimanite and zircon | |
Lu et al. | Synthesis of ultra-fine hafnium carbide powders combining the methods of liquid precursor conversion and plasma activated sintering | |
Ling et al. | Crystal structure and morphology of CeO2 doped stabilized zirconia ceramics under high-frequency microwave field sintering | |
Zhang et al. | In-situ formation and densification of MgAl2O4-Y3Al5O12 and MgAl2O4-MgNb2O6 ceramics via a single-stage SRS process | |
Yang et al. | Li2ZrO3 based Li-ion conductors doped with halide ions & sintered in oxygen-deficient atmosphere | |
Sun et al. | Optimization of particle size, dispersity, and conductivity of 8 mol% Y2O3 doped tetragonal zirconia polycrystalline nanopowder prepared by modified sol-gel method via activated carbon absorption | |
Huang et al. | Preparation of nano zirconia by binary doping: effect of controlled sintering on structure and phase transformation | |
CN102603315A (zh) | 一种制备铁铝尖晶石的方法 | |
Liu et al. | Green preparation of high entropy ceramics (Y0. 2Sm0. 2Eu0. 2Er0. 2Yb0. 2) 2SiO5 with low thermal conductivity by molten salt synthesis | |
Obradović et al. | Formation kinetics and cation inversion in mechanically activated MgAl 2 O 4 spinel ceramics | |
Tyagi et al. | Flash sintering improves the densification and mechanical properties of high entropy oxides used in anodic applications | |
Zhang et al. | Preparation and microstructure evolution of diboride ultrafine powder by sol–gel and microwave carbothermal reduction method | |
Yang et al. | Nearly full-dense and fine-grained AZO: Y ceramics sintered from the corresponding nanoparticles | |
Xiujuan et al. | Y2SiO5: Ce3+ particle growth during sol-gel preparation | |
CN106977205B (zh) | 一种镧锶锰氧/氧化锌铝复相陶瓷的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |