CN107046300B - 电力传输设备数据处理方法 - Google Patents

电力传输设备数据处理方法 Download PDF

Info

Publication number
CN107046300B
CN107046300B CN201610758068.5A CN201610758068A CN107046300B CN 107046300 B CN107046300 B CN 107046300B CN 201610758068 A CN201610758068 A CN 201610758068A CN 107046300 B CN107046300 B CN 107046300B
Authority
CN
China
Prior art keywords
power
node
wind
active
generation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610758068.5A
Other languages
English (en)
Other versions
CN107046300A (zh
Inventor
李春华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Huapeng Intelligent Instrument Technology Co., Ltd.
Original Assignee
Jiangsu Huapeng Intelligent Instrument Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Huapeng Intelligent Instrument Technology Co Ltd filed Critical Jiangsu Huapeng Intelligent Instrument Technology Co Ltd
Priority to CN201610758068.5A priority Critical patent/CN107046300B/zh
Publication of CN107046300A publication Critical patent/CN107046300A/zh
Application granted granted Critical
Publication of CN107046300B publication Critical patent/CN107046300B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提供了一种电力传输设备数据处理方法,包括:以分布式风力发电和节点负荷预测值的线路损耗值为优化目标,以预设风力发电单元和热力发电单元的有功和无功出力约束为基础对智能电网进行概率性调度。本发明提出的电力传输设备数据处理方法,仅获得风电分布的部分概率参数的情况下,保证线路在各个状态约束不越限,并同时优化智能电网线路损耗,实现运行经济性的提升。

Description

电力传输设备数据处理方法
技术领域
本发明涉及智能配电,特别涉及一种电力传输设备数据处理方法。
背景技术
随着智能电网技术的日益发展,世界各国投入了大量精力研究节能调度技术和加大新能源接入电网的力度,其目的就是减少常规能源的消耗以及降低温室气体的排放量,这对于节能减排具有重大的现实意义。电力系统优化调度是电力系统分析和控制中的一个非常重要的问题。其主要任务是保证用户用电需求和电力系统安全稳定的条件下,通过安排电源运行方式,使系统的总发电成本最低。然而对于风电这种不稳定性的能源,给电力系统优化调度带来了极大的挑战。虽然基于风电的随机优化技术已经应用于风电电力系统经济调度中,但是这些现有技术主要是模糊和概率建模,存在一定的局限性,从实际效果来看不够理想。
发明内容
为解决上述现有技术所存在的问题,本发明提出了一种电力传输设备数据处理方法,包括:
以分布式风力发电和节点负荷预测值的线路损耗值为优化目标,以预设风力发电单元和热力发电单元的有功和无功出力约束为基础对智能电网进行概率性调度。
优选的,所述预设风力发电单元和热力发电单元的有功和无功出力约束,进一步包括:
将ri和xi分别记为节点i和i-1之间配电线路的电阻值和电抗值;PLL i和QLL i分别记为节点i和i-1之间配电线路的有功功率和无功功率;
计算j∈[1,n]范围内的-rj/xj
当节点k∈[j,n]的功率因数调整角度时,以给定的概率水平λ满足如下约束:
其中FLEQLL k的正态累计概率分布函数;PND i和QND i分别为节点i的分布式风力发电单元的有功出力和无功出力,PDD i和QDD i分别为节点i的分布式热力发电单元的有功出力和无功出力;其中风力发电单元的有功出力和无功出力满足约束:
PND i,min≤PND i≤PND i,max
QND i,min≤QND i≤QND i,max
时,满足如下约束:
对于节点i和节点i-1之间的配电线路,其配电线路有功和无功功率Si为:
当线路不过载时,Si的最大值Si,max满足以下约束:
本发明相比现有技术,具有以下优点:
本发明提出的电力传输设备数据处理方法,仅获得风电分布的部分概率参数的情况下,保证线路在各个状态约束不越限,并同时优化智能电网线路损耗,实现运行经济性的提升。
附图说明
图1为本发明电力传输设备数据处理方法流程图。
具体实施方式
下文提供对本发明一个或者多个实施例的详细描述。结合这样的实施例描述本发明,但是本发明不限于任何实施例。本发明的范围仅由权利要求书限定,并且本发明涵盖诸多替代、修改和等同物。在下文描述中阐述诸多具体细节以便提供对本发明的透彻理解。出于示例的目的而提供这些细节,并且无这些具体细节中的一些或者所有细节也可以根据权利要求书实现本发明。
本发明的智能电网调度方法,该方法能够保证节点电压幅值、平衡节点有功功率和无功功率约束至少以一定概率水平满足,通过不越限概率水平,来平衡兼顾智能电网安全性和经济性等两方面的要求,故其具有比较好的可伸缩性。
将PND i和QND i分别记为节点i的分布式风力发电单元的有功出力和无功出力,PDD i和QDD i分别记为节点i的分布式热力发电单元的有功出力和无功出力。PLD i和QLD i分别记为节点i负荷的有功功率和无功功率。风力发电单元的有功出力和无功出力满足约束:
PND i,min≤PND i≤PND i,max
QND i,min≤QND i≤QND i,max
则平衡节点有功功率Psw和无功功率Qsw的越限约束满足:
∑(PLD i-PND i,min-PDD i)≤Psw,max
∑(QLD i-QND i,min-QDD i)≤Qsw,max
∑(PLD i-PND i,max-PDD i)≥Psw,min
∑(QLD i-QND i,max-QDD i)≥Psw,min
Psum和Qsum分别记为所有节点负荷的有功功率总和和无功功率总和,并满足正态分布:
分别为节点有功负荷的期望,分别为节点无功负荷的期望;
因此,给定概率水平λ,平衡节点有功功率Psw和无功功率Qsw至少以概率水平λ满足其约束条件。
其中FCP和FCQ分别为Psum和Qsum的累积概率密度函数,上标-1表示相应反函数。
将ri和xi分别记为节点i和i-1之间配电线路的电阻值和电抗值;PLL i和QLL i分别记为节点i和i-1之间配电线路的有功功率和无功功率。
计算j∈[1,n]范围内的-rj/xj
当节点k∈[j,n]的功率因数调整角度时,节点电压幅值与PND k正相关,此时以给定的概率水平λ而满足如下约束:
其中FLEQLL k的正态累计概率分布函数。
时,节点电压幅值与PND k负相关,此时满足如下约束:
对于节点i和节点i-1之间的配电线路,其配电线路有功和无功功率表达式为:
当线路不过载时,Si的最大值满足以下约束:
本发明提出的智能电网调度方法,以前述一个或多个约束为基础,以分布式风力发电和节点负荷预测值时的线路损耗值为优化目标,有效地处理概率型的负荷变化量和区间型的分布式风力发电变化量。
以分布式风力发电和节点负荷预测值场景下的潮流约束为:
Pin i-Vi∑Vj(Gijcosδij+Bijsinδij)=0
Qin i-Vi∑Vj(Gijcosδij-Bijsinδij)=0
其中,Pin i和Qin i分别是母线集合内节点i的有功总输入功率和无功总输入功率,Gij为节点i和节点j之间的转移电导,Bij为节点i和节点j之间的转移电纳,Vi和Vj分别为节点i和节点j的电压幅值,δij为节点i和j之间的电压相角差;
本发明的调度模型为一个非线性混合整数优化问题,因此本发明采用粒子群算法进行求解。具体算法流程如下:
读取智能电网系统数据和不确定量参数,确定优化变量及其可行域。设置粒子群算法的仿真参数,令每个粒子的位置为优化变量向量;
在优化变量可行域内随机初始化每个粒子的位置和速度;
评估适应度函数,包括对于每个粒子,首先针对当前场景,通过潮流算法计算线路损耗;然后判断前文所述的一个或多个约束是否满足。如果上述约束满足要求,则损耗值即为适应度值;否则,采用绝对值减分函数E(∑τideci)对越限的约束进行减分,具体定义为
若hi>hi,min,则deci=hi-hi,max
若hi≤hi,min,则deci=hi,min-hi
hi为第i个与优化变量约束有关的状态变量,hi,min和hi,max分别为hi的下限和上限;deci为与第i个状态约束有关的状态变量的减分项;τi为第i个状态变量越限的减分因数;
并以减分项和损耗作为适应度函数;
如果当前迭代次数超过预设的最大迭代次数,则结束算法的迭代优化过程;
更新全局和个体历史最优位置,然后更新粒子的速度,最后更新粒子位置;
更新迭代次数标记,然后迭代上述评估适应度函数的步骤。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (1)

1.一种电力传输设备数据处理方法,其特征在于:
以分布式风力发电和节点负荷预测值的线路损耗值为优化目标,以预设风力发电单元和热力发电单元的有功和无功出力约束为基础对智能电网进行概率性调度;所述预设风力发电单元和热力发电单元的有功和无功出力约束,进一步包括:
将ri和xi分别记为节点i和i-1之间配电线路的电阻值和电抗值;PLL i和QLL i分别记为节点i和i-1之间配电线路的有功功率和无功功率;
计算j∈[1,n]范围内的-rj/xj
当节点k∈[j,n]的功率因数调整角度的正切值时,以给定的概率水平λ满足如下约束:
其中FLE的正态累计概率分布函数;PND i和QND i分别为节点i的分布式风力发电单元的有功出力和无功出力,PDD i和QDD i分别为节点i的分布式热力发电单元的有功出力和无功出力;其中风力发电单元的有功出力和无功出力满足约束:
PND i,min≤PND i≤PND i,max
QND i,min≤QND i≤QND i,max
时,满足如下约束:
对于节点i和节点i-1之间的配电线路,其配电线路有功和无功功率之和Si为:
当线路不过载时,Si的最大值Si,max满足以下约束:
CN201610758068.5A 2016-08-29 2016-08-29 电力传输设备数据处理方法 Active CN107046300B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610758068.5A CN107046300B (zh) 2016-08-29 2016-08-29 电力传输设备数据处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610758068.5A CN107046300B (zh) 2016-08-29 2016-08-29 电力传输设备数据处理方法

Publications (2)

Publication Number Publication Date
CN107046300A CN107046300A (zh) 2017-08-15
CN107046300B true CN107046300B (zh) 2019-11-08

Family

ID=59542692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610758068.5A Active CN107046300B (zh) 2016-08-29 2016-08-29 电力传输设备数据处理方法

Country Status (1)

Country Link
CN (1) CN107046300B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232180B (zh) * 2008-01-24 2012-05-23 东北大学 一种配电系统负荷模糊建模装置及方法
CN102163845B (zh) * 2011-04-21 2013-11-06 哈尔滨工业大学 基于功率矩法的分布式电源优化配置方法
CN103208798B (zh) * 2013-03-26 2014-10-08 河海大学 一种含风电场电力系统概率潮流的计算方法
CN103280812B (zh) * 2013-04-27 2015-07-22 国家电网公司 一种风电场集群无功电压优化控制方法
CN105870936A (zh) * 2016-04-11 2016-08-17 国网上海市电力公司 一种基于概率潮流的svc设备选址方法

Also Published As

Publication number Publication date
CN107046300A (zh) 2017-08-15

Similar Documents

Publication Publication Date Title
Rajaram et al. Power system reconfiguration in a radial distribution network for reducing losses and to improve voltage profile using modified plant growth simulation algorithm with Distributed Generation (DG)
Maleki et al. Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system
Ahmadi et al. Application of the Hybrid Big Bang–Big Crunch algorithm for optimal sizing of a stand-alone hybrid PV/wind/battery system
García-Triviño et al. Optimized operation combining costs, efficiency and lifetime of a hybrid renewable energy system with energy storage by battery and hydrogen in grid-connected applications
Tazvinga et al. Energy dispatch strategy for a photovoltaic–wind–diesel–battery hybrid power system
Mohammadi et al. Scenario-based stochastic operation management of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage devices
Khatod et al. Evolutionary programming based optimal placement of renewable distributed generators
Logenthiran et al. Short term generation scheduling of a microgrid
Dufo-López et al. Design and control strategies of PV-Diesel systems using genetic algorithms
Xu et al. Carbon emission reduction and reliable power supply equilibrium based daily scheduling towards hydro-thermal-wind generation system: A perspective from China
Kandasamy et al. Virtual storage capacity using demand response management to overcome intermittency of solar PV generation
Sivaneasan et al. A new demand response algorithm for solar PV intermittency management
Phan et al. Determination of optimal battery utilization to minimize operating costs for a grid-connected building with renewable energy sources
Howlader et al. Distributed generation incorporated with the thermal generation for optimum operation of a smart grid considering forecast error
CN112583017B (zh) 考虑储能运行约束的混合微电网能量分配方法及系统
WO2013141039A1 (ja) エネルギー管理装置、エネルギー管理方法およびプログラム
Tian et al. Study on heat and power decoupling for CCHP system: Methodology and case study
Ikeda et al. A new optimization strategy for the operating schedule of energy systems under uncertainty of renewable energy sources and demand changes
Liu et al. Two-stage optimal economic scheduling for commercial building multi-energy system through internet of things
Li et al. An integrated energy exchange scheduling and pricing strategy for multi-microgrid system
Malysz et al. MILP-based rolling horizon control for microgrids with battery storage
Li et al. Flexible scheduling of microgrid with uncertainties considering expectation and robustness
Li et al. Modeling and multi-objective optimization of a stand-alone photovoltaic-wind turbine-hydrogen-battery hybrid energy system based on hysteresis band
Zhang et al. Decentralized optimization of multiarea interconnected traffic-power systems with wind power uncertainty
Saber et al. Smart micro-grid optimization with controllable loads using particle swarm optimization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190905

Address after: 213300 No. 8 Xianlu Road, Licheng Town, Liyang City, Changzhou City, Jiangsu Province

Applicant after: Jiangsu Huapeng Intelligent Instrument Technology Co., Ltd.

Address before: 100190 No. 1 Building, 66 Zhongguancun East Road, Haidian District, Beijing, 3-storey Commercial 1-042

Applicant before: Banner technology Co., Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant