CN107073582A - 用于生产用于介质的容器的方法 - Google Patents

用于生产用于介质的容器的方法 Download PDF

Info

Publication number
CN107073582A
CN107073582A CN201580051024.2A CN201580051024A CN107073582A CN 107073582 A CN107073582 A CN 107073582A CN 201580051024 A CN201580051024 A CN 201580051024A CN 107073582 A CN107073582 A CN 107073582A
Authority
CN
China
Prior art keywords
container
probe unit
raw material
wall
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580051024.2A
Other languages
English (en)
Other versions
CN107073582B (zh
Inventor
迪特马尔·施潘克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Publication of CN107073582A publication Critical patent/CN107073582A/zh
Application granted granted Critical
Publication of CN107073582B publication Critical patent/CN107073582B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2966Acoustic waves making use of acoustical resonance or standing waves
    • G01F23/2967Acoustic waves making use of acoustical resonance or standing waves for discrete levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/18Formation of a green body by mixing binder with metal in filament form, e.g. fused filament fabrication [FFF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/752Measuring equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2966Acoustic waves making use of acoustical resonance or standing waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

本发明涉及一种用于生产用于介质的容器的方法,所述容器(1)在一个壁上具有探针单元(2)。所述方法包括如下步骤:创建包括集成探针单元(2)的容器(1)的三维模型;以及根据所述三维模型由至少一种原材料增层制造包括集成探针单元(2)的容器(1)。

Description

用于生产用于介质的容器的方法
技术领域
本发明涉及一种用于生产用于介质的容器的方法,其中所述容器在一个壁上具有探针单元。本发明类似的涉及一种通过根据本发明的方法生产的容器。
背景技术
例如,所述容器可以是用于填充水平测量装置的用于存储液体介质或者粒状材料的容器或水箱。进一步的,所述容器可以是体积或质量流量测量装置的导管或测量管。此类流量测量装置由申请人作为内嵌式(in-line)流量测量装置或作为夹装式(clamp-on)流量测量装置生产和分销。
利用所述内嵌式流量测量装置和夹装式流量测量装置两者,超声测量信号被以预定的角度注入介质在其中流动的导管中,或从该导管发出。利用超声流量测量装置,超声换能器的相应位置是在测量管处(内嵌式)或在导管处(夹装式)。超声流量测量装置根据延迟时间差方法工作且具有至少一对超声探针,该至少一对超声探针沿着限定的声音路径发射和/或接收超声测量信号。所述超声探针被布置成使得穿过它们的声音路径被引导穿过导管或测量管的中心区域。控制和评估单元使用在介质流动方向上和与介质流动方向相反的方向上的测量信号的延迟之间的差值来确定导管中或测量管中的介质的体积流量和/或质量流量。
在填充水平测量中,容器中流体和粒状材料的填充水平通过填充水平测量装置检测。填充水平测量装置在工业中使用以监测预定的流体填充水平,经常在泵中作为满溢防护或干涸保护。在通过填充水平传感器和填充水平限制开关的连续测量之间加以区别。
电子振动限制水平开关包括能够振荡的探针和机电换能器单元,机电换能器单元用于通过电传输信号激发所述可振荡探针使之机械振荡并且用于接收所述可振荡探针的机械振荡,并将所述机械振荡转换成电接收信号。所述电子振动限制水平开关还包括评估单元,评估单元使用接收信号的频率确定可振荡探针是否被介质覆盖。
例如,填充水平传感器利用雷达探针或TDR探针工作。
雷达探针利用从天线发出的和由散装材料表面反射的高频雷达脉冲工作。反射雷达脉冲的持续时间与传播路径成正比。利用已知的容器几何尺寸,所述填充水平可以由此计算出来。优选地,号角天线用于所述雷达探针。
TDR探针利用被沿着杆引导的高频雷达脉冲工作。当脉冲碰到介质表面时,波阻抗改变,并且一部分传输脉冲被反射。由装置测得和评估的发射和反射脉冲接收之间的时间周期是过程注入和介质表面之间距离的直接测量值。
之前说明的所有的测量方法需要容器中的额外开口,穿过该开口引入探针。所述额外开口必须通过凸缘连接闭合,并且通过密封胶针对介质密封。这些步骤牵涉到精力和成本。
发明内容
本发明基于具体说明一种用于生产容器的方法的目的,该方法中所述容器没有额外的开口(例如,用于探针的开口)。
所述目的通过本发明的主题实现。本发明的主题是一种用于生产介质容器的方法,其中所述容器在一个壁上具有探针单元,所述方法包括如下步骤:创建具有集成探针单元的容器的三维模型;以及根据所述三维模型由至少一种原材料增层(additive layer)制造具有集成探针单元的容器。
本发明意义上的容器是具有集成探针单元的容器。在根据本发明的方法中,有利的是具有在容器的一个壁上的集成探针单元的容器是在一个过程中增材制造的。所述探针单元后续经由容器的壁与发射/接收单元进行连接。以这种方式,容器没有用于探针单元或发射/接收单元的额外开口。进一步的,有利的是根据本发明的容器可以设计成“一次性的”。这意味着所述容器按照公知的一次性产品设计。这类产品是节约成本的且能根据顾客期望不费力的制造,并且可以在卫生或食品领域和制药领域中很好地直接使用。
根据一个有利的发展,容器的生产通过增材制造方法完成,特别地,通过3D打印技术完成。
3D打印机是形成三维工件的机器,其中形成由一种或更多种液体或固体原材料在电脑控制(CAD)下根据预定的尺寸和形状进行。物理或化学固化或熔融过程在形成中发生。用于3D打印方法的典型原材料是塑料、塑料树脂、陶瓷和金属。
根据一种有利的变体,快速成型(快速造型),特别地,熔融沉积造型或多喷嘴造型被用于生产容器。
快速成型(快速造型)是用于由设计数据快速生产样品部件的多种方法的涵盖性术语。
快速成型是一种直接和快速地将容器的三维模型的现有电子数据转变成容器的制造方法,最理想的,没有手动重定向或配置。已被称为快速成型的方法是从没有形状的或形状不明确的原材料开始利用物理和/或化学效应成层地形成所述容器的成型方法。
熔融沉积造型表示来自快速成型领域的一种制造方法,利用熔融沉积造型由可熔化塑料成层地形成所述容器。用于熔融沉积成型的机器属于3D打印机机器类别。这种方法基于通过加热使线形塑料或蜡材料的液化。所述原材料在后续冷却时凝固。原材料应用利用能够在制造平面中自由移动的加热喷嘴经由挤压发生。在分层模型生产中,各个层因此一起结合成容器。
术语多喷嘴造型涉及快速成型的一种方法,其中容器经由打印头成层地构造,打印头具有多个线性布置的、与喷墨打印机的打印头类似地作用的喷嘴。采用多喷嘴造型执行的机器属于3D打印机类别。由于使用这些系统产生的小尺寸液滴,容器的精细细节也可以被刻画。
紫外线敏感的光聚合物被用作原材料。这些以单体形式的原材料在被“打印”到已经存在的层上后立即通过紫外线光聚合,并且因此从初始液体状态转变到最终固体状态。
根据一个适宜的、有利的实施例,选择性激光烧结(SLS)、激光沉积焊接或塑料自由成形被用于生产所述容器。
选择性激光烧结是一种用于由粉末原材料经由烧结生产容器的3D打印方法。
激光烧结是一种增层制造方法:容器一层一层构造。任意三维几何形状都可以经由激光束作用创建,例如,不能由传统机械或铸造制造生产的容器。
至于激光,二氧化碳激光器、Nd:YAG激光器或纤维激光器最经常被使用。所述粉末原材料例如是聚酰胺或另一种塑料、塑料涂层型砂、金属粉末或陶瓷粉末。
粉末在叶片或辊子的帮助下施加到制造平台的整个表面。多个层与部件的层轮廓对应地经由激光束活化一步一步被烧结或熔化在一起。所述制造平台现在被稍微降低,并且一个新层被施加。粉末通过抬高粉末平台或作为叶片中的贮存器而提供。处理在竖直方向上一步一步发生。由激光提供的能量被粉末吸收并导致局部有限的烧结或颗粒的熔化,总体表面减小。
各种方法变体是有区别的。在经典的变体中,粉末颗粒仅部分熔化;准液相烧结过程发生。这个变体用在塑料烧结中,以及部分地在具有特殊烧结粉末的金属烧结中。
在不添加粘结剂的情况下直接使用金属粉末也是可能的。金属粉末因此被彻底熔化。CW激光通常用于此。这种方法变体也称为选择性激光熔化(SLM)。
激光沉积焊接是包覆过程(堆焊)的一部分,其中通过熔化和实际上任何原材料的同步施加将表面施加到工件上。这可能以粉末形式发生,例如,作为金属粉末,或者还可用焊丝或焊带。在激光沉积焊接中,高功率激光器(主要是二极管激光器或光纤激光器,但在过去,还可以为二氧化碳和Nd:YAG激光器)作为热源使用。
在采用粉末的激光沉积焊接中,激光主要在离焦的同时加热工件且局部熔化它。同时提供混合有细金属粉末的惰性气体。为活动区域(active area)提供金属/气体混合物通过拖曳或同轴喷嘴发生。在被加热位置,金属粉末熔化并与工件的金属结合。除金属粉末之外,陶瓷粉末材料和特殊树脂也可以使用。丝或带的激光沉积焊接与用粉末的方法类似地进行,但是把丝或带作为增材材料。
公知的自由成形机用于塑料自由成形中。当在注射造型时,自由成形机熔化塑料粒状物且由流体熔化物生成液滴,由这些液滴增材地即一层一层地形成容器。因此,能够在完全没有注射造型工具的情况下由3D CAD部件数据生产单个部分。
原则上,原材料制备起到注射造型的作用。粒状物被填充到机器中。加热的塑化圆筒将塑料熔化物引导到沉积单元。它的具有高频压电技术的喷嘴密封件使得能够快速开闭移动,并且因此产生处于压力下的塑料液滴,由该塑料液滴增材构建塑料部分,使得没有灰尘或排放物。
在自由成形机中,具有喷嘴的沉积单元精确地保持在它的竖直位置。相反,部件载体移动。除了能沿着三个轴线连续移动的部件载体,具有五个轴线的变体可选择地可用。因为装置拥有两个沉积单元,所以也可以组合地加工两种原材料或颜色。
本发明的目的类似的通过经由根据本发明的方法生产的介质容器实现,其中所述容器具有在容器的壁的预定位置处的探针单元,其中容器和探针单元形成为一体。容器是根据本发明的方法的直接产品。
根据一个有利的实施例,容器和探针单元由相同的原材料或不同的原材料形成。如果容器和探针单元由一种原材料形成为一体,则所述容器可以在一个工作步骤中生产。如果容器和探针单元由两种或更多不同原材料制成,则所述容器或探针单元可能通过原材料的选择适应于不同的介质。
根据一个有利的实施例,探针单元形成为振荡叉、号角天线、TDR杆或者科里奥利(Coriolis)质量流量测量装置。所述探针单元或容器可以用于测量填充水平、限制水平或流量。
根据一个有利的变体,原材料包括聚苯乙烯(PS)、聚丙烯(PP)、聚醚醚酮(PEEK)以及聚酰胺(PA),特别地,具有添加物例如玻璃纤维、碳纤维、玻璃微珠或铝。塑料中的金属、玻璃和不同的纤维增强了容器并使它更稳定和耐用。
根据一个有利的实施例,原材料包括铝、钛、钴、铬、钢(特别是不锈钢)、金、镍(特别是镍合金)。不同的金属特别适用于使得容器更稳定和坚固。
根据一个有利的发展,容器在具有探针单元的壁上具有薄膜,其中所述薄膜具有比容器的壁更小的厚度。当激发薄膜时,薄膜的较薄壁导致薄膜的振荡被——强烈地衰减——传导到容器的壁。
附图说明
本发明基于如下的附图更详细地进行解释。所说明的如下:
图1是根据本发明具有振荡叉的容器的纵切面,以及
图2是根据本发明具有TDR探针的容器的纵切面。
具体实施方式
图1示出了用于介质的具有集成探针2的容器1的纵切面,所述容器1通过根据本发明的方法生产。容器1在所述容器1的壁的预定位置具有较小的壁厚度。具有较小的壁厚度的这个位置充当薄膜3。发射/接收单元6从容器1的外部与薄膜3接触从而所述发射/接收单元激发薄膜3使之振荡并且接收和评估薄膜3的振荡。在位于与发射/接收单元相反的一侧,薄膜3具有突出到容器1内部中的探针单元2,其中探针单元2被设计为振荡叉。容器1、薄膜3和振荡叉2由不锈钢形成为一体。可选地,探针单元2可以由塑料制成并且容器1由不锈钢制成,或者反之亦然。容器1也可以设计为一次性产品。
为了对应于图1由不锈钢生产根据本发明的容器1和/或探针单元2,选择性激光烧结(SLS)是有利的。然而,如果容器1和/或探针单元2应由塑料生产,则建议容器1通过熔融沉积造型生产。容器的三维模型的电子数据被提供给客户。电子数据包括以使所述容器适应于特定介质的方式形成容器的若干选项。客户因此可以打印出用于介质的一次性使用的容器,并且随后丢弃它。
图2示出了根据本发明容器1的纵切面,其中探针单元2与容器1集成,该探针单元2被设计为TDR探针2。容器1和TDR探针2可以由不锈钢或塑料形成为一体。然而,容器1和TDR探针2也可以由不同的材料生产。例如,容器1可以由塑料制成,以及TDR探针2可以由不锈钢制成。由塑料生产的容器1被设计为一次性产品。以这种方式,只将容器1的三维模型的电子数据传递给客户是可能的。客户然后可以打印用于特定介质的容器。
容器1通过根据本发明的方法由金属或塑料形成。如果容器1和/或TDR探针2将由金属形成,则选择性激光烧结(SLS)作为一种3D打印方法是有利的。在SLS中,容器1由金属粉末烧结而成。容器1内部的未烧结粉末可以通过进口4或出口5移除,介质3可以通过进口4或出口5流入和流出。
熔融沉积造型对于由塑料制成的容器1和/或TDR探针2是有利的。容器1的内部要用支撑材料支撑,从而容器1的上部在3D打印过程中不会坍塌。所述支撑材料可以在打印过程后通过进口4或出口5被洗出或冲刷出容器1。

Claims (10)

1.一种用于生产用于介质的容器的方法,其中所述容器(1)在一个壁上具有探针单元(2),所述方法包括如下步骤:
创建包括集成探针单元(2)的所述容器(1)的三维模型;以及
根据所述三维模型由至少一种原材料增层制造包括集成探针单元(2)的所述容器(1)。
2.根据前述权利要求中的一项所述的方法,其中所述容器(1)的生产通过增材制造方法进行,特别地通过3D打印技术进行。
3.根据前述权利要求中的一项所述的方法,其中快速成型(快速造型),特别地,熔融沉积造型或多喷嘴造型被用于生产所述容器(1)。
4.根据权利要求1-5中的至少一项所述的方法,其中选择性激光烧结(SLS)、激光沉积焊接或塑料自由成形被用于生产所述容器(1)。
5.通过根据前述权利要求中的一项所述的方法生产的用于介质的容器,其中所述容器(1)在所述容器(1)的所述壁的预定位置处具有探针单元(2),其中所述容器(1)和所述探针单元(2)被形成为一体。
6.根据权利要求5所述的容器,其中所述容器(1)和所述探针单元(2)由相同的原材料或不同的原材料形成。
7.根据权利要求5或6所述的容器,其中所述探针单元(2)形成为振荡叉、号角天线、TDR杆或者科里奥利质量流量测量装置。
8.根据权利要求5-7中的至少一项所述的容器,其中所述原材料包括聚苯乙烯(PS)、聚丙烯(PP)、聚醚醚酮(PEEK)、聚酰胺(PA),特别地,具有添加物例如玻璃纤维、碳纤维、玻璃微珠或铝。
9.根据权利要求5-8中的至少一项所述的容器,其中所述原材料包括铝、钛、钴、铬、钢(特别是不锈钢)、金、镍(特别是镍合金)。
10.根据权利要求5-9中的至少一项所述的容器,其中所述容器(1)在具有探针单元(2)的壁处具有薄膜(3),其中所述薄膜(3)具有比所述容器(1)的所述壁更小的厚度。
CN201580051024.2A 2014-09-26 2015-09-02 用于生产用于介质的容器的方法 Active CN107073582B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102014113993.3 2014-09-26
DE102014113993.3A DE102014113993A1 (de) 2014-09-26 2014-09-26 Verfahren zum Herstellen eines Behältnisses für ein Medium
PCT/EP2015/070016 WO2016045919A1 (de) 2014-09-26 2015-09-02 Verfahren zum herstellen eines behältnisses für ein medium

Publications (2)

Publication Number Publication Date
CN107073582A true CN107073582A (zh) 2017-08-18
CN107073582B CN107073582B (zh) 2019-10-08

Family

ID=54035246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580051024.2A Active CN107073582B (zh) 2014-09-26 2015-09-02 用于生产用于介质的容器的方法

Country Status (5)

Country Link
US (1) US20180104744A1 (zh)
EP (1) EP3198244B1 (zh)
CN (1) CN107073582B (zh)
DE (1) DE102014113993A1 (zh)
WO (1) WO2016045919A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11559937B2 (en) * 2016-08-30 2023-01-24 Lummus Novolen Technology Gmbh Polypropylene for additive manufacturing (3D printing)
DE102016226160A1 (de) * 2016-12-23 2018-06-28 Sig Technology Ag Eine Vorrichtung, insbesondere eine Füllmaschine, zu einem Urformen eines Behälters, einem Einbringen eines Nahrungsmittels in den Behälter und einem Verschließen des Behälters
WO2019079533A1 (en) * 2017-10-18 2019-04-25 Magnum Venus Products CATALYTIC FLOW SENSOR
CN114396564B (zh) * 2022-01-26 2023-08-29 许谷 储气瓶及储气瓶加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0830928A2 (en) * 1996-09-20 1998-03-25 Dsm N.V. Resin composition and mold made from such resin, for forming fibrous material
CN101300464A (zh) * 2005-09-07 2008-11-05 恩德莱斯和豪瑟尔两合公司 用于测定和监测容器内介质的料位高度的装置
DE102007024369A1 (de) * 2007-05-23 2008-11-27 Airbus Deutschland Gmbh Verfahren zum Herstellen eines Modells und Halbzeug
WO2013121230A1 (en) * 2012-02-17 2013-08-22 The University Court Of The University Of Glasgow Apparatus and methods for the preparation of reaction vessels with a 3d -printer
CN103762093A (zh) * 2014-01-13 2014-04-30 渤海大学 运用3d打印技术制备微型不对称超级电容器的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058573A1 (en) * 2003-09-12 2005-03-17 Frost James Dahle Use of rapid prototyping techniques for the rapid production of laboratory or workplace automation processes
US7546841B2 (en) * 2003-11-19 2009-06-16 David Jonathan Tafoya Apparatus and method of removing water soluble support material from a rapid prototype part
DE102004055551A1 (de) * 2004-11-17 2006-05-18 Endress + Hauser Gmbh + Co. Kg Verfahren zur Auswertung und Korrektur von Gesamtmesssignalen
US20070012891A1 (en) * 2004-12-08 2007-01-18 George Maltezos Prototyping methods and devices for microfluidic components
DE102006033819A1 (de) * 2006-07-19 2008-01-24 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
DE102006062606A1 (de) * 2006-12-29 2008-07-03 Endress + Hauser Gmbh + Co. Kg Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitverfahren
DE102007042042B4 (de) * 2007-09-05 2020-03-26 Endress+Hauser SE+Co. KG Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitmessverfahren
DE102007060579B4 (de) * 2007-12-13 2019-04-25 Endress+Hauser SE+Co. KG Verfahren zur Ermittlung und/oder zur Beurteilung des Befüllzustands eines mit zumindest einem Medium gefüllten Behälters
DE102007061574A1 (de) * 2007-12-18 2009-06-25 Endress + Hauser Gmbh + Co. Kg Verfahren zur Füllstandsmessung
DE102009001010B4 (de) * 2008-12-30 2023-06-15 Endress+Hauser SE+Co. KG Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitmessverfahren
DE102009055262A1 (de) * 2009-12-23 2011-06-30 Endress + Hauser GmbH + Co. KG, 79689 Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitmessverfahren
WO2012149055A1 (en) * 2011-04-25 2012-11-01 Ladd John William Systems, methods, and computer-readable media for three-dimensional fluid scanning
DE102013217422A1 (de) * 2013-09-02 2015-03-05 Carl Zeiss Industrielle Messtechnik Gmbh Koordinatenmessgerät und Verfahren zur Vermessung und mindestens teilweisen Erzeugung eines Werkstücks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0830928A2 (en) * 1996-09-20 1998-03-25 Dsm N.V. Resin composition and mold made from such resin, for forming fibrous material
CN101300464A (zh) * 2005-09-07 2008-11-05 恩德莱斯和豪瑟尔两合公司 用于测定和监测容器内介质的料位高度的装置
DE102007024369A1 (de) * 2007-05-23 2008-11-27 Airbus Deutschland Gmbh Verfahren zum Herstellen eines Modells und Halbzeug
WO2013121230A1 (en) * 2012-02-17 2013-08-22 The University Court Of The University Of Glasgow Apparatus and methods for the preparation of reaction vessels with a 3d -printer
CN103762093A (zh) * 2014-01-13 2014-04-30 渤海大学 运用3d打印技术制备微型不对称超级电容器的方法

Also Published As

Publication number Publication date
CN107073582B (zh) 2019-10-08
US20180104744A1 (en) 2018-04-19
EP3198244A1 (de) 2017-08-02
WO2016045919A1 (de) 2016-03-31
DE102014113993A1 (de) 2016-03-31
EP3198244B1 (de) 2022-02-09

Similar Documents

Publication Publication Date Title
CN107073582B (zh) 用于生产用于介质的容器的方法
US20180216771A1 (en) Dead space free measuring tube for a measuring device as well as method for its manufacture
US10533884B2 (en) Measuring transducer of vibration-type
US11185927B2 (en) Ultrasonically assisted powder bed additive manufacturing
US8501075B2 (en) Method for manufacturing a three-dimensional object
Gibson et al. Material jetting
CN109311221B (zh) 具有导电通道的以增材方式形成的3d物体
US20180029293A1 (en) Method and device for producing a three-dimensional object
US11493416B2 (en) Measurement tube for a measuring device, measuring device formed by means of such a measurement tube, and production method for such a measurement tube
Patel et al. Extrusion-based technology in additive manufacturing: a comprehensive review
JP6440139B2 (ja) 三次元造形物の製造方法
EP3508287B1 (en) Systems and methods for removing build material from additively manufactured parts
Pant et al. A contemporary investigation of metal additive manufacturing techniques
US20170001370A1 (en) Additive-manufacturing device for creating a three-dimensional object, and associated method
Masato et al. Effect of ultrasound vibration on the ejection friction in microinjection molding
JP2017160471A (ja) 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物
CN107414024A (zh) 制造具有一个或多个耐腐蚀内表面的阀体的方法
JP2021172830A (ja) 付加製造物評価システム
JP2012126059A (ja) 3次元物体を製造する装置
Fateri et al. Introduction to additive manufacturing
JPH07119032B2 (ja) 射出成形機等における流体の射出方法並びにこの射出方法に使用する温度と圧力の測定方法
Kamble et al. Multi-jet fluid deposition in 3D printing: a review
CN109843552A (zh) 用于制造三维物体的方法和设备
Gulcur Process fingerprinting of microneedle manufacturing using conventional and ultrasonic micro-injection moulding
JPH02286312A (ja) 射出成形方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: German Fort

Applicant after: Ndele J and Hauser European two companies

Address before: German Fort

Applicant before: J. Hauser GmbH & Co. KG

GR01 Patent grant
GR01 Patent grant