CN107054404A - 一种列车轮对轮径自动校验方法及装置 - Google Patents

一种列车轮对轮径自动校验方法及装置 Download PDF

Info

Publication number
CN107054404A
CN107054404A CN201611228233.2A CN201611228233A CN107054404A CN 107054404 A CN107054404 A CN 107054404A CN 201611228233 A CN201611228233 A CN 201611228233A CN 107054404 A CN107054404 A CN 107054404A
Authority
CN
China
Prior art keywords
wheel
wheel footpath
footpath
line shaft
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611228233.2A
Other languages
English (en)
Other versions
CN107054404B (zh
Inventor
黄浩
彭鸿基
刘海涛
刘良杰
姚中红
徐绍龙
邹档兵
阳志雄
郑钢
周杨
龙凯亮
邹东海
吴斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuzhou CRRC Times Electric Co Ltd
Original Assignee
Zhuzhou CRRC Times Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuzhou CRRC Times Electric Co Ltd filed Critical Zhuzhou CRRC Times Electric Co Ltd
Priority to CN201611228233.2A priority Critical patent/CN107054404B/zh
Publication of CN107054404A publication Critical patent/CN107054404A/zh
Application granted granted Critical
Publication of CN107054404B publication Critical patent/CN107054404B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/02Profile gauges, e.g. loading gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/12Measuring or surveying wheel-rims

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

本发明公开一种列车轮对轮径自动校验方法及装置,该方法步骤包括:实时检测列车的运行工况,当检测到处于惰行工况时,启动执行轮对轮径校验;执行轮对轮径校验时,分别获取当前列车中各动力轴相邻拖车的速度以及轮径,根据获取到的相邻拖车的速度以及轮径分别对各动力轴的轮对轮径进行校验;该装置包括检测单元、轮对轮径校验单元。本发明能够实现列车轮对轮径的自动校验,且具有实现方法简单、所需成本低且校验精度高、适用范围广的优点。

Description

一种列车轮对轮径自动校验方法及装置
技术领域
本发明涉及轨道交通车辆技术领域,尤其涉及一种列车轮对轮径自动校验方法及装置。
背景技术
轮对是列车与钢轨相接触的部分,用于保证列车在轨道上的运行和转向,承受来自列车的全部静态和动态载荷,并将它们传递给轨道,也是通过轮对的作用最终使列车能产生牵引/制动效果。列车运行过程中,如动车组,若列车的各动力轴的轮对轮径差异过大,此时在牵引变流器控制电机施加牵引/制动力时,将导致各轮对实际发挥牵引/制动力偏差过大,这将严重影响轮对寿命、危害线路安全、影响列车的正常运行。因此若能够对列车轮对轮径进行实时校验,则可以避免列车运行过程中各动力轴轮对轮径差异过大,保证列车运行的安全性。
针对轨道交通列车轮对轮径的校验,目前的各种实现方式中,都未考虑到列车不同运行工况时列车速度与轮对轮周线速度之间的关系特性,因而要么校验精度低,要么实现过程复杂、需要较高的成本。如直接以DCU采集的动力轴通道1速度为基准速度,由基准速度得到其他通道的补偿系数,再计算得到各校验轮径。该类校验方式实现较为简单,但列车实际运行过程中,牵引工况下,动力轴速度大于拖车轴速度;在制动工况下,动力轴速度小于拖车轴速度,则该类方法由动力轴速度作为基准速度不能准确反映列车当前真实速度,因而校验结果不准确,校验精度不高。
中国专利申请CN105667542A公开一种轨道交通列车轮径校准方法,该方法基于应答器与数据库存储线路数据,获得车轮打滑列车实际行走距离以及其对应累积脉冲数后。采用速度传感器的脉冲计数方式,根据速度传感器每周期固定脉冲数与应答器对实际间距计算列车轮径值。该类校准方式实现过程复杂,且需要布置应答器等设备,校准所需的成本高,另外列车在打滑和空转的过程中,轮对速度实际很难估算准确,采用该类方法难以实现准确的轮径校验。
综上所述,目前亟需提供一种能够方便的实现校验,减少校验成本,同时校验精度高的列车轮对轮径自动校验方法。
发明内容
本发明要解决的技术问题就在于:针对现有技术存在的技术问题,本发明提供一种实现方法简单、所需成本低且校验精度高、适用范围广的列车轮对轮径自动校验方法及装置。
为解决上述技术问题,本发明提出的技术方案为:
一种列车轮对轮径自动校验方法,步骤包括:
实时检测列车的运行工况,当检测到处于惰行工况时,启动执行轮对轮径校验;
执行轮对轮径校验时,分别获取当前列车中各动力轴相邻拖车的速度以及轮径,根据获取到的相邻拖车的速度以及轮径分别对各动力轴的轮对轮径进行校验。
作为本发明方法的进一步改进:所述对各动力轴的轮对轮径进行校验,具体按照下式计算各动力轴的轮对轮径的校验基准值;
其中,R第i动力轴为第i动力轴的轮对轮径的校验基准值,ω相邻拖车为第i动力轴的相邻拖车的角速度,r相邻拖车为第i动力轴的相邻拖车的轮径,ω第i动力轴为第i动力轴的角速度。
作为本发明方法的进一步改进:所述对各动力轴的轮对轮径进行校验,具体以时间周期t计算各动力轴的轮对轮径的所述校验基准值,并按照下式计算指定时间段T内所述校验基准值的平均值,得到最终的校验基准值;
其中R0为第i动力轴轮对轮径的最终校验基准值,Ri为每个时间周期t时所计算到的第i动力轴轮对轮径的校验基准值。
作为本发明方法的进一步改进:所述当检测到处于惰行工况,且列车运行速度超过预设阈值时,启动执行轮对轮径校验。
作为本发明方法的进一步改进:所述执行轮对轮径校验后还包括校验保护步骤,具体步骤为:分别获取校验完成后各节列车中最大的轮径值以及最小的轮对轮径值,当获取到的所述最大的轮径值与所述最小的轮对轮径值之间的差值达到指定阈值时,控制限制电机功率或控制CI逆变模块停止工作。
一种列车轮对轮径自动校验方法,步骤包括:
实时检测列车的运行工况,当检测到处于惰行工况时,启动执行轮对轮径校验;
执行轮对轮径校验时,将指定动力轴作为校验基准动力轴,获取当前列车中所述校验基准动力轴的速度以及轮对轮径,并根据获取到的所述校验基准动力轴的速度以及轮对轮径对列车中其他各动力轴的轮对轮径进行校验。
作为本发明方法的进一步改进:所述对各动力轴的轮对轮径进行校验,具体按照下式计算各动力轴的轮对轮径的校验基准值;
其中,R第i动力轴为第i动力轴的轮对轮径的校验基准值,ω校验基准动力轴为校验基准动力轴的角速度,r校验基准动力轴为校验基准动力轴的轮对轮径,ω第i动力轴为第i动力轴的角速度。
作为本发明方法的进一步改进:所述对各动力轴的轮对轮径进行校验,具体以时间周期t计算各动力轴的轮对轮径的所述校验基准值,并按照下式计算指定时间段T内所述校验基准值的平均值,得到最终的校验基准值;
其中R0为第i动力轴轮对轮径的最终校验基准值,Ri为每个时间周期t时所计算到的第i动力轴轮对轮径的校验基准值。
作为本发明方法的进一步改进:所述执行轮对轮径校验后还包括校验保护步骤,具体步骤为:分别获取校验完成后各节列车中最大的轮径值以及最小的轮对轮径值,当获取到的所述最大的轮径值与所述最小的轮对轮径值之间的差值达到指定阈值时,控制限制电机功率或控制CI逆变模块停止工作。
一种列车轮对轮径自动校验装置,包括:
检测单元,用于实时检测列车的运行工况,当检测到处于惰行工况时,启动执行轮对轮径校验;
第一轮径校验单元,用于执行轮对轮径校验时,分别获取当前列车中各动力轴相邻拖车的速度以及轮径,根据获取到的相邻拖车的速度以及轮径分别对各动力轴的轮对轮径进行校验。
作为本发明装置的进一步改进:还包括与所述第一轮径校验单元连接的校验保护单元,所述校验保护单元分别获取校验完成后各节动车中最大的轮对轮径值以及最小的轮对轮径值,当获取到的最大的轮对轮径值与最小的轮对轮径值之间的差值达到指定阈值时,控制限制电机功率或控制CI逆变模块停止工作。
一种列车轮对轮径自动校验装置,包括:
检测单元,用于实时检测列车的运行工况,当检测到处于惰行工况时,启动执行轮对轮径校验;
第二轮径校验单元,用于执行轮对轮径校验时,将指定动力轴作为校验基准动力轴,获取当前列车中所述校验基准动力轴的速度以及轮对轮径,并根据获取到的所述校验基准动力轴的速度以及轮对轮径对列车中其他各动力轴的轮对轮径进行校验。
作为本发明装置的进一步改进:还包括与所述第二轮径校验单元连接的校验保护单元,所述校验保护单元分别获取校验完成后各节列车中最大的轮径值以及最小的轮对轮径值,当获取到的所述最大的轮径值与所述最小的轮对轮径值之间的差值达到指定阈值时,控制限制电机功率或控制CI逆变模块停止工作。
与现有技术相比,本发明的优点在于:
1)本发明列车轮对轮径校验方法及装置,利用列车惰行工况时轮对轮周线速度与车身速度之间的关系特性,在列车处于惰行工况时,对各动力轴的轮对轮径执行自动校验,校验实现过程简单,无需增加额外的硬件设备,减少校验成本,同时能够保证实现精确的校验,可以广泛适用于动车组等轨道交通列车中进行轮对轮径校验;
2)本发明列车轮对轮径校验方法及装置,进一步在轮对轮径校验后,通过在轮对轮径差值达到指定阈值时执行相应的保护动作,可以有效防止因各轴轮对轮径差异过大,从而避免因轮对轮径差异过大导致如轮对寿命缩短、危害线路安全等问题的发生。
附图说明
图1是本发明实施例1列车轮对轮径自动校验方法的实现流程示意图。
图2是本发明实施例1中列车网络控制系统与DCU数据传输结构的原理示意图。
图3是本发明实施例1实现列车轮对轮径自动校验的具体实现流程示意图。
图4是本发明实施例1列车轮对轮径自动校验装置的结构示意图。
图5是本发明实施例2列车轮对轮径自动校验方法的实现流程示意图。
图6是本发明实施例2列车轮对轮径自动校验装置的结构示意图。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
列车在运行过程中,当处于牵引工况时动车速度大于拖车速度,处于制动工况时,动车速度又低于拖车速度,当列车处于惰行工况时,即列车处于惰行工况轮对轮周线速度等于车身速度。本发明的列车轮对轮径校验方法及装置,其核心思想是利用列车惰行工况时轮对轮周线速度与车身速度之间的上述关系特性,在列车处于惰行工况时,对各动力轴的轮对轮径执行自动校验,校验实现过程简单,无需增加额外的硬件设备,减少校验成本,同时由于是在列车车身实际速度与轮对轮周线速度完全相同时,执行各轴轮对轮径校验,能够保证实现精确的校验。
实施例1:
如图1所示,本实施例列车轮对轮径自动校验方法,步骤包括:
S11.实时检测列车的运行工况,当检测到处于惰行工况时,启动执行轮对轮径校验;
S12.执行轮对轮径校验时,分别获取当前列车中各动力轴相邻拖车的速度以及轮径,根据获取到的相邻拖车的速度以及轮径分别对各动力轴的轮对轮径进行校验。
由不同工况下列车轮对轮周线速度与车身速度之间的关系特性可知,列车处于惰行工况时车身实际速度与拖车速度相同。本实施例具体利用列车惰行工况时拖车速度等于车身速度的关系特性,实时检测列车的运行工况,当检测到处于惰行工况时,才启动执行轮对轮径校验;执行轮对轮径校验时,在列车处于惰行工况下获取与动力轴相连拖车的速度为校验基准速度、相邻拖车的轮径为校验基准轮径值,再由获取到的相邻拖车的速度以及轮径作为校验基准,分别对各动力轴的轮对轮径进行校验。列车惰行时,牵引/制动给定力矩为零,动车CI逆变模块仍处于工作状态导致电机存在励磁电流,即实际带力,本实施例通过采用相邻拖车速度和轮径为基准进行校验,相邻拖车速度能够真实反映车身速度,从而实现精确的轮对轮径校验。
本实施例列车中具体采用如图2所示数据交换拓扑结构,通过司空台发送设置的牵引/制动信号、拖车轮径值给列车网络控制系统,列车网络控制系统通过列车通信总线传输给各节列车中DCUn(1≤n≤8),各DCU则通过硬线采集各动力轴的速度信号、以及各动力轴相邻拖车的速度信号。当然,司机设置的牵引/制动信号和拖车轮径值也可通过如列车线等其他传输方式传输给DCU。
本实施例步骤S11中实时检测列车的运行工况时,具体判断是否满足以下条件:
①DCU从列车网络控制系统接收到的牵引/制动位为零位;
②列车速度大于零;
③CI逆变模块处于非工作状态
若检测到满足上述条件,则判定列车处于惰行工况。
本实施例中,步骤S12对各动力轴的轮对轮径进行校验,具体是按照下式计算各动力轴的轮对轮径的校验基准值;
其中,R第i动力轴为第i动力轴的轮对轮径的校验基准值,ω相邻拖车为第i动力轴的相邻拖车的角速度,r相邻拖车为第i动力轴的相邻拖车的轮径,ω第i动力轴为第i动力轴的角速度,(i=1,2,3,4....)。
本实施例执行校验时,通过DCU接收司机设置的拖车轮径值r相邻拖车作为校验基准轮径值,以及通过DCU采集各动力轴相邻拖车的角速度ω相邻拖车,按照式(1)即可计算得到对应各动力轴的校验基准值R第i动力轴,由各校验基准值R第i动力轴分别对动力轴进行校验。
本实施例中,对各动力轴的轮对轮径进行校验,具体取指定时间段内计算得到的校验基准值的平均值,并作为对应各动力轴的轮对轮径的最终校验基准值。本实施例具体按照式(1)以时间周期t计算各动力轴的轮对轮径的校验基准值,在指定时间段T内,每个动力轴可对应计算到个校验基准值,其中T>t且Tmodt=0,对计算到的个校验基准值按式(2)计算平均值,得到最终的校验基准值,以最终的校验基准值对各动力轴进行校验,完成轮对轮径校验。DCU对于各动力轴均以校验后的轮对轮径值进行后续计算。
其中R0为第i动力轴轮对轮径的最终校验基准值,Ri为每个时间周期t时按式(1)所计算到的第i动力轴轮对轮径的校验基准值。
本实施例中,执行轮对轮径校验后还包括校验保护步骤,具体步骤为:分别获取校验完成后各节列车中最大的轮径值以及最小的轮对轮径值,当获取到的最大的轮径值与最小的轮对轮径值之间的差值达到指定阈值时,控制限制电机功率或控制CI逆变模块停止工作。轮对轮径校验后,通过在轮对轮径差值达到指定阈值时执行相应的保护动作,可以有效防止因各轴轮对轮径差异过大,从而避免因轮对轮径差异过大导致如轮对寿命缩短、危害线路安全等问题的发生。
本实施例预先在DCU中分别预置对应限制电机功率的第一阈值THD1和对应控制CI逆变模块的第二阈值THD2,假设某节列车各动力轴轮对轮径校验完成后,得到的最大轮径值为Rmax,最小轮径值为Rmin,则具体按以下步骤执行校验保护:
若Rmax-Rmin>THD1,DCU执行牵引/制动功率限制,并通知列车网络控制系统限速运行;
若Rmax-Rmin>THD2,DCU控制相应动车CI逆变模块处于停止工作状态,并上报网络控制系统相应故障。
如图3所示,本实施例首先实时判断列车是否处于惰行工况,当检测到处于惰行工况,判断列车运行速度,若检测到处于惰行工况且列车运行速度超过预设阈值Vthd时,进一步判断相邻拖车和相应列车中速度传感器是否正常,以及DCU与列车网络控制系统通信正常,以确定所采集到的数据为可靠数据,若均正常,则启动执行轮对轮径校验,否则表明获取的数据不可靠,结束校验;当执行校验时,使用上述公式(1)、(2)计算得到各动力轴轮对轮径的最终校验基准值,完成校验;完成校验后,最后根据Rmax-Rmin与第一阈值THD1、第二阈值THD2的大小关系执行对应的校验保护。
本实施例上述轮对轮径校验方法,具体直接由DCU控制实现,实现操作简单,无需人工参与,也无需设置额外的如应答设备等装置。
如图4所示,本实施例列车轮对轮径自动校验装置,包括:
检测单元,用于实时检测列车的运行工况,当检测到处于惰行工况时,启动执行轮对轮径校验;
第一轮径校验单元,用于执行轮对轮径校验时,分别获取当前列车中各动力轴相邻拖车的速度以及轮径,根据获取到的相邻拖车的速度以及轮径分别对各动力轴的轮对轮径进行校验。
本实施例中,还包括与轮径校验单元连接的校验保护单元,校验保护单元分别获取校验完成后各节动车中最大的轮对轮径值以及最小的轮对轮径值,当获取到的最大的轮对轮径值与最小的轮对轮径值之间的差值达到指定阈值时,控制限制电机功率或控制CI逆变模块停止工作。
实施例2:
如图5所示,本发明另一种实施例中列车轮对轮径自动校验方法,步骤包括:
S21.实时检测列车的运行工况,当检测到处于惰行工况时,启动执行轮对轮径校验;
S22.执行轮对轮径校验时,将指定动力轴作为校验基准动力轴,获取当前列车中所述校验基准动力轴的速度以及轮对轮径,并根据获取到的校验基准动力轴的速度以及轮对轮径对列车中其他各动力轴的轮对轮径进行校验。
列车处于惰行工况时,车身实际速度与动车速度也是相同的。本实施例与实施例基本相同,不同在于利用列车惰行工况时动车速度等于车身速度的关系特性,在执行轮对轮径校验时,具体将指定动力轴作为校验基准动力轴,由校验基准动力轴对其他各动力轴的轮对轮径进行校验。拖车速度信号走线需经过跨车信号连接器,跨车信号连接器各信号走线较多,易引入耦合信号干扰拖车速度的采样。本实施例采用指定动力轴校验方式,信号采样实现简单、且稳定可靠,不易引入干扰信号,从而能够实现更为简单、抗干扰性更强的轮对轮径校验。
本实施例中,对各动力轴的轮对轮径进行校验,具体按照下式计算各动力轴的轮对轮径的校验基准值;
其中,R第i动力轴为第i动力轴的轮对轮径的校验基准值,ω校验基准动力轴为校验基准动力轴的角速度,r校验基准动力轴为校验基准动力轴的轮对轮径,ω第i动力轴为第i动力轴的角速度。
本实施例执行校验时,通过DCU接收指定动力轴的角速度以及轮对轮径,按照式(3)即可计算得到对应各动力轴的校验基准值R第i动力轴,由各校验基准值R第i动力轴分别对动力轴进行校验。
本实施例中,对各动力轴的轮对轮径进行校验,具体取指定时间段内计算得到的校验基准值的平均值,并作为对应各动力轴的轮对轮径的最终校验基准值。本实施例具体按照式(3)以时间周期t计算各动力轴的轮对轮径的校验基准值,在指定时间段T内,每个动力轴可对应计算到个校验基准值,对计算到的个校验基准值按式(2)计算平均值,得到最终的校验基准值,以最终的校验基准值对各动力轴进行校验,完成轮对轮径校验。
本实施例中,执行轮对轮径校验后还包括校验保护步骤,具体步骤为:分别获取校验完成后各节列车中最大的轮径值以及最小的轮对轮径值,当获取到的所述最大的轮径值与所述最小的轮对轮径值之间的差值达到指定阈值时,控制限制电机功率或控制CI逆变模块停止工作。本实施例校验保护步骤与实施例1相同,在此不再进行赘述。
如图6所示,本实施例列车轮对轮径自动校验装置,其特征在于,包括:
检测单元,用于实时检测列车的运行工况,当检测到处于惰行工况时,启动执行轮对轮径校验;
第二轮径校验单元,用于执行轮对轮径校验时,将指定动力轴作为校验基准动力轴,获取当前列车中所述校验基准动力轴的速度以及轮对轮径,并根据获取到的校验基准动力轴的速度以及轮对轮径对列车中其他各动力轴的轮对轮径进行校验。
本实施例中,还包括与轮径校验单元连接的校验保护单元,校验保护单元分别获取校验完成后各节列车中最大的轮径值以及最小的轮对轮径值,当获取到的最大的轮径值与最小的轮对轮径值之间的差值达到指定阈值时,控制限制电机功率或控制CI逆变模块停止工作。
本发明上述轮对轮径校验方法、装置,也可以适用于采用与轨道交通列车类似数据交换拓扑结构(如图2所示)的机车中,进行轮对轮径校验。
上述只是本发明的较佳实施例,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

Claims (13)

1.一种列车轮对轮径自动校验方法,其特征在于步骤包括:
实时检测列车的运行工况,当检测到处于惰行工况时,启动执行轮对轮径校验;
执行轮对轮径校验时,分别获取当前列车中各动力轴相邻拖车的速度以及轮径,根据获取到的相邻拖车的速度以及轮径分别对各动力轴的轮对轮径进行校验。
2.根据权利要求1所述的列车轮对轮径自动校验方法,其特征在于:所述对各动力轴的轮对轮径进行校验,具体按照下式计算各动力轴的轮对轮径的校验基准值;
其中,R第i动力轴为第i动力轴的轮对轮径的校验基准值,ω相邻拖车为第i动力轴的相邻拖车的角速度,r相邻拖车为第i动力轴的相邻拖车的轮径,ω第i动力轴为第i动力轴的角速度。
3.根据权利要求2所述的列车轮对轮径自动校验方法,其特征在于:所述对各动力轴的轮对轮径进行校验,具体以时间周期t计算各动力轴的轮对轮径的所述校验基准值,并按照下式计算指定时间段T内所述校验基准值的平均值,得到最终的校验基准值;
<mrow> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mfrac> <mi>t</mi> <mi>T</mi> </mfrac> </munderover> <msub> <mi>R</mi> <mi>i</mi> </msub> </mrow>
其中R0为第i动力轴轮对轮径的最终校验基准值,Ri为每个时间周期t时所计算到的第i动力轴轮对轮径的校验基准值。
4.根据权利要求1或2或3所述的列车轮对轮径自动校验方法,其特征在于:所述当检测到处于惰行工况,且列车运行速度超过预设阈值时,启动执行轮对轮径校验。
5.根据权利要求1或2或3所述的列车轮对轮径自动校验方法,其特征在于:所述执行轮对轮径校验后还包括校验保护步骤,具体步骤为:分别获取校验完成后各节列车中最大的轮径值以及最小的轮对轮径值,当获取到的所述最大的轮径值与所述最小的轮对轮径值之间的差值达到指定阈值时,控制限制电机功率或控制CI逆变模块停止工作。
6.一种列车轮对轮径自动校验方法,其特征在于步骤包括:
实时检测列车的运行工况,当检测到处于惰行工况时,启动执行轮对轮径校验;
执行轮对轮径校验时,将指定动力轴作为校验基准动力轴,获取当前列车中所述校验基准动力轴的速度以及轮对轮径,并根据获取到的所述校验基准动力轴的速度以及轮对轮径对列车中其他各动力轴的轮对轮径进行校验。
7.根据权利要求6所述的列车轮对轮径自动校验方法,其特征在于,所述对各动力轴的轮对轮径进行校验,具体按照下式计算各动力轴的轮对轮径的校验基准值;
其中,R第i动力轴为第i动力轴的轮对轮径的校验基准值,ω校验基准动力轴为校验基准动力轴的角速度,r校验基准动力轴为校验基准动力轴的轮对轮径,ω第i动力轴为第i动力轴的角速度。
8.根据权利要求7所述的列车轮对轮径自动校验方法,其特征在于:所述对各动力轴的轮对轮径进行校验,具体以时间周期t计算各动力轴的轮对轮径的所述校验基准值,并按照下式计算指定时间段T内所述校验基准值的平均值,得到最终的校验基准值;
其中R0为第i动力轴轮对轮径的最终校验基准值,Ri为每个时间周期t时所计算到的第i动力轴轮对轮径的校验基准值。
9.根据权利要求6或7或8所述的列车轮对轮径自动校验方法,其特征在于,所述执行轮对轮径校验后还包括校验保护步骤,具体步骤为:分别获取校验完成后各节列车中最大的轮径值以及最小的轮对轮径值,当获取到的所述最大的轮径值与所述最小的轮对轮径值之间的差值达到指定阈值时,控制限制电机功率或控制CI逆变模块停止工作。
10.一种列车轮对轮径自动校验装置,其特征在于,包括:
检测单元,用于实时检测列车的运行工况,当检测到处于惰行工况时,启动执行轮对轮径校验;
第一轮径校验单元,用于执行轮对轮径校验时,分别获取当前列车中各动力轴相邻拖车的速度以及轮径,根据获取到的相邻拖车的速度以及轮径分别对各动力轴的轮对轮径进行校验。
11.根据权利要求10所述的列车轮对轮径自动校验装置,其特征在于:还包括与第一所述轮径校验单元连接的校验保护单元,所述校验保护单元分别获取校验完成后各节动车中最大的轮对轮径值以及最小的轮对轮径值,当获取到的最大的轮对轮径值与最小的轮对轮径值之间的差值达到指定阈值时,控制限制电机功率或控制CI逆变模块停止工作。
12.一种列车轮对轮径自动校验装置,其特征在于,包括:
检测单元,用于实时检测列车的运行工况,当检测到处于惰行工况时,启动执行轮对轮径校验;
第二轮径校验单元,用于执行轮对轮径校验时,将指定动力轴作为校验基准动力轴,获取当前列车中所述校验基准动力轴的速度以及轮对轮径,并根据获取到的所述校验基准动力轴的速度以及轮对轮径对列车中其他各动力轴的轮对轮径进行校验。
13.根据权利要求12所述的列车轮对轮径自动校验装置,其特征在于:还包括与所述第二轮径校验单元连接的校验保护单元,所述校验保护单元分别获取校验完成后各节列车中最大的轮径值以及最小的轮对轮径值,当获取到的所述最大的轮径值与所述最小的轮对轮径值之间的差值达到指定阈值时,控制限制电机功率或控制CI逆变模块停止工作。
CN201611228233.2A 2016-12-27 2016-12-27 一种列车轮对轮径自动校验方法及装置 Active CN107054404B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611228233.2A CN107054404B (zh) 2016-12-27 2016-12-27 一种列车轮对轮径自动校验方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611228233.2A CN107054404B (zh) 2016-12-27 2016-12-27 一种列车轮对轮径自动校验方法及装置

Publications (2)

Publication Number Publication Date
CN107054404A true CN107054404A (zh) 2017-08-18
CN107054404B CN107054404B (zh) 2019-08-09

Family

ID=59624326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611228233.2A Active CN107054404B (zh) 2016-12-27 2016-12-27 一种列车轮对轮径自动校验方法及装置

Country Status (1)

Country Link
CN (1) CN107054404B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109703600A (zh) * 2017-10-25 2019-05-03 株洲中车时代电气股份有限公司 一种计算列车轮径偏差的方法、系统和一种列车
CN110147642A (zh) * 2019-06-12 2019-08-20 中国神华能源股份有限公司 货车轮对智能选配方法和装置
CN110979403A (zh) * 2019-12-16 2020-04-10 中铁工程机械研究设计院有限公司 一种悬挂式轨道列车空气轮胎轮径补偿方法
CN111114583A (zh) * 2019-12-20 2020-05-08 青岛四方庞巴迪铁路运输设备有限公司 动车组自动轮径校准的控制方法
CN112632727A (zh) * 2020-12-31 2021-04-09 中车永济电机有限公司 一种具有动轴轮径自动校正功能的牵引变流器
CN112678035A (zh) * 2021-03-12 2021-04-20 西门子交通技术(北京)有限公司 列车运行数据分析方法、系统及服务器和计算机可读介质
CN113147827A (zh) * 2021-05-28 2021-07-23 中车青岛四方车辆研究所有限公司 提升列车校轮可用性的ato控制方法、系统、自动驾驶系统
CN113156156A (zh) * 2021-03-31 2021-07-23 中车青岛四方车辆研究所有限公司 一种列车用多速度传感器系统速度处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6148269A (en) * 1998-07-20 2000-11-14 General Electric Company Wheel diameter calibration system for vehicle slip/slide control
CN103707903A (zh) * 2013-12-05 2014-04-09 北京交控科技有限公司 一种列车自动轮径校正方法
CN103754236A (zh) * 2014-01-26 2014-04-30 浙江众合机电股份有限公司 列车轮径的校准方法及校准系统
KR101446667B1 (ko) * 2013-03-27 2014-10-06 현대로템 주식회사 전동차의 휠 자동 보정방법
CN105091909A (zh) * 2015-08-11 2015-11-25 株洲南车时代电气股份有限公司 一种基于gps速度的机车轮径自动校正方法
CN105667542A (zh) * 2016-01-29 2016-06-15 上海富欣智能交通控制有限公司 轨道交通列车轮径校准方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6148269A (en) * 1998-07-20 2000-11-14 General Electric Company Wheel diameter calibration system for vehicle slip/slide control
KR101446667B1 (ko) * 2013-03-27 2014-10-06 현대로템 주식회사 전동차의 휠 자동 보정방법
CN103707903A (zh) * 2013-12-05 2014-04-09 北京交控科技有限公司 一种列车自动轮径校正方法
CN103754236A (zh) * 2014-01-26 2014-04-30 浙江众合机电股份有限公司 列车轮径的校准方法及校准系统
CN105091909A (zh) * 2015-08-11 2015-11-25 株洲南车时代电气股份有限公司 一种基于gps速度的机车轮径自动校正方法
CN105667542A (zh) * 2016-01-29 2016-06-15 上海富欣智能交通控制有限公司 轨道交通列车轮径校准方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109703600A (zh) * 2017-10-25 2019-05-03 株洲中车时代电气股份有限公司 一种计算列车轮径偏差的方法、系统和一种列车
CN110147642A (zh) * 2019-06-12 2019-08-20 中国神华能源股份有限公司 货车轮对智能选配方法和装置
CN110979403A (zh) * 2019-12-16 2020-04-10 中铁工程机械研究设计院有限公司 一种悬挂式轨道列车空气轮胎轮径补偿方法
CN111114583A (zh) * 2019-12-20 2020-05-08 青岛四方庞巴迪铁路运输设备有限公司 动车组自动轮径校准的控制方法
CN111114583B (zh) * 2019-12-20 2021-03-19 青岛四方庞巴迪铁路运输设备有限公司 动车组自动轮径校准的控制方法
CN112632727A (zh) * 2020-12-31 2021-04-09 中车永济电机有限公司 一种具有动轴轮径自动校正功能的牵引变流器
CN112632727B (zh) * 2020-12-31 2023-04-04 中车永济电机有限公司 一种具有动轴轮径自动校正功能的牵引变流器
CN112678035A (zh) * 2021-03-12 2021-04-20 西门子交通技术(北京)有限公司 列车运行数据分析方法、系统及服务器和计算机可读介质
CN113156156A (zh) * 2021-03-31 2021-07-23 中车青岛四方车辆研究所有限公司 一种列车用多速度传感器系统速度处理方法
CN113156156B (zh) * 2021-03-31 2022-09-30 中车青岛四方车辆研究所有限公司 一种列车用多速度传感器系统速度处理方法
CN113147827A (zh) * 2021-05-28 2021-07-23 中车青岛四方车辆研究所有限公司 提升列车校轮可用性的ato控制方法、系统、自动驾驶系统

Also Published As

Publication number Publication date
CN107054404B (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
CN107054404B (zh) 一种列车轮对轮径自动校验方法及装置
CN102700551B (zh) 一种车辆行驶过程中路面坡度的实时估计方法
CN102991489B (zh) 对空转和打滑进行检测和补偿的安全列车测速测距系统及方法
CN103909933A (zh) 一种分布式电驱动车辆的前轮侧向力估算方法
JP5525404B2 (ja) 鉄道車両の状態監視装置及び状態監視方法、並びに鉄道車両
CN108515984B (zh) 一种车轮伤损检测方法及装置
CN103592122B (zh) 城市轨道交通列车走行部故障诊断设备及方法
CN202057331U (zh) 基于多点测速方法的列车故障轨边图像检测设备
CN106394606A (zh) 一种铁路车辆车轮失圆检测方法及检测装置
CN103842236B (zh) 列车控制系统
CN109703600B (zh) 一种计算列车轮径偏差的方法、系统和一种列车
CN103245610A (zh) 一种分布式驱动电动汽车的路面峰值附着系数估算方法
CN103927870A (zh) 一种基于多个震动检测传感器的车辆检测装置
CN103278339A (zh) 一种轮胎侧向力估算方法
WO2020034934A1 (zh) 一种利用声音检测轮胎气压的设备
CN105929025A (zh) 一种基于时间与空间连续的车轮踏面与轨道故障检测方法
CN110595995B (zh) 铁道车辆制动下黏着系数与滑移率关系测量方法及试验台
WO2020034933A1 (zh) 一种利用电流检测轮胎气压的设备
CN108973543B (zh) 一种利用用电量检测轮胎气压的设备
CN106649951B (zh) 一种基于轮轴测速的列车速度计算方法
CN103963723B (zh) 车辆的有效车速的获取系统及其获取方法
CN107764572A (zh) 一种城铁车辆轮周牵引力的测试方法
CN103425827B (zh) 一种列车车轮扁疤的仿真分析方法
CN106650198A (zh) 一种基于信息融合的轨道交通车辆速度计算方法及系统
CN105466464A (zh) 一种汽车档位检测装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant