CN107068881B - A kind of organic electroluminescence device containing acridones compound and its application - Google Patents

A kind of organic electroluminescence device containing acridones compound and its application Download PDF

Info

Publication number
CN107068881B
CN107068881B CN201610264843.1A CN201610264843A CN107068881B CN 107068881 B CN107068881 B CN 107068881B CN 201610264843 A CN201610264843 A CN 201610264843A CN 107068881 B CN107068881 B CN 107068881B
Authority
CN
China
Prior art keywords
general formula
layer
compound
thickness
key
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610264843.1A
Other languages
Chinese (zh)
Other versions
CN107068881A (en
Inventor
徐凯
张兆超
王立春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Sunera Technology Co Ltd
Original Assignee
Valiant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valiant Co Ltd filed Critical Valiant Co Ltd
Priority to CN201610264843.1A priority Critical patent/CN107068881B/en
Publication of CN107068881A publication Critical patent/CN107068881A/en
Application granted granted Critical
Publication of CN107068881B publication Critical patent/CN107068881B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Abstract

The invention discloses a kind of organic electroluminescence devices containing acridones compound, the device includes hole transmission layer, luminescent layer, electron transfer layer, the device emitting layer material includes the compound containing acridine ketone groups, shown in the structural formula of the compound such as general formula (1).Acridine ketone material of the present invention is because have lesser triplet state and singlet energy difference, therefore it is easily achieved energy transmission between Subjective and Objective material, the energy to scatter and disappear in the form of heat originally is set to be easily obtained utilization, promote luminescent layer radiation transistion efficiency, to be easier to obtain the high efficiency of device, further, when dopant material is selected as fluorescent material, it is easier to obtain the luminous radiation of dopant material, to be easier to obtain the long-life of material.

Description

A kind of organic electroluminescence device containing acridones compound and its application
Technical field
The present invention relates to technical field of semiconductors, are having for acridones compound more particularly, to a kind of emitting layer material Organic electroluminescence devices and its application.
Background technique
Organic electroluminescent (OLED:Organic Light Emission Diodes) device technology can both be used to make New display product is made, production novel illumination product is can be used for, is expected to substitute existing liquid crystal display and fluorescent lighting, Application prospect is very extensive.
Structure of the OLED luminescent device like sandwich, including electrode material film layer, and be clipped in Different electrodes film layer it Between organic functional material, various different function materials are overlapped mutually depending on the application collectively constitutes OLED luminescent device together. As current device, when the two end electrodes application voltage to OLED luminescent device, and pass through electric field action organic layer functional material Positive and negative charge in film layer, positive and negative charge is further compound in luminescent layer, i.e. generation OLED electroluminescent.
Application of the Organic Light Emitting Diode (OLED) in terms of large-area flat-plate is shown and is illuminated causes industry and The extensive concern of art circle.However, traditional organic fluorescence materials can only be shone using 25% singlet exciton to be formed is electrically excited, device The internal quantum efficiency of part is lower (up to 25%).External quantum efficiency is generally lower than 5%, and there are also very big with the efficiency of phosphorescent devices Gap.Although phosphor material can efficiently use electricity since the strong SO coupling in heavy atom center enhances intersystem crossing The singlet exciton formed and Triplet exciton are excited, makes the internal quantum efficiency of device up to 100%.But phosphor material exists Expensive, stability of material is poor, and device efficiency tumbles the problems such as serious and limits it in the application of OLEDs.Hot activation is prolonged Slow fluorescence (TADF) material is the third generation luminous organic material developed after organic fluorescence materials and organic phosphorescent material.It should Class material generally has poor (the △ E of small singlet-tripletST), triplet excitons can be changed by anti-intersystem crossing It shines at singlet exciton.This can make full use of the singlet exciton and triplet excitons that are electrically excited lower formation, device it is interior Quantum efficiency can achieve 100%.Meanwhile material structure is controllable, and property is stablized, and it is cheap to be not necessarily to precious metal, in OLED Field has a extensive future.
Although theoretically 100% exciton utilization rate may be implemented in TADF material, following problem there are in fact:
(1) T1 the and S1 state for designing molecule has strong CT feature, very small S1-T1 state energy gap, although can pass through TADF process realizes high T1→S1State exciton conversion ratio, but low S1 state radiation transistion rate is also resulted in, consequently it is difficult to have both (or realizing simultaneously) Gao Jizi utilization rate and high fluorescent radiation efficiency;
(2) even if doping device has been used to mitigate T exciton concentration quenching effect, the device of most of TADF materials is in height Efficiency roll-off is serious under current density.
For current OLED shows the actual demand of Lighting Industry, the development of OLED material is also far from enough at present, falls Afterwards in the requirement of panel manufacturing enterprise, the exploitation of the organic functional material as material enterprise development higher performance seems especially heavy It wants.
Summary of the invention
In view of the above-mentioned problems existing in the prior art, the present invention provides a kind of Organic Electricities containing acridones compound Electroluminescence device.The present invention is based on the acridones compound of TADF mechanism as emitting layer material applied to organic light-emitting diodes Guan Shang has good photoelectric properties, can satisfy OLED device enterprise, especially OLED display panel and OLED Illumination Enterprise Demand.
Technical scheme is as follows:
A kind of organic electroluminescence device containing acridones compound, the device include hole transmission layer, luminescent layer, Electron transfer layer, the device emitting layer material include the compound containing acridine ketone groups, and the structural formula of the compound is such as logical Shown in formula (1):
In general formula (1), Ar is expressed as-Ar1- R or-R;Wherein, Ar1Indicate phenyl, xenyl, terphenyl, naphthalene, Anthryl, phenanthryl;
R is indicated using general formula (2), general formula (3), general formula (4) or general formula (5):
Wherein, R1、R2Structure shown in selection hydrogen or general formula (6) independently:
A isX2、X3Respectively oxygen atom, sulphur atom, selenium atom, C1-10Linear chain or branched chain alkane One of the amido that alkylidene, the alkyl or aryl of alkylidene, aryl substitution that base replaces replace;A passes through CL1-CL2Key, CL2-CL3Key, CL3-CL4Key, CL4-CL5Key, CL‘1-CL’2Key, CL‘2-CL’3Key, CL‘3-CL’4Key or CL‘4-CL’5Key connection is in general formula (2) or on general formula (4);
R3、R4Structure shown in selection hydrogen or general formula (7) independently, R3、R4It is not simultaneously hydrogen;
B isX2、X3Respectively oxygen atom, sulphur atom, selenium atom, C1-10Linear chain or branched chain alkane One of the amido that alkylidene, the alkyl or aryl of alkylidene, aryl substitution that base replaces replace;B passes through CL1-CL2Key, CL2-CL3Key, CL3-CL4Key, CL‘1-CL’2Key, CL‘2-CL’3Key or CL‘3-CL’4Key connection is on general formula (3) or general formula (5);
R5It is expressed as phenyl, xenyl, terphenyl, naphthalene, anthryl or phenanthryl;X1For oxygen atom, sulphur atom, selenium atom, C1-10One of the amido that alkylidene, the alkyl or aryl of alkylidene, aryl substitution that linear or branched alkyl group replaces replace.
When a is indicated in the compoundAnd and CL4-CL5Key or CL‘4-CL’5When key connection, X1And X2Position weight It is folded, only take X1Or X2;X3It is expressed as oxygen atom, sulphur atom, selenium atom, C1-10Alkylidene, the virtue of linear or branched alkyl group substitution One of the amido that alkylidene, the alkyl or aryl of base substitution replace.
The general structure of the compound are as follows:
Ar in the general formula (1) are as follows:
In any Kind.The concrete structure formula of the compound are as follows:
Material shown in the general formula (1) is as luminescent layer material of main part;The dopant material of the luminescent layer uses following One of material shown in general formula (13), (14), (15) or (16):
In general formula (13), B1-B10 is selected as hydrogen, C1-30Linear or branched alkyl group replace alkyl or alkoxy, replace or Unsubstituted C6-30Aryl, it is substituted or unsubstituted 3 yuan to 30 unit's heteroaryls;B1-B10 is not hydrogen simultaneously;
In general formula (14), the one kind for being expressed as oxygen, carbon, nitrogen-atoms of Y1-Y6 independently; It is expressed as containing there are two the groups of atom to pass through the connected cyclization of any chemical bond;
Y1-Y4 one kind independent for being expressed as oxygen, carbon, nitrogen-atoms in general formula (15), general formula (16);It is expressed as containing there are two the groups of atom to pass through the connected cyclization of any chemical bond.
The material of the hole transmission layer is the compound containing triarylamine group, and the structural formula general formula of the compound is such as Shown in general formula (17):
D1-D3 respectively independently indicates substituted or unsubstituted C in general formula (17)6-30Aryl, it is substituted or unsubstituted 3 yuan extremely 30 unit's heteroaryls;D1-D3 can be same or different.
The material of the electron transfer layer is one in material shown in general formula (18), (19), (20), (21) or (22) Kind:
General formula (18), general formula (19), general formula (20), general formula (21), E1-E10 is selected as hydrogen, C in general formula (22)1-30Straight chain Or alkyl or alkoxy, substituted or unsubstituted C that branched alkyl replaces6-30Aryl, substituted or unsubstituted 3 yuan to 30 yuan it is miscellaneous Aryl;E1-E10 is not hydrogen simultaneously.
The organic electroluminescence device further includes hole injection layer;The hole injection layer material is logical for having structure One of formula (23), (24), material shown in (25):
In general formula (23), F1-F3 respectively independently indicates substituted or unsubstituted C6-30It is aryl, 3 yuan substituted or unsubstituted To 30 unit's heteroaryls;F1-F3 can be same or different;
In general formula (24), general formula (25), G1-G6 expression hydrogen independent, itrile group, halogen, amide groups, alkoxy, ester Base, nitro, C1-30Carbon atom, the substituted or unsubstituted C of linear or branched alkyl group substitution6-30Aryl, 3 yuan to 30 unit's heteroaryls; G1-G6 is not hydrogen simultaneously.
The organic electroluminescence device further includes electron injecting layer;The electron injecting layer material be lithium, lithium salts or One of cesium salt;The lithium salts is 8-hydroxyquinoline lithium, lithium fluoride, lithium carbonate, Lithium Azide;The cesium salt be cesium fluoride, Cesium carbonate, cesium azide.
The mass ratio of the material of main part of the dopant material and luminescent layer of the luminescent layer is 0.005~0.2:1.
The dopant material that compound shown in the general formula (1) is also used as luminescent layer uses.
A kind of application of the organic electroluminescence device, is used to prepare top-illuminating OLED luminescent device.
A kind of application of the organic electroluminescence device is applied to AM-OLED display.
The present invention is beneficial to be had the technical effect that
The acridones compound for forming OLED luminescent device of the present invention has the design feature of TADF, easy to accomplish Very small S1-T1 state energy gap is poor, and in excitation, the anti-intersystem crossing of triplet state easy to accomplish to singlet makes originally It cannot shine, dispersed heat is converted into the energy that can produce luminous energy in the form of heat, and is expected to obtain high efficiency.
It is analyzed based on principles above, OLED luminescent device of the present invention, both can choose fluorescent material as doping material Material, also can choose phosphor material as dopant material, can also be by TADF material of the present invention directly as dopant material It uses.
Material of main part collocation iridium of the acridones compound as OLED luminescent device, platinum class phosphor material or anthracene class Fluorescent material in use, device current efficiency, power efficiency and external quantum efficiency are greatly improved;Meanwhile for device Part life-span upgrading is clearly.Further, on OLED device layer structure matching, after introducing hole and electron injecting layer, make Transparent anode, metallic cathode and organic material contact interface are more stable, hole, electron injection effect promoting;Hole transmission layer is again Can lamination be two or more layers, the hole transmission layer of adjacent luminescent layer side can be named as electronic barrier layer (EBL) again, provide Electronic blocking effect promotes exciton combined efficiency in luminescent layer, and the hole transmission layer of adjacent hole injection layer side then plays Hole transport and the effect for reducing exciton transfer barrier;Electron transfer layer again can lamination be two or more layers, adjacent luminescent layer one The electron transfer layer of side can be named as hole blocking layer (HBL) again, provide hole barrier effect, keep exciton in luminescent layer compound The electron transfer layer of improved efficiency, adjacent electron injecting layer side then plays electron-transport and reduces the work of exciton transfer barrier With.It should be mentioned, however, that each of these layers are not necessarily present.
The combined effect of OLED device compound of the present invention: so that the driving voltage of device reduces, current efficiency, function Rate efficiency, external quantum efficiency are further enhanced, and it is obvious that device lifetime promotes effect.Have in OLED luminescent device good Application effect, have good industrialization prospect.
Make us against expectation, it has been found that, the compound combination being more particularly described hereinafter realizes this purpose, And lead to the improvement of organic electroluminescence device, especially voltage, efficiency and the improvement in service life.This especially suitable for red or The electroluminescent device of green phosphorescent, especially when using device architecture and combination of materials of the invention, situation is such.
Detailed description of the invention
Fig. 1 is the structural schematic diagram of stacked OLED device of the embodiment of the present invention;
In Fig. 1: 1 be transparent substrates, 2 be ito anode layer, 3 be hole injection layer (HIL), 4 be hole transmission layer (HTL), 5 be electronic barrier layer (EBL), 6 be luminescent layer (EML), 7 be hole blocking layer (HBL), 8 be electron transfer layer (ETL), 9 be electricity Sub- implanted layer (EIL), 10 are cathode reflection electrode layer.
Fig. 2 is the structural formula of critical materials used in device embodiments of the present invention.
Specific embodiment
With reference to the accompanying drawings and examples, the present invention is specifically described.
The synthesis of 1 compound 1 of embodiment
The specific synthetic route of the compound is now provided:
Bromo- 9, the 9- dimethyl -10- phenyl-of 0.01mol 2- is added under the atmosphere for being passed through nitrogen in the four-hole bottle of 250ml 9,10- dihydro-acridines, 0.025mol acridone, 0.03mol sodium tert-butoxide, 1 × 10-4mol Pd2(dba)3, 1 × 10-4Mol tri- Tert-butyl phosphine, 150ml toluene are heated to reflux 24 hours, sample contact plate, fully reacting, natural cooling, filtering, filtrate revolving, mistake Silicagel column obtains target product, purity 99.56%, yield 55.32%.
HPLC-MS: material molecule amount 478.20 surveys molecular weight 478.39.
The synthesis of 2 compound 2 of embodiment
The specific synthetic route of the compound is now provided:
0.01mol 10- (4- bromophenyl) -9,9- diformazan is added under the atmosphere for being passed through nitrogen in the four-hole bottle of 250ml Base -9,10- dihydro-acridine, 0.025mol acridone, 0.03mol sodium tert-butoxide, 1 × 10-4mol Pd2(dba)3, 1 × 10- 4Mol tri-tert-butylphosphine, 150ml toluene are heated to reflux 24 hours, sample contact plate, fully reacting, natural cooling, filtering, filtrate Revolving crosses silicagel column, obtains target product, purity 99.81%, yield 65.20%.
HPLC-MS: material molecule amount 478.20 surveys molecular weight 478.62.
The synthesis of 3 compound 3 of embodiment
The specific synthetic route of the compound is now provided:
0.01mol 10- (3- bromophenyl) -9,9- diformazan is added under the atmosphere for being passed through nitrogen in the four-hole bottle of 250ml Base -9,10- dihydro-acridine, 0.025mol acridone, 0.03mol sodium tert-butoxide, 1 × 10-4mol Pd2(dba)3, 1 × 10- 4Mol tri-tert-butylphosphine, 150ml toluene are heated to reflux 24 hours, sample contact plate, fully reacting, natural cooling, filtering, filtrate Revolving crosses silicagel column, obtains target product, purity 98.95, yield 78.00%.
HPLC-MS: material molecule amount 478.20 surveys molecular weight 478.59.
The synthesis of 4 compound 4 of embodiment
The preparation method is the same as that of Example 1 for compound 4, the difference is that raw material 10- (4- bromonaphthalene -1- base) -9,9- hexichol Base -9,10- dihydro-acridine replaces the bromo- 9,9- dimethyl -10- phenyl -9,10- dihydro-acridine of 2-.
HPLC-MS: material molecule amount 652.25 surveys molecular weight 652.78.
The synthesis of 5 compound 6 of embodiment
The preparation method is the same as that of Example 1 for compound 6, the difference is that raw material 5- (3- bromophenyl) -10- naphthalene -1-yl-5, 10- dihydro-azophenlyene replaces the bromo- 9,9- dimethyl -10- phenyl -9,10- dihydro-acridine of 2-.
HPLC-MS: material molecule amount 577.22 surveys molecular weight 577.29.
The synthesis of 6 compound 7 of embodiment
The preparation method is the same as that of Example 1 for compound 7, the difference is that raw material 5- biphenyl -3- base -10- (4- bromophenyl) - 5,10- dihydro-azophenlyene replaces the bromo- 9,9- dimethyl -10- phenyl -9,10- dihydro-acridine of 2-.
HPLC-MS: material molecule amount 603.23 surveys molecular weight 603.32.
The synthesis of 7 compound 9 of embodiment
The specific synthetic route of the compound is now provided:
The preparation method is the same as that of Example 1 for compound 9, the difference is that bromo- 12, the 12- dimethyl -6- phenyl-of raw material 9- 6,12- dihydro -6- azepine-indoles [1,2-b] fluorenes replaces the bromo- 9,9- dimethyl -10- phenyl -9,10- dihydro-acridine of 2-.
HPLC-MS: material molecule amount 552.22 surveys molecular weight 552.38.
The synthesis of 8 compound 10 of embodiment
The specific synthetic route of the compound is now provided:
The preparation method is the same as that of Example 1 for compound 10, the difference is that raw material 9- (4- bromophenyl) -12,12- diformazan Base -6- phenyl -6,12- dihydro -6- azepine-indoles [1,2-b] fluorenes replaces the bromo- 9,9- dimethyl -10- phenyl -9,10- two of 2- Hydrogen-acridine.
HPLC-MS: material molecule amount 628.25 surveys molecular weight 628.36.
The synthesis of 9 compound 11 of embodiment
The specific synthetic route of the compound is now provided:
The preparation method is the same as that of Example 1 for compound 11, the difference is that raw material 9- (3- bromophenyl) -12,12- diformazan Base -6- phenyl -6,12- dihydro -6- azepine-indoles [1,2-b] fluorenes replaces the bromo- 9,9- dimethyl -10- phenyl -9,10- two of 2- Hydrogen-acridine.
HPLC-MS: material molecule amount 628.25 surveys molecular weight 628.86.
The synthesis of 10 compound 15 of embodiment
The specific synthetic route of the compound is now provided:
The preparation method is the same as that of Example 1 for compound 15, the difference is that raw material 13- (3- bromophenyl) -13H-13- nitrogen Miscellaneous-indoles [1,2-b] anthracene replaces the bromo- 9,9- dimethyl -10- phenyl -9,10- dihydro-acridine of 2-.
HPLC-MS: material molecule amount 536.19 surveys molecular weight 536.36.
The synthesis of 11 compound 16 of embodiment
The specific synthetic route of the compound is now provided:
The preparation method is the same as that of Example 1 for compound 16, the difference is that bromo- 13- the phenyl -13H-6,11- bis- of raw material 3- Oxa- -13- azepine-indoles [1,2-b] anthracene replaces the bromo- 9,9- dimethyl -10- phenyl -9,10- dihydro-acridine of 2-.
HPLC-MS: material molecule amount 542.16 surveys molecular weight 542.63.
The synthesis of 12 compound 22 of embodiment
The specific synthetic route of the compound is now provided:
The preparation method is the same as that of Example 1 for compound 22, the difference is that raw material 6- (4'- bromo biphenyl -4- base) -11,11- Dimethyl -6,11- dihydro -13- oxa- -6- azepine-indoles [1,2-b] anthracene replaces bromo- phenyl -9 9,9- dimethyl -10- 2-, 10- dihydro-acridine.
HPLC-MS: material molecule amount 644.25 surveys molecular weight 644.62.
The synthesis of 13 compound 24 of embodiment
The specific synthetic route of the compound is now provided:
The preparation method is the same as that of Example 1 for compound 24, the difference is that raw material 11- (4- bromophenyl) -13,13- diformazan Base -11,13- dihydro -6- oxa- -11- azepine-indoles [1,2-b] anthracene replaces the bromo- 9,9- dimethyl -10- phenyl -9,10- two of 2- Hydrogen-acridine.
HPLC-MS: material molecule amount 568.22 surveys molecular weight 568.45.
The synthesis of 14 compound 28 of embodiment
The specific synthetic route of the compound is now provided:
The preparation method is the same as that of Example 1 for compound 28, the difference is that raw material 5- (4- bromophenyl) -14,14- diformazan Base -7- phenyl -7,14- dihydro -5H-12- oxa- -5,7- diaza-pentacene replaces the bromo- 9,9- dimethyl -10- phenyl-of 2- 9,10- dihydro-acridine.
HPLC-MS: material molecule amount 659.26 surveys molecular weight 659.27.
The synthesis of 15 compound 30 of embodiment
The specific synthetic route of the compound is now provided:
The preparation method is the same as that of Example 1 for compound 30, the difference is that raw material 5- (4- bromophenyl) -9,9- dimethyl - 5H, 9H-5,13b- diaza-naphtho- [3,2,1-de] anthracene replace the bromo- 9,9- dimethyl -10- phenyl -9,10- dihydro-a word used for translation of 2- Pyridine.
HPLC-MS: material molecule amount 567.23 surveys molecular weight 567.71.
The synthesis of 16 compound 31 of embodiment
The specific synthetic route of the compound is now provided:
The preparation method is the same as that of Example 1 for compound 31, the difference is that raw material 9- (4- bromophenyl) oxa--9-9H-5-, 13b- diaza-naphtho- [3,2,1-de] anthracene replaces the bromo- 9,9- dimethyl -10- phenyl -9,10- dihydro-acridine of 2-.
HPLC-MS: material molecule amount 541.18 surveys molecular weight 541.65.
The synthesis of 17 compound 32 of embodiment
The specific synthetic route of the compound is now provided:
The preparation method is the same as that of Example 1 for compound 32, the difference is that raw material 11- (4- bromophenyl) -6,6- dimethyl - 6,11- dihydro -13,13 '-dioxa -11,11 '-diazas-indoles [1,2-b] anthracene replace bromo- 9, the 9- dimethyl -10- benzene of 2- Base -9,10- dihydro-acridine.
HPLC-MS: material molecule amount 658.23 surveys molecular weight 658.63.
The compounds of this invention can be used as emitting layer material use, to the compounds of this invention 4, compound 32 and current material CBP carries out the test of hot property, luminescent spectrum and HOMO, lumo energy, and testing result is as shown in table 1.
Table 1
Note: thermal weight loss temperature Td is the temperature of the weightlessness 1% in nitrogen atmosphere, in the TGA-50H heat of Japanese Shimadzu Corporation It is measured on weight analysis instrument, nitrogen flow 20mL/min;λPLIt is sample solution fluorescence emission wavelengths, opens up Pu Kang using Japan The measurement of SR-3 spectroradiometer;Φ f is that solid powder fluorescence quantum efficiency (utilizes the Maya2000Pro of U.S.'s marine optics Fiber spectrometer, the test solid fluorescence amount of C-701 integrating sphere and marine optics LLS-LED the light source composition of Lan Fei company, the U.S. Sub- efficiency test system, reference literature Adv.Mater.1997,9,230-232 method are measured);Highest occupied molecular rail Road HOMO energy level and minimum occupied molecular orbital lumo energy are by photoelectron emissions spectrometer (AC-2 type PESA), UV, visible light point Light photometric determination is tested as atmospheric environment.
By upper table data it is found that the compounds of this invention has suitable HOMO, lumo energy and higher thermal stability, It is suitable as the material of main part of luminescent layer;Meanwhile the compounds of this invention has suitable luminescent spectrum, higher Φ f, so that answering The compounds of this invention is used to get a promotion as the OLED device efficiency of dopant material and service life.
Below by way of device embodiments 1-16 and device comparative example 1, the present invention will be described in detail that compound combination is answered in the devices Use effect.The production work of device embodiments 2-16 of the present invention, the device compared with device embodiments 1 of device comparative example 1 Skill is identical, and uses identical baseplate material and electrode material, the difference is that device is surveyed stepped construction, taken It is different with material and thicknesses of layers.Device stack structure is as shown in table 2.The performance test results of each device are as shown in table 3.
Device embodiments 1
Device stack structure is as shown in device architecture schematic diagram 1: including hole transmission layer 4, luminescent layer 6, electron transfer layer 8。
Ito anode layer 2 (thickness: 150nm)/hole transmission layer 4 (thickness: 120nm, material: HT6)/luminescent layer 6 (thickness: 40nm, material: compound 1 and GD1 are constituted by weight 90:10 blending)/electron transfer layer 8 (thickness: 35nm, material: ET2 and EI1, mass ratio 1:1)/Al (thickness: 100nm).
Specific preparation process is as follows:
Ito anode layer 2 (film thickness 150nm) is washed, is successively carried out after progress neutralizing treatment, pure water, drying ultraviolet Line-ozone washing is to remove the organic residue on the transparent surface ITO.
On the ito anode layer 2 after the washing, using vacuum deposition apparatus, hole transmission layer 4, hole transport is deposited Layer material uses HT6, and film thickness 120nm, this layer is as the hole transmission layer 4 in device architecture;
On hole transmission layer 4, by vacuum evaporation mode, luminescent layer 6 is deposited, emitting layer material is made using compound 1 Based on material, for GD1 as dopant material, doping mass ratio is 9:1, and luminescent layer film thickness is 40nm, this layer is as device junction Luminescent layer 6 in structure;
On luminescent layer 6, by vacuum evaporation mode, be deposited electron transfer layer 8, electron transport layer materials using ET2 and EI1 mixing and doping, doping mass ratio are 1:1, and film thickness 35nm, this layer is as the electron transfer layer 8 in device architecture;
On electron transfer layer 8, by vacuum evaporation mode, evaporation cathode aluminium layer, film thickness 100nm, this layer is cathode Reflection electrode layer 10 uses.
After completing the production of OLED luminescent device as described above, anode and cathode is connected with well known driving circuit Come, the luminous efficiency of measurement device, the I-E characteristic of luminescent spectrum and device.
Device embodiments 2
Device stack structure is as shown in device architecture schematic diagram 1: including hole injection layer 3, hole transmission layer 4, luminescent layer 6 With electron transfer layer 8.
Ito anode layer 2 (thickness: 150nm)/hole injection layer 3 (thickness: 10nm, material: HI1)/hole transmission layer 4 is (thick Degree: 110nm, material: HT2)/luminescent layer 6 (thickness: 40nm, material: compound 3 and GD2 are constituted by weight 88:12 blending)/ Electron transfer layer 8 (thickness: 35nm, material: ET02 and EI1, mass ratio 1:1)/Al (thickness: 100nm).
Device embodiments 3
Device stack structure is as shown in device architecture schematic diagram 1: including hole injection layer 3, hole transmission layer 4, luminescent layer 6, electron transfer layer 8 and electron injecting layer 9.
Ito anode layer 2 (thickness: 150nm)/hole injection layer 3 (thickness: 10nm, material: HI2)/hole transmission layer 4 is (thick Degree: 110nm, material: HT4)/luminescent layer 6 (thickness: 40nm, material: compound 4 and GD2 are constituted by weight 88:12 blending)/ Electron transfer layer 8 (thickness: 35nm, material: ET3 and EI1, mass ratio 1:1)/electron injecting layer 9 (thickness: 1nm, material: LiN3)/Al (thickness: 100nm).
Device embodiments 4
Device stack structure is as shown in device architecture schematic diagram 1: including hole injection layer 3, hole transmission layer 4, electronics resistance Barrier 5, luminescent layer 6 and electron transfer layer 8.
Ito anode layer 2 (thickness: 150nm)/hole injection layer 3 (thickness: 10nm, material: HI1)/hole transmission layer 4 is (thick Degree: 90nm, material: HT3)/electronic barrier layer 5 (thickness: 20nm, material: EB2) (thickness: 40nm, material: chemical combination of/luminescent layer 6 Object 7 and GD3 are constituted by weight 89:11 blending)/electron transfer layer 8 (thickness: 35nm, material: ET3 and EI1, mass ratio 1: 1)/Al (thickness: 100nm).
Device embodiments 5
Device stack structure is as shown in device architecture schematic diagram 1: including hole injection layer 3, hole transmission layer 4, luminescent layer 6, electron transfer layer 8 and electron injecting layer 9.
Ito anode layer 2 (thickness: 150nm)/hole injection layer 3 (thickness: 50nm, material: HI3 and HT3, in mass ratio 5: 95 blendings are constituted)/hole transmission layer 4 (thickness: 70nm, material: HT3)/luminescent layer 6 (thickness: 40nm, material: 9 He of compound GD3 is constituted by weight 89:11 blending)/electron transfer layer 8 (thickness: 35nm, material: ET3)/electron injecting layer 9 (thickness: 1nm, material: Li)/Al (thickness: 100nm).
Device embodiments 6
Device stack structure is as shown in device architecture schematic diagram 1: including hole injection layer 3, hole transmission layer 4, luminescent layer 6, electron transfer layer 8 and electron injecting layer 9.
Ito anode layer 2 (thickness: 150nm)/hole injection layer 3 (thickness: 50nm, material: HI4 and HT3, in mass ratio 5: 95 blendings are constituted)/hole transmission layer 4 (thickness: 70nm, material: HT6)/luminescent layer 6 (thickness: 40nm, material: 11 He of compound GD4 is constituted by weight 92:8 blending)/electron transfer layer 8 (thickness: 35nm, material: ET4 and EI1, mass ratio 1:1)/electronics Implanted layer 9 (thickness: 1nm, material: LiF)/Al (thickness: 100nm).
Device embodiments 7
Device stack structure is as shown in device architecture schematic diagram 1: including hole injection layer 3, hole transmission layer 4, electronics resistance Barrier 5, luminescent layer 6, hole blocking layer 7 and electron transfer layer 8.
Ito anode layer 2 (thickness: 150nm)/hole injection layer 3 (thickness: 10nm, material: HI1)/hole transmission layer 4 is (thick Degree: 90nm, material: HT6)/electronic barrier layer 5 (thickness: 20nm, material: EB1) (thickness: 40nm, material: chemical combination of/luminescent layer 6 Object 15 and GD4 are constituted by weight 92:8 blending)/hole blocking layer 7 (thickness: 20nm, material: HB1)/electron transfer layer 8 (thickness Degree: 15nm, material: ET2 and EI1, mass ratio 1:1)/Al (thickness: 100nm).
Device embodiments 8
Device stack structure is as shown in device architecture schematic diagram 1: including hole injection layer 3, hole transmission layer 4, electronics resistance Barrier 5, luminescent layer 6, electron transfer layer 8 and electron injecting layer 9.
Ito anode layer 2 (thickness: 150nm)/hole injection layer 3 (thickness: 50nm, material: HI5 and HT3, in mass ratio 5: 95 blendings are constituted)/hole transmission layer 4 (thickness: 50nm, material: HT5)/electronic barrier layer 5 (thickness: 20nm, material: EB3)/ Luminescent layer 6 (thickness: 40nm, material: compound 16 and GD5 are constituted by weight 92:8 blending)/electron transfer layer 8 (thickness: 35nm, material: ET2 and EI1, mass ratio 1:1)/electron injecting layer 9 (thickness: 1nm, material: Cs2CO3)/Al (thickness: 100nm)。
Device embodiments 9
Device stack structure is as shown in device architecture schematic diagram 1: including hole injection layer 3, hole transmission layer 4, electronics resistance Barrier 5, luminescent layer 6, electron transfer layer 8 and electron injecting layer 9.
Ito anode layer 2 (thickness: 150nm)/hole injection layer 3 (thickness: 50nm, material: HI6 and HT4, in mass ratio 5: 95 blendings are constituted)/hole transmission layer 4 (thickness: 50nm, material: HT6)/electronic barrier layer 5 (thickness: 20nm, material: EB2)/ Luminescent layer 6 (thickness: 40nm, material: compound 22 and GD6 are constituted by weight 95:5 blending)/electron transfer layer 8 (thickness: 35nm, material: ET2 and EI1, mass ratio 1:1)/electron injecting layer 9 (thickness: 1nm, material: EI1)/Al (thickness: 100nm).
Device embodiments 10
Device stack structure is as shown in device architecture schematic diagram 1: including hole injection layer 3, hole transmission layer 4, electronics resistance Barrier 5, luminescent layer 6, hole blocking layer 7, electron transfer layer 8 and electron injecting layer 9.
Ito anode layer 2 (thickness: 150nm)/hole injection layer 3 (thickness: 10nm, material: HI1)/hole transmission layer 4 is (thick Degree: 90nm, material: HT3)/electronic barrier layer 5 (thickness: 20nm, material: EB1) (thickness: 40nm, material: chemical combination of/luminescent layer 6 Object 24 and GD5 are constituted by weight 92:8 blending)/hole blocking layer 7 (thickness: 25nm, material: HB1)/electron transfer layer 8 (thickness Degree: 10nm, material: ET5)/electron injecting layer 9 (thickness: 1nm, material: EI1)/Al (thickness: 100nm).
Device embodiments 11
Device stack structure is as shown in device architecture schematic diagram 1: including hole injection layer 3, hole transmission layer 4, electronics resistance Barrier 5, luminescent layer 6, hole blocking layer 7, electron transfer layer 8 and electron injecting layer 9.
Ito anode layer 2 (thickness: 150nm)/hole injection layer 3 (thickness: 50nm, material: HI5 and HT6, in mass ratio 5: 95 blendings are constituted)/hole transmission layer 4 (thickness: 50nm, material: HT6)/electronic barrier layer 5 (thickness: 20nm, material: EB2)/ Luminescent layer 6 (thickness: 40nm, material: compound 28 and GD4 are constituted by weight 92:8 blending)/hole blocking layer 7 (thickness: 15nm, material: HB1)/electron transfer layer 8 (thickness: 20nm, material: ET2 and EI1, mass ratio 1:1)/electron injecting layer 9 (thickness Degree: 1nm, material: Li2CO3)/Al (thickness: 100nm).
Device embodiments 12
Device stack structure is as shown in device architecture schematic diagram 1: including hole injection layer 3, hole transmission layer 4, luminescent layer 6, hole blocking layer 7, electron transfer layer 8 and electron injecting layer 9.
Ito anode layer 2 (thickness: 150nm)/hole injection layer 3 (thickness: 50nm, material: HI5 and HT3, in mass ratio 5: 95 blendings are constituted)/hole transmission layer 4 (thickness: 70nm, material: HT6)/luminescent layer 6 (thickness: 40nm, material: 30 He of compound GD6 is constituted by weight 95:5 blending)/hole blocking layer 7 (thickness: 15nm, material: HB1)/electron transfer layer 8 (thickness: 20nm, material: ET6)/electron injecting layer 9 (thickness: 1nm, material: CsF)/Al (thickness: 100nm).
Device embodiments 13
Device stack structure is as shown in device architecture schematic diagram 1: including hole injection layer 3, hole transmission layer 4, electronics resistance Barrier 5, luminescent layer 6, electron transfer layer 8 and electron injecting layer 9.
Ito anode layer 2 (thickness: 150nm)/hole injection layer 3 (thickness: 50nm, material: HI5 and HT3, in mass ratio 5: 95 blendings are constituted)/hole transmission layer 4 (thickness: 50nm, material: HT6)/electronic barrier layer 5 (thickness: 20nm, material: EB2)/ Luminescent layer 6 (thickness: 40nm, material: compound 31 and GD2 are constituted by weight 88:12 blending)/electron transfer layer 8 (thickness: 35nm, material: ET2 and EI1, mass ratio 1:1)/electron injecting layer 9 (thickness: 1nm, material: CsN3)/Al (thickness: 100nm).
Device embodiments 14
Device stack structure is as shown in device architecture schematic diagram 1: including hole injection layer 3, hole transmission layer 4, electronics resistance Barrier 5, luminescent layer 6, hole blocking layer 7 and electron transfer layer 8.
Ito anode layer 2 (thickness: 150nm)/hole injection layer 3 (thickness: 50nm, material: HI5 and HT3, in mass ratio 5: 95 blendings are constituted)/hole transmission layer 4 (thickness: 50nm, material: HT6)/electronic barrier layer 5 (thickness: 20nm, material: EB2)/ Luminescent layer 6 (thickness: 40nm, material: compound 32, GH2 and GD2 are constituted by weight 60:30:10 blending)/hole blocking layer 7 (thickness 15nm, material: EB2)/electron transfer layer 8 (thickness: 20nm, material: ET2 and EI1, mass ratio 1:1)/Al (thickness: 100nm)。
Device embodiments 15
Device stack structure is as shown in device architecture schematic diagram 1: including hole injection layer 3, hole transmission layer 4, electronics resistance Barrier 5, luminescent layer 6, hole blocking layer 7 and electron transfer layer 8.
Ito anode layer 2 (thickness: 150nm)/hole injection layer 3 (thickness: 50nm, material: HI5 and HT3, in mass ratio 5: 95 blendings are constituted)/hole transmission layer 4 (thickness: 50nm, material: HT6)/electronic barrier layer 5 (thickness: 20nm, material: EB2)/ Luminescent layer 6 (thickness: 40nm, material: compound 6, GH4 and GD2 are constituted by weight 60:30:10 blending)/hole blocking layer 7 (thickness 15nm, material: HB1)/electron transfer layer 8 (thickness: 20nm, material: ET2 and EI1, mass ratio 1:1)/Al (thickness: 100nm)。
Device embodiments 16
Device stack structure is as shown in device architecture schematic diagram 1: including hole injection layer 3, hole transmission layer 4, luminescent layer 6, electron transfer layer 8 and electron injecting layer 9.
Ito anode layer 2 (thickness: 150nm)/hole injection layer 3 (thickness: 50nm, material: HI4 and HT3, in mass ratio 5: 95 blendings are constituted)/hole transmission layer 4 (thickness: 70nm, material: HT6) (thickness: 40nm, material: GH3 and chemical combination of/luminescent layer 6 Object 16 is constituted by weight 92:8 blending)/electron transfer layer 8 (thickness: 35nm, material: ET4 and EI1, mass ratio 1:1)/electronics Implanted layer 9 (thickness: 1nm, material: LiF)/Al (thickness: 100nm).
Device comparative example 1
Device stack structure is as shown in device architecture schematic diagram 1: including hole transmission layer 4, luminescent layer 6, electron transfer layer 8 With electron injecting layer 9.
Ito anode layer 2 (thickness: 150nm)/hole transmission layer 4 (thickness: 120nm, material: HTI)/luminescent layer 6 (thickness: 40nm, material: GH1 and GD1 is constituted by weight 90:10 blending)/electron transfer layer 8 (thickness: 35nm, material: ET1)/electronics Implanted layer 9 (thickness: 1nm, material: LiF)/Al (thickness: 100nm).
The OLED is characterized by standard method, from current/voltage/luminous density characteristic line that Lambert emission characteristic is presented It calculates, and the measurement service life.It determines in 1000cd/m2Electroluminescent spectrum under brightness calculates CIEx and y color coordinates, device Test data is as shown in table 3.
Table 2
Table 3
Note: for device detection performance using comparative example 1 as reference, 1 device performance indexes of comparative example is set as 1.0.Compare The current efficiency of example 1 is 32.6cd/A (@1000cd/m2);Driving voltage is 5.6v (@1000cd/m2);CIE chromaticity coordinates is (0.34,0.63);LT95 life time decay is 3.5Hr under 5000 brightness.
Table 3 summarizes the OLED device in 1000cd/m2Voltage needed for brightness, the current efficiency reached, Yi Ji 5000cd/m2LT95 Decay under brightness.
1 comparative device comparative example 1 of device embodiments replaces emitting layer material of the invention, and presses material group of the invention After synthesizing laminated device, device voltage is reduced, current efficiency promotion 50%, and 2.67 times of life-span upgrading;Device embodiments 2-16 is pressed Material adapted and the device stack combination that the present invention designs, so that device data is further promoted;Such as 14,15 institute of device embodiments Show, when acridine ketone material of the invention is as hybrid agent material, further obtains extraordinary performance data;Such as device Shown in part embodiment 16, acridine ketone material of the present invention is as luminescent layer dopant material in use, equally obtaining extraordinary Performance data.
To sum up, the foregoing is merely presently preferred embodiments of the present invention, is not intended to limit the invention, all in essence of the invention Within mind and principle, any modification, equivalent replacement, improvement and so on be should all be included in the protection scope of the present invention.

Claims (14)

1. a kind of organic electroluminescence device containing acridones compound, which includes hole transmission layer, luminescent layer, electricity Sub- transport layer, it is characterised in that the device emitting layer material includes the compound containing acridine ketone groups, the knot of the compound Shown in structure formula such as general formula (1):
In general formula (1), Ar is expressed asOr R;Wherein, Ar1Indicate phenyl, xenyl, terphenyl, naphthalene, anthracene Base, phenanthryl;
R is indicated using general formula (3), general formula (4) or general formula (5):
Wherein, R1、R2Structure shown in selection hydrogen or general formula (6) independently, and R1、R2It is not simultaneously hydrogen;
A isX2、X3Respectively oxygen atom, sulphur atom, selenium atom, C1-10Linear or branched alkyl group takes One of the amido that alkylidene, the phenyl that alkylidene, the phenyl in generation replace replace;A passes through CL1-CL2Key, CL2-CL3Key, CL3- CL4Key, CL4-CL5Key, CL‘1-CL’2Key, CL‘2-CL’3Key, CL‘3-CL’4Key or CL‘4-CL’5Key connection is on general formula (4);
R3、R4Structure shown in selection hydrogen or general formula (7) independently, R3、R4It is not simultaneously hydrogen;
B isX2、X3Respectively oxygen atom, sulphur atom, selenium atom, C1-10Linear or branched alkyl group takes One of the amido that alkylidene, the phenyl that alkylidene, the phenyl in generation replace replace;B passes through CL1-CL2Key, CL2-CL3Key, CL3- CL4Key, CL‘1-CL’2Key, CL‘2-CL’3Key or CL‘3-CL’4Key connection is on general formula (3) or general formula (5);
R5It is expressed as phenyl, xenyl, terphenyl, naphthalene, anthryl or phenanthryl;X1For oxygen atom, sulphur atom, selenium atom, C1-10 In the amido that alkylidene, phenyl or naphthyl or the xenyl of alkylidene, phenyl substitution that linear or branched alkyl group replaces replace It is a kind of.
2. organic electroluminescence device according to claim 1, it is characterised in that when a is indicated in the compound And and CL4-CL5Key or CL‘4-CL’5When key connection, X1And X2Position overlapping, only take X1Or X2;X3Indicate that oxygen atom, sulphur are former Son, selenium atom, C1-10In the amido that alkylidene, the phenyl of alkylidene, phenyl substitution that linear or branched alkyl group replaces replace It is a kind of.
3. organic electroluminescence device according to claim 1, it is characterised in that the general structure of the compound are as follows:
Any one of.
4. organic electroluminescence device according to claim 1, it is characterised in that Ar in the general formula (1) are as follows:
In It is any.
5. organic electroluminescence device according to claim 1, it is characterised in that the acridones compound it is specific Structural formula are as follows:
6. organic electroluminescence device according to claim 1, it is characterised in that material conduct shown in the general formula (1) Luminescent layer material of main part;The dopant material of the luminescent layer uses in material shown in general formula (13), (14), (15) or (16) One kind:
In general formula (13), B1-B10 is selected as hydrogen, C1-30The alkyl or alkoxy of linear or branched alkyl group substitution replace or do not take The C in generation6-30Aryl, it is substituted or unsubstituted 3 yuan to 30 unit's heteroaryls;B1-B10 is not hydrogen simultaneously;
In general formula (14), the one kind for being expressed as oxygen, carbon, nitrogen-atoms of Y1-Y6 independently; Point It is not expressed as containing there are two the groups of atom to pass through the connected cyclization of any chemical bond;
Y1-Y4 one kind independent for being expressed as oxygen, carbon, nitrogen-atoms in general formula (15), general formula (16);It is expressed as containing there are two the groups of atom to pass through the connected cyclization of any chemical bond.
7. organic electroluminescence device according to claim 1, it is characterised in that the material of the hole transmission layer be containing There is the compound of triarylamine group, shown in the structural formula general formula such as general formula (17) of the compound:
D1-D3 respectively independently indicates substituted or unsubstituted C in general formula (17)6-30It is aryl, 3 yuan to 30 yuan substituted or unsubstituted Heteroaryl;D1-D3 can be same or different.
8. organic electroluminescence device according to claim 1, it is characterised in that under the material of the electron transfer layer is One of material shown in column general formula (18), (19), (20), (21) or (22):
General formula (18), general formula (19), general formula (20), general formula (21), E1-E10 is selected as hydrogen, C in general formula (22)1-30Straight chain or branch The alkyl or alkoxy, substituted or unsubstituted C that alkyl group replaces6-30Aryl, substituted or unsubstituted 3 yuan to 30 yuan heteroaryls Base, E1-E10 are not hydrogen simultaneously.
9. organic electroluminescence device according to claim 1, it is characterised in that the luminescent device further includes hole note Enter layer;The hole injection layer material is having structure general formula (23), (24), one of material shown in (25):
In general formula (23), F1-F3 respectively independently indicates substituted or unsubstituted C6-30It is aryl, 3 yuan to 30 yuan substituted or unsubstituted Heteroaryl;F1-F3 can be same or different;
In general formula (24), general formula (25), G1-G6 expression hydrogen independent, itrile group, halogen, amide groups, alkoxy, ester group, nitre Base, C1-30Carbon atom, the substituted or unsubstituted C of linear or branched alkyl group substitution6-30Aryl, 3 yuan to 30 unit's heteroaryls;G1-G6 It is not simultaneously hydrogen.
10. organic electroluminescence device according to claim 1, it is characterised in that the luminescent device further includes electronics note Enter layer;The electron injecting layer material is one of lithium, lithium salts or cesium salt;The lithium salts be 8-hydroxyquinoline lithium, lithium fluoride, Lithium carbonate, Lithium Azide;The cesium salt is cesium fluoride, cesium carbonate, cesium azide.
11. according to organic electroluminescence device described in claim 1, it is characterised in that the dopant material of the luminescent layer and shine The mass ratio of the material of main part of layer is 0.005~0.2:1.
12. organic electroluminescence device according to claim 1, it is characterised in that compound shown in the general formula (1) is also The dopant material that can be used as luminescent layer uses.
13. a kind of application of any one of claim 1~12 organic electroluminescence device, it is characterised in that the Organic Electricity Electroluminescence device is used to prepare top-illuminating OLED luminescent device.
14. a kind of application of any one of claim 1~12 organic electroluminescence device, it is characterised in that the Organic Electricity Electroluminescence device is applied to AM-OLED display.
CN201610264843.1A 2016-04-25 2016-04-25 A kind of organic electroluminescence device containing acridones compound and its application Active CN107068881B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610264843.1A CN107068881B (en) 2016-04-25 2016-04-25 A kind of organic electroluminescence device containing acridones compound and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610264843.1A CN107068881B (en) 2016-04-25 2016-04-25 A kind of organic electroluminescence device containing acridones compound and its application

Publications (2)

Publication Number Publication Date
CN107068881A CN107068881A (en) 2017-08-18
CN107068881B true CN107068881B (en) 2019-12-03

Family

ID=59617287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610264843.1A Active CN107068881B (en) 2016-04-25 2016-04-25 A kind of organic electroluminescence device containing acridones compound and its application

Country Status (1)

Country Link
CN (1) CN107068881B (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1216982A (en) * 1996-03-13 1999-05-19 卫材株式会社 Nitrogenous tricycle compounds and drugs comprising same
CN1330651A (en) * 1998-10-14 2002-01-09 协和发酵工业株式会社 Method of stabilizing aqueous pyrazoloacridone derivative solution
CN1398863A (en) * 2001-07-25 2003-02-26 瑟维尔实验室 Benzo [b] pyran-[3,2-h] acridinyl-7-one compounds, their prepn and medicine composition containing them
CN1660844A (en) * 2004-12-10 2005-08-31 吉林大学 Compound of quinacridones-carbazole group and application in organic electroluminescence device
CN1701063A (en) * 2002-01-15 2005-11-23 癌症研究科技有限公司 Therapeutic acridone and acridine compounds
TW200615361A (en) * 2004-06-29 2006-05-16 Ciba Sc Holding Ag Fluorescent quinacridones
JP2009016739A (en) * 2007-07-09 2009-01-22 Canon Inc Organic light emitting device and its manufacturing method
CN101391981A (en) * 2008-03-27 2009-03-25 云南大学 Polyhaloacridones compound, intermediate and synthetic method thereof
CN101600777A (en) * 2007-01-18 2009-12-09 默克专利有限公司 The type material that is used for organic electroluminescence device
CN102229565A (en) * 2011-05-10 2011-11-02 南京邮电大学 Spirofluorene bisbenzoacridine organic semiconductor material, preparation method and use method thereof
CN102629666A (en) * 2005-03-28 2012-08-08 株式会社半导体能源研究所 Anthracene derivative, material for light emitting element, light emitting element, light emitting device, and electronic device
CN103030596A (en) * 2011-09-28 2013-04-10 昆山维信诺显示技术有限公司 Dihydracridine material and application thereof
CN103694173A (en) * 2013-12-24 2014-04-02 郑州西格玛化工有限公司 Acridone derivatives and synthesis method thereof
CN104835916A (en) * 2015-04-11 2015-08-12 吉林大学 Highly-efficient organic electroluminescent device based on fluorescence doped luminescent layer
CN105062466A (en) * 2015-08-06 2015-11-18 吉林奥来德光电材料股份有限公司 Quinacridones-containing organic electroluminescence material and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842406B2 (en) * 2007-12-14 2010-11-30 Global Oled Technology Llc OLED device with substituted acridone compounds
KR101663527B1 (en) * 2014-01-22 2016-10-10 주식회사 엠비케이 New organic electroluminescent compounds and organic electroluminescent device comprising the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1216982A (en) * 1996-03-13 1999-05-19 卫材株式会社 Nitrogenous tricycle compounds and drugs comprising same
CN1330651A (en) * 1998-10-14 2002-01-09 协和发酵工业株式会社 Method of stabilizing aqueous pyrazoloacridone derivative solution
CN1398863A (en) * 2001-07-25 2003-02-26 瑟维尔实验室 Benzo [b] pyran-[3,2-h] acridinyl-7-one compounds, their prepn and medicine composition containing them
CN1701063A (en) * 2002-01-15 2005-11-23 癌症研究科技有限公司 Therapeutic acridone and acridine compounds
TW200615361A (en) * 2004-06-29 2006-05-16 Ciba Sc Holding Ag Fluorescent quinacridones
CN1660844A (en) * 2004-12-10 2005-08-31 吉林大学 Compound of quinacridones-carbazole group and application in organic electroluminescence device
CN102629666A (en) * 2005-03-28 2012-08-08 株式会社半导体能源研究所 Anthracene derivative, material for light emitting element, light emitting element, light emitting device, and electronic device
CN101600777A (en) * 2007-01-18 2009-12-09 默克专利有限公司 The type material that is used for organic electroluminescence device
JP2009016739A (en) * 2007-07-09 2009-01-22 Canon Inc Organic light emitting device and its manufacturing method
CN101391981A (en) * 2008-03-27 2009-03-25 云南大学 Polyhaloacridones compound, intermediate and synthetic method thereof
CN102229565A (en) * 2011-05-10 2011-11-02 南京邮电大学 Spirofluorene bisbenzoacridine organic semiconductor material, preparation method and use method thereof
CN103030596A (en) * 2011-09-28 2013-04-10 昆山维信诺显示技术有限公司 Dihydracridine material and application thereof
CN103694173A (en) * 2013-12-24 2014-04-02 郑州西格玛化工有限公司 Acridone derivatives and synthesis method thereof
CN104835916A (en) * 2015-04-11 2015-08-12 吉林大学 Highly-efficient organic electroluminescent device based on fluorescence doped luminescent layer
CN105062466A (en) * 2015-08-06 2015-11-18 吉林奥来德光电材料股份有限公司 Quinacridones-containing organic electroluminescence material and preparation method thereof

Also Published As

Publication number Publication date
CN107068881A (en) 2017-08-18

Similar Documents

Publication Publication Date Title
CN107068910B (en) A kind of organic electroluminescence device of the compound containing xanthone and its application
CN107068880B (en) A kind of organic electroluminescence device containing diaryl ketone compounds and its application
CN106221691B (en) Organic electroluminescent device containing aza-phenyl compounds and application thereof
CN106467522A (en) A kind of organic electroluminescence device containing compound in triazine class and its application
CN107068888B (en) A kind of organic electroluminescence device containing ketone and heterocyclic nitrogen compound and its application
CN106467483A (en) A kind of five-membered ring substituted compound with xanthone as core and its application
CN107068887B (en) A kind of organic electroluminescence device and its application
CN107046100B (en) A kind of organic electroluminescence device and its application containing disubstituted -9-Fluorenone compound
CN106467523B (en) A kind of organic aromatic compound and its application
CN106220649B (en) Diaryl ketone-based compound and application thereof in organic electroluminescent device
CN106467516A (en) A kind of compound with triazine as core and its application on organic electroluminescence device
CN106467542A (en) A kind of compound with anthrone as core and its application
CN106220609A (en) A kind of compound with pyridine as core and the application on organic electroluminescence device thereof
CN106220638A (en) A kind of compound based on xanthone and application thereof
CN107056748B (en) Compound with triazine and ketone as cores and application thereof in organic electroluminescent device
CN106188037A (en) A kind of compound based on 1,8-diaza-9-Fluorenone and application thereof
CN107652272A (en) It is a kind of using ketone structure as the organic compound of parent nucleus and its application in OLED
CN107068876B (en) A kind of organic electroluminescence device and its application based on 10,10- diaryl anthracene ketone compound
CN106467524B (en) A kind of organic aromatic compound and its application on organic electroluminescence device
CN106467511B (en) It is a kind of using acridone as the compound of core and its application on organic electroluminescence device
CN107068878B (en) It is a kind of containing monosubstituted base -9-Fluorenone compound organic electroluminescence device and its application
CN107093676B (en) A kind of organic electroluminescence device containing acridine spiral shell anthracene ketone compounds and its application
CN106467533A (en) A kind of compound with acridone as core and its application
CN107068881B (en) A kind of organic electroluminescence device containing acridones compound and its application
CN107057682A (en) A kind of compound as core using acridone and its application on organic electroluminescence device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: An organic electroluminescent device containing acridone compounds and its application

Effective date of registration: 20211202

Granted publication date: 20191203

Pledgee: Yantai Branch of China Merchants Bank Co.,Ltd.

Pledgor: VALIANT Co.,Ltd.

Registration number: Y2021980013807

PC01 Cancellation of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20220823

Granted publication date: 20191203

Pledgee: Yantai Branch of China Merchants Bank Co.,Ltd.

Pledgor: VALIANT Co.,Ltd.

Registration number: Y2021980013807

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221027

Address after: 214112 No.210 Xinzhou Road, Wuxi City, Jiangsu Province

Patentee after: Jiangsu March Technology Co.,Ltd.

Address before: 264006 No. 11 Wuzhishan Road, Yantai economic and Technological Development Zone, Shandong

Patentee before: VALIANT Co.,Ltd.