CN107084976B - 一种适配体过氧化物模拟酶可视化检测沙门氏菌的方法 - Google Patents

一种适配体过氧化物模拟酶可视化检测沙门氏菌的方法 Download PDF

Info

Publication number
CN107084976B
CN107084976B CN201710253103.2A CN201710253103A CN107084976B CN 107084976 B CN107084976 B CN 107084976B CN 201710253103 A CN201710253103 A CN 201710253103A CN 107084976 B CN107084976 B CN 107084976B
Authority
CN
China
Prior art keywords
salmonella
aptamers
zinc ferrite
redox graphene
mimetic peroxidase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710253103.2A
Other languages
English (en)
Other versions
CN107084976A (zh
Inventor
吴世嘉
段诺
王周平
刘丽红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Jiangnan University
Original Assignee
Jiangsu University
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University, Jiangnan University filed Critical Jiangsu University
Priority to CN201710253103.2A priority Critical patent/CN107084976B/zh
Publication of CN107084976A publication Critical patent/CN107084976A/zh
Application granted granted Critical
Publication of CN107084976B publication Critical patent/CN107084976B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56916Enterobacteria, e.g. shigella, salmonella, klebsiella, serratia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/24Assays involving biological materials from specific organisms or of a specific nature from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • G01N2333/255Salmonella (G)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于适配体识别和过氧化物模拟酶可视化检测沙门氏菌的方法。利用溶剂热法制备得到具有过氧化物酶活性的铁酸锌/还原氧化石墨烯纳米模拟酶,通过以固定于微孔板的适配体1为捕获探针,以适配体2修饰的铁酸锌/还原氧化石墨烯为过氧化物模拟酶,当体系中存在沙门氏菌时,适配体与沙门氏菌发生特异性结合,从而形成(微孔板)适配体1‑沙门氏菌‑适配体2/铁酸锌/还原氧化石墨烯的三明治夹心结构,加入显色底物TMB(3,3',5,5'‑四甲基联苯胺)‑H2O2,铁酸锌/还原氧化石墨烯过氧化物模拟酶可催化H2O2氧化TMB发生显色反应,从而实现对牛奶中沙门氏菌的检测。本方法灵敏度高、特异性强、操作方便,在食品安全检测领域将具有广阔的应用前景。

Description

一种适配体过氧化物模拟酶可视化检测沙门氏菌的方法
技术领域
本发明涉及一种适配体过氧化物模拟酶可视化检测沙门氏菌的方法,属于食品安全检测领域。
背景技术
沙门氏菌是一种肠道杆菌致病菌,在自然界中广泛存在,特别容易污染水源、食品及畜产品。食用了感染沙门氏菌的食物会引发突发性食物中毒,出现伤寒、急性肠胃炎、菌血症和败血症等症状,对于人类和动物的健康均构成极大危害。各国政府机构普遍提出该致病菌的限量要求,我国规定在乳制品、肉制品、水产制品、即食蛋制品等11类食品中沙门氏菌不得被检出。因此建立一种快速、准确、便捷的沙门氏菌检测方法,对于保障食品安全具有重要意义。
传统的沙门氏菌检测方法主要包括传统的平板计数法、分子生物学法、免疫学方法等。平板计数法因其检验程序较繁琐,耗时长,难以满足现场快速检测的需要。分子生物学技术,虽然能缩短检验时间,但前期需要提取细菌总DNA,且灵敏度仍然不高;免疫学方法如酶联免疫吸附分析法具有特异性强、灵敏度高、易于肉眼观察等优点,可应用于现场快速检测。然而其识别分子-抗体,制备成本高,周期长,且稳定性不佳;其信号分子-辣根过氧化酶(HRP),属天然酶,活性高但稳定性欠佳,易受环境因素的影响,从而限制了酶联免疫检测的发展。
发明内容
本发明目的在于克服上述不足之处,以适配体作为识别分子,以纳米模拟酶催化底物显色,将适配体和纳米生物技术及可视化检测等诸多技术的优势强强联合,建立一种简单快捷而又具有极高灵敏度和特异性的沙门氏菌检测方法。
本发明的技术方案,一种适配体过氧化物模拟酶可视化检测沙门氏菌的方法,将生物素化适配体固定于包被有亲和素的微孔板中作为捕获探针,同时制备铁酸锌/还原氧化石墨烯过氧化物模拟酶,并将另一条沙门氏菌的适配体固定于铁酸锌/还原氧化石墨烯表面作为信号探针,当加入沙门氏菌时,捕获探针和信号探针中的适配体均与沙门氏菌发生特异性结合,形成(微孔板)适配体-沙门氏菌-适配体/铁酸锌/还原氧化石墨烯的三明治夹心结构,最后加入显色底物TMB-H2O2,铁酸锌/还原氧化石墨烯复合纳米材料可以作为过氧化物模拟酶,催化H2O2氧化TMB发生显色反应,从而实现对食品中沙门氏菌的检测。具体检测原理如图1所示。本方法灵敏度高、特异性强、操作方便,在食品安全检测领域将具有广阔的应用前景。
实现本发明的具体方法:
一种适配体过氧化物模拟酶可视化检测沙门氏菌的方法,包括以下步骤:
1)捕获探针的制备:100μL,20(μg/mL)的亲和素于微孔板中4℃包被过夜;倒出,每孔加入200μL PBS(10mM,pH 7.4)洗板3次,每次1min;接着加入200μL生物素化的适配体1(200nM)于37℃孵育1h;倒出,每孔加入200μL PBS(10mM,pH 7.4)洗板3次,每次1min;最后加入200μL 1%的BSA于37℃孵育1h封闭孔板;倒出,每孔加入200μL PBS(10mM,pH 7.4)洗板3次,每次1min,以防后续实验步骤中产生非特异性吸附。
2)信号探针的制备:
a.过氧化物模拟酶-铁酸锌/还原氧化石墨烯复合纳米材料的制备
取0.6g石墨粉加入80mL浓硫酸与浓磷酸的混合溶液中(体积比为9:1),温度调节为50℃,分多次缓慢加入3.6g KMnO4,连续搅拌12h后,缓慢加入80mL冰水,待温度稍降后,逐滴加入3mL 30%的H2O2,得到金黄色悬浊液,搅拌30min。静置2h后,弃去上层清液,下层悬浊液以3000rpm离心分离10min,下层沉淀物分别用盐酸(10%)和无水乙醇洗3次,并用超纯水多次洗涤至上清液pH近中性为止。产物于60℃烘干12h,制备得到氧化石墨烯。接着称取20mg制备好的氧化石墨烯溶于60mL乙醇中并超声分散2h,同时称取149mg Zn(NO3)2·6H2O和404mg Fe(NO3)3·9H2O溶解于20mL无水乙醇中,室温下磁力搅拌30min。逐滴向氧化石墨稀分散液中滴入Zn(NO3)2·6H2O和Fe(NO3)3·9H2O的乙醇溶液,继续搅拌30min。用6M的NaOH水溶液调节混合溶液pH至10,继续搅拌30min。将混合液转入100mL高压反应釜中180℃反应12h,冷却至室温后,弃去上清液,所得黑色固体产物用去离子水洗5次,于50℃烘箱中干燥备用,即制备得到铁酸锌/还原氧化石墨烯复合纳米材料。
b.适配体修饰的铁酸锌/还原氧化石墨烯复合物的制备
称取1mg上述制备所得铁酸锌/还原氧化石墨烯复合纳米材料分散于1mL PBS(10mM,pH 7.4)缓冲液中,取10μL适配体2(100μM)加入到上述分散液中于室温下缓慢振摇1h,通过磁分离将上清液中未结合的适配体2去除,沉淀即为信号探针—铁酸锌/还原氧化石墨烯-适配体2复合物,将其分散于1mL PBS(10mM,pH 7.4)备用。
3)沙门氏菌的可视化检测:取100μL不同浓度的沙门氏菌加入包被有捕获探针的微孔板中于37℃孵育1h,溶液倒出并用100μL PBS(10mM,pH 7.4)缓冲液清洗板孔3次,去除未结合的沙门氏菌;接着每孔加入100μL铁酸锌/还原氧化石墨烯-适配体2(100μg/mL)于37℃孵育1h,溶液倒出并用100μL PBS(10mM,pH 7.4)缓冲液清洗板孔3次,去除未结合的铁酸锌/还原氧化石墨烯-适配体2;最后加入200μLTMB-H2O2溶液和100μL乙酸钠(pH 3.5)于室温下反应20min,记录不同沙门氏菌浓度下铁酸锌/还原氧化石墨烯催化氧化TMB产生的吸光值(652nm),建立吸光值与沙门氏菌浓度间的线性关系,从而实现对沙门氏菌的检测。然后进行拉曼光谱检测。
本发明的优点在于:
1.本发明方法以适配体作为识别元件,相比于免疫分析法中使用抗体作为识别元件,适配体稳定性好,制备成本低,易于标记且标记后不影响其活性,同时对目标菌体具有高度亲和力和高度选择性,在很大程度上提高了检测的准确性。
2.本发明方法以铁酸锌/还原氧化石墨烯过氧化物模拟酶催化底物TMB-H2O2显色,相比于HRP,该纳米模拟酶具有与HRP相媲美的催化活性,同时稳定性好、成本低、且本身具有的磁性特性简化实验操作,在很大程度上提高了检测的灵敏度和便捷性。
3.本发明方法提供的检测方法与现有沙门氏菌的检测方法相比,具有灵敏度高的特点,其检测限可达到11cfu/mL,且可视化检测易于肉眼观察,适应现场检测的需要。
附图说明
图1基于适配体识别和过氧化物模拟酶可视化检测沙门氏菌的示意图
图2铁酸锌/还原氧化石墨烯复合纳米材料的透射电子显微镜图
图3相对吸光值与沙门氏菌浓度的线性关系图
图4本发明方法和平板计数法检测沙门氏菌的相关性图
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1.沙门氏菌浓度-吸光值标准曲线的绘制
1)捕获探针的制备:100μL,20(μg/mL)的亲和素于微孔板中4℃包被过夜;倒出,每孔加入200μL PBS(10mM,pH 7.4)洗板3次,每次1min;接着加入200μL生物素化的适配体1(200nM)于37℃孵育1h;倒出,每孔加入200μL PBS(10mM,pH 7.4)洗板3次,每次1min;最后加入200μL 1%的BSA于37℃孵育1h封闭孔板;倒出,每孔加入200μL PBS(10mM,pH 7.4)洗板3次,每次1min,以防后续实验步骤中产生非特异性吸附。
2)信号探针的制备:
a.过氧化物模拟酶-铁酸锌/还原氧化石墨烯复合纳米材料的制备
取0.6g石墨粉加入80mL浓硫酸与浓磷酸的混合溶液中(体积比为9:1),温度调节为50℃,分多次缓慢加入3.6g KMnO4,连续搅拌12h后,缓慢加入80mL冰水,待温度稍降后,逐滴加入3mL 30%的H2O2,得到金黄色悬浊液,搅拌30min。静置2h后,弃去上层清液,下层悬浊液以3000rpm离心分离10min,下层沉淀物分别用盐酸(10%)和无水乙醇洗3次,并用超纯水多次洗涤至上清液pH近中性为止。产物于60℃烘干12h,制备得到氧化石墨烯。接着称取20mg制备好的氧化石墨烯溶于60mL乙醇中并超声分散2h,同时称取149mg Zn(NO3)2·6H2O和404mg Fe(NO3)3·9H2O溶解于20mL无水乙醇中,室温下磁力搅拌30min。逐滴向氧化石墨稀分散液中滴入Zn(NO3)2·6H2O和Fe(NO3)3·9H2O的乙醇溶液,继续搅拌30min。用6M的NaOH水溶液调节混合溶液pH至10,继续搅拌30min。将混合液转入100mL高压反应釜中180℃反应12h,冷却至室温后,弃去上清液,所得黑色固体产物用去离子水洗5次,于50℃烘箱中干燥备用,即制备得到铁酸锌/还原氧化石墨烯复合纳米材料。
b.适配体修饰的铁酸锌/还原氧化石墨烯复合物的制备
称取1mg上述制备所得铁酸锌/还原氧化石墨烯复合纳米材料分散于1mL PBS(10mM,pH 7.4)缓冲液中,取10μL适配体2(100μM)加入到上述分散液中于室温下缓慢振摇1h,通过磁分离将上清液中未结合的适配体2去除,沉淀即为信号探针—铁酸锌/还原氧化石墨烯-适配体2复合物,将其分散于1mL PBS(10mM,pH 7.4)备用。
3)缓冲液中沙门氏菌的检测
以平板计数法得到浓度为1.10×107cfu/mL的副溶血性弧菌菌液,再将该菌液梯度稀释至1.10×106cfu/mL,1.10×105cfu/mL,1.10×104cfu/mL,1.10×103cfu/mL,1.10×102cfu/mL,1.10×10cfu/mL;取100μL不同浓度的沙门氏菌加入包被有捕获探针的微孔板中于37℃孵育1h,溶液倒出并用100μL PBS(10mM,pH 7.4)缓冲液清洗板孔3次,去除未结合的沙门氏菌;接着每孔加入100μL铁酸锌/还原氧化石墨烯-适配体2(100μg/mL)于37℃孵育1h,溶液倒出并用100μL PBS(10mM,pH 7.4)缓冲液清洗板孔3次,去除未结合的铁酸锌/还原氧化石墨烯-适配体2;最后加入200μLTMB-H2O2溶液和100μL乙酸钠(pH 3.5)于室温下反应20min,记录不同沙门氏菌浓度下铁酸锌/还原氧化石墨烯催化氧化TMB产生的吸光值(652nm),建立吸光值与沙门氏菌浓度间的线性关系,随着沙门氏菌浓度的增加,吸光值也相应增高。以652nm处吸光值为为定量特征值,图3所示为沙门氏菌线性曲线图。沙门氏菌在1.10×102~1.10×106cfu/mL浓度范围内,与652nm处相对吸光值呈良好的线性关系,线性方程为y=0.0683x+0.0826(R2=0.995),最低检出限为11cfu/mL。
实施例2.牛奶样品中沙门氏菌的检测
5mL牛奶样品于10℃,7000rpm离心10min,去除上层乳脂肪,下层溶液用0.45μm膜过滤,得到的清液为实际样品,配制不同浓度的沙门氏菌加入待测溶液中,获得含沙门氏菌的牛奶样品。按照实施例1中缓冲液中沙门氏菌检测的步骤对牛奶中人工添加的沙门氏菌进行检测。结果如图4所示,用本发明构建的可视化方法检测牛奶中沙门氏菌的结果与平板计数法得到的沙门氏菌结果无显著差异,表明该发明方法对沙门氏菌的检测具有较强的应用价值。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属于本发明的涵盖范围。
序列表
〈110〉 江南大学
〈120〉 一种基于适配体识别和过氧化物模拟酶可视化检测沙门氏菌的方法
〈130〉
〈160〉 1
〈170〉 PatentIn version 3.5
〈210〉 1
〈211〉 40
〈212〉 DNA
〈213〉 人工序列
〈400〉 1
agtaatgcccggtagttattcaaagatgagtaggaaaaga 40
〈210〉 2
〈211〉 40
〈212〉 DNA
〈213〉 人工序列
〈400〉 2
aaaaaaaaaaaaagtaatgcccggtagttattcaaagatgagtaggaaaaga 52

Claims (3)

1.一种适配体过氧化物模拟酶可视化检测沙门氏菌的方法,其特征在于:通过以固定于微孔板的适配体1为捕获探针,以适配体2修饰的铁酸锌/还原氧化石墨烯为过氧化物模拟酶,当体系中存在沙门氏菌时,适配体与沙门氏菌发生特异性结合从而形成适配体1-沙门氏菌-适配体2/铁酸锌/还原氧化石墨烯的三明治夹心结构,加入显色底物TMB-H2O2,铁酸锌/还原氧化石墨烯复合纳米材料可以作为过氧化物模拟酶,催化H2O2氧化TMB发生显色反应,在一定浓度范围内,沙门氏菌的数量与相对吸光值呈正相关,从而实现对沙门氏菌的检测。
2.如权利要求1所述的一种适配体过氧化物模拟酶可视化检测沙门氏菌的方法,其特征在制备铁酸锌/还原氧化石墨烯作为过氧化物模拟酶,催化底物TMB-H2O2显色,铁酸锌/还原氧化石墨烯制备方法为:称取20mg氧化石墨烯溶于60mL乙醇中并超声分散2h,同时称取149mg Zn(NO3)2·6H2O和404mg Fe(NO3)3·9H2O溶解于20mL无水乙醇中,室温下磁力搅拌30min;逐滴向氧化石墨稀分散液中滴入Zn(NO3)2·6H2O和Fe(NO3)3·9H2O的乙醇溶液,继续搅拌30min;用6M的NaOH水溶液调节混合溶液pH至10,继续搅拌30min;将混合液转入100mL高压反应釜中180℃反应12h,冷却至室温后,弃去上清液,所得黑色固体产物用去离子水洗5次,得到铁酸锌/还原氧化石墨烯复合纳米材料,于50℃烘箱中干燥备用。
3.如权利要求1所述的一种适配体过氧化物模拟酶可视化检测沙门氏菌的方法,其特征在于:生物素化修饰的沙门氏菌适配体1序列为5’-biotin-AGTAATGCCCGGTAGTTATTCAAAGATGAGTAGGAAAAGA-3’,沙门氏菌适配体2序列为5’-AAAAAAAAAAAAAGTAATGCCCGGTAGTTATTCAAAGATGAGTAGGAAAAGA-3’。
CN201710253103.2A 2017-04-18 2017-04-18 一种适配体过氧化物模拟酶可视化检测沙门氏菌的方法 Active CN107084976B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710253103.2A CN107084976B (zh) 2017-04-18 2017-04-18 一种适配体过氧化物模拟酶可视化检测沙门氏菌的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710253103.2A CN107084976B (zh) 2017-04-18 2017-04-18 一种适配体过氧化物模拟酶可视化检测沙门氏菌的方法

Publications (2)

Publication Number Publication Date
CN107084976A CN107084976A (zh) 2017-08-22
CN107084976B true CN107084976B (zh) 2019-07-30

Family

ID=59612117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710253103.2A Active CN107084976B (zh) 2017-04-18 2017-04-18 一种适配体过氧化物模拟酶可视化检测沙门氏菌的方法

Country Status (1)

Country Link
CN (1) CN107084976B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107703306B (zh) * 2017-09-29 2019-08-23 成都理工大学 一种在线标记光敏剂的光催化可视化免疫分析方法
CN109596827A (zh) * 2019-01-17 2019-04-09 长江师范学院 一种同时检测4种致病菌的荧光检测试纸条及其制备方法和应用
CN112345475B (zh) * 2020-11-11 2022-09-20 昆明理工大学 一种快速检测食品中亚硝酸盐的方法
CN113702308B (zh) * 2021-08-25 2024-01-30 青岛大学 用于大肠杆菌检测的适配体纳米比色生物传感器及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565389A (zh) * 2011-10-09 2012-07-11 温州医学院 一种用于沙门菌快速检测的Nano/ALISA方法和试剂盒
CN103558388A (zh) * 2013-10-24 2014-02-05 江南大学 一种基于单克隆抗体的检测食品中鼠伤寒沙门氏菌的双抗体夹心法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565389A (zh) * 2011-10-09 2012-07-11 温州医学院 一种用于沙门菌快速检测的Nano/ALISA方法和试剂盒
CN103558388A (zh) * 2013-10-24 2014-02-05 江南大学 一种基于单克隆抗体的检测食品中鼠伤寒沙门氏菌的双抗体夹心法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A colorimetric aptasensor for sulfadimethoxine detection based on peroxidase-like activity of graphene/nickel@palladium hybrids;Aicheng Wang et al;《Analytical Biochemistry》;20170307;第525卷;第92-99页
Colorimetric Detection System for Salmonella typhimurium Based on Peroxidase-Like Activity of Magnetic Nanoparticles with DNA Aptamers;Ji Young Park et al;《Journal of Nanomaterials》;20151231;第2015卷;第1-9页
Colorimetric determination of Salmonella typhimurium based on aptamer recognition;Changqing Zhu et al;《Analytical Methods》;20161231;第6560-6565页
分子生物学方法检测沙门氏菌的研究进展;杨柳等;《食品工业科技》;20161231;第37卷(第9期);第372-379页

Also Published As

Publication number Publication date
CN107084976A (zh) 2017-08-22

Similar Documents

Publication Publication Date Title
CN107084976B (zh) 一种适配体过氧化物模拟酶可视化检测沙门氏菌的方法
Liu et al. Surface plasmon resonance immunosensor for fast, highly sensitive, and in situ detection of the magnetic nanoparticles-enriched Salmonella enteritidis
Silva et al. Electrochemical biosensors for Salmonella: State of the art and challenges in food safety assessment
Song et al. Development of a lateral flow colloidal gold immunoassay strip for the simultaneous detection of Shigella boydii and Escherichia coli O157: H7 in bread, milk and jelly samples
Bouguelia et al. On-chip microbial culture for the specific detection of very low levels of bacteria
Shan et al. Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens
Shen et al. A novel enzyme-linked immunosorbent assay for detection of Escherichia coli O157: H7 using immunomagnetic and beacon gold nanoparticles
Ali et al. Detection of E. coli O157: H7 in feed samples using gold nanoparticles sensor
Linman et al. Detection of low levels of Escherichia coli in fresh spinach by surface plasmon resonance spectroscopy with a TMB-based enzymatic signal enhancement method
Wang et al. Rapid and ultrasensitive detection of Salmonella typhimurium using a novel impedance biosensor based on SiO2@ MnO2 nanocomposites and interdigitated array microelectrodes
Wang et al. Rapid and sensitive detection of Campylobacter jejuni in poultry products using a nanoparticle-based piezoelectric immunosensor integrated with magnetic immunoseparation
CN104459124A (zh) 一种基于HS-β-CD-Ag-GOD共轭物的电化学免疫传感器的制备方法及应用
Cossettini et al. Rapid detection of Listeria monocytogenes, Salmonella, Campylobacter spp., and Escherichia coli in food using biosensors
Zhang et al. Rapid and sensitive pathogen detection platform based on a lanthanide-labeled immunochromatographic strip test combined with immunomagnetic separation
Sun et al. A nonenzymatic optical immunoassay strategy for detection of Salmonella infection based on blue silica nanoparticles
JP2010530960A5 (zh)
CN108303532A (zh) 一种非诊断目的的大肠埃希氏菌o157:h7的快速检测方法
Adrover-Jaume et al. Mobile origami immunosensors for the rapid detection of urinary tract infections
CN111139288B (zh) 基于适配体识别-杂交链式反应同时检测金黄色葡萄球菌肠毒素a、b的荧光传感器
Hou et al. Rapid detection of bifidobacterium bifidum in feces sample by highly sensitive quartz crystal microbalance immunosensor
Guo et al. Faraday cage-type electrochemiluminescence immunosensor for ultrasensitive detection of Vibrio vulnificus based on multi-functionalized graphene oxide
Wang et al. Perspectives for recognition and rapid detection of foodborne pathogenic bacteria based on electrochemical sensors
CN113984728B (zh) 一种用于单增李斯特菌快速检测的荧光生物传感器构建方法
Chen et al. Joint-detection of Salmonella typhimurium and Escherichia coli O157: H7 by an immersible amplification dip-stick immunoassay
Duan et al. Preparation of immunomagnetic iron-dextran nanoparticles and application in rapid isolation of E. coli O157: H7 from foods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant