CN107039251A - 用于太阳能电池制造中的固相外延再生长的直流离子注入 - Google Patents

用于太阳能电池制造中的固相外延再生长的直流离子注入 Download PDF

Info

Publication number
CN107039251A
CN107039251A CN201710051689.4A CN201710051689A CN107039251A CN 107039251 A CN107039251 A CN 107039251A CN 201710051689 A CN201710051689 A CN 201710051689A CN 107039251 A CN107039251 A CN 107039251A
Authority
CN
China
Prior art keywords
substrate
ion
annealing
layer
decrystallized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710051689.4A
Other languages
English (en)
Other versions
CN107039251B (zh
Inventor
M·春
B·阿迪博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intevac Inc
Original Assignee
Intevac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intevac Inc filed Critical Intevac Inc
Publication of CN107039251A publication Critical patent/CN107039251A/zh
Application granted granted Critical
Publication of CN107039251B publication Critical patent/CN107039251B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2236Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase from or into a plasma phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1872Recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

一种用于太阳能电池的离子注入的装置和方法。本公开提供了提高的产量,并且修复或消除了SPER退火步骤后的缺陷。利用连续高剂量的注入,衬底被连续注入,造成有效的缺陷累积(即非晶化),同时可抑制动态的自退火。

Description

用于太阳能电池制造中的固相外延再生长的直流离子注入
本申请是申请日为2011年11月17日、发明名称为“用于太阳能电池制造中的固相外延再生长的直流离子注入”的专利申请201180060732.4的分案申请。
相关申请
本申请要求2010年11月17日提交的美国临时专利申请61/414588的优先权,通过引用将该临时专利申请的全部内容并入本文。
技术领域
本发明涉及离子注入,尤其是涉及用于在高产量和低缺陷水平下制造太阳能电池的离子注入。
背景技术
离子注入法被用于半导体的制造已有多年之久。典型的商用装置通常具有离子束,可通过移动离子束、衬底或二者来在该衬底上扫描。在一个例子中,“笔形”波束以x和y方向在衬底的整个表面扫描,而另一个例子使用比该衬底略微宽一些的“带状”射束,使得只在一个方向进行扫描以覆盖整个衬底。除了非常缓慢之外,这两种系统都具有与产生缺陷有关的内在问题。即,从该衬底的单个点来看,来自任何这两种系统的离子注入都是脉冲的,尽管波束是被连续功能的。所以,衬底上的每个点在短时段“看到”离子束,然后“等待”波束的下一次扫描。这将导致局部加热,由于扫描之间的动态自退火,局部加热造成了扩大的缺陷的产生。
近来,已提出另一种离子注入的方法,通常被称为等离子体浸没离子注入,或P3i。在这样处理室中,不使用离子束,而是在整个衬底上建立等离子体。然后,将通常是RF功率形式的AC电势耦合到衬底上,以便将离子从等离子体吸引到衬底中。因此,从衬底来看,这样的系统也是以“脉冲”模式操作,而且导致了与基于离子束的系统所呈现的相同的自退火问题。
通常由射程末端损伤(end-of-range damage)引起的一种类型的缺陷是常规的离子注入系统始终具有的问题。自退火是因为局部加热引起的,而随后的冷却导致了无法在之后的退火步骤期间消除的团簇缺陷。因此,本领域需要一种能够实现高速注入同时避免缺陷的离子注入系统和方法。
发明内容
包括以下内容以提供对本发明一些方面和特征的基本理解。该内容不是对本发明的广泛概述,因此不是用来特别指出本发明的关键或重要元素,也不是用来界定本发明的范围。其唯一目的是以简单的形式展示本发明的一些概念,并作为以下介绍的更详细描述的前言。
所公开的实施例提供了使能太阳能电池的高产量制造同时最小化或消除缺陷的离子注入方法。利用各种实验条件,其已显示所公开的方法优于现有技术的离子注入方法,特别是可以防止因射程末端损伤而引起的团簇缺陷。
根据所公开的实施例,使用高剂量率的连续离子注入来执行离子注入。离子注入是在整个衬底表面或针对选择性的离子注入(例如针对选择性的发射器设计)而选择的区域上并发执行的。注入的能量可以是例如5-100keV,或更特别地是20-40keV,而剂量率为例如高于1E14离子/cm-2/秒或甚至高于1E14离子/cm-2/秒的水平,在某些实施例中,剂量率在1E14-5E16离子/cm-2/秒的范围内。高剂量率能够实现高产量,同时使衬底的被注入层完全非晶化。因为注入是连续的,所以不会产生自退火,也未观察到缺陷团簇。在退火后,非晶化层被完全晶化,而且未观察到缺陷团簇。
根据本发明的另一方案,提供了用于使用离子注入来制造太阳能电池的方法。根据该方法,衬底被引入离子注入室。产生离子种类(ion species)的波束,该波束的截面大到足以覆盖整个衬底表面。来自该波束的离子被朝着衬底表面连续加速,以便连续地将离子注入到衬底内。剂量率被设计为使得对衬底的指定层进行完全非晶化。可选地,执行另外的处理,例如沉积诸如氮化硅层之类的抗反射层或封装层,以及沉积金属化网格。接着将衬底退火,以使非晶化层再结晶,并激活被注入的掺杂物离子。根据一个实施例,使用快速热处理来执行退火步骤,例如在600-1000℃下约几秒钟(例如1-20秒,或在一个特定实施例中为5秒)。
根据本发明另一实施例,提供了一种离子注入方法,该方法可用于太阳能电池的制造。根据该实施例,将衬底引入离子注入室内。然后,利用离子对被选定为被注入的衬底区域进行连续性轰击,以使该区域非晶化,而不具有自退火的可能性。利用固相外延再生长,来在快速热处理室中对衬底进行退火。
本发明的方面包括一种利用离子注入来制造太阳能电池的方法,该方法包含:将衬底引入离子注入室;产生用于注入该衬底的连续的离子流;并且将该离子流朝着该衬底的表面引导,以引起对该衬底表面的连续离子轰击,由此将离子注入到衬底内,同时非晶化该衬底的层。
本发明的进一步的方面包括一种用于对衬底进行离子注入的方法,该方法包括:将衬底引入离子注入室;产生用于注入该衬底的连续的离子流;并且将该离子流朝着该衬底的表面引导,以引起对该衬底表面的连续离子轰击,同时防止该衬底的自退火。
本发明的其他方面包括一种对衬底进行离子注入的方法,该方法包括:将衬底引入离子注入室;产生用于注入该衬底的连续的离子流;并且将该离子流朝着该衬底的表面引导,以引起对该衬底表面的连续离子轰击,由此将该衬底的整个表面同时非晶化。
附图说明
被并入本说明书并且构成本说明书的一部分的附图对本发明的实施例进行例示,并与本说明书一起用来解释和展示本发明的原理。附图旨在以图形方式示出示例性实施例的主要特征。附图并不是用来显示实际实施例的每个特征,也不是用来描绘所描绘元件的相对尺寸,而且所描绘元件不是按比例绘制的。
图1为比较现有技术与所公开方法的瞬间离子注入剂量的图。
图2为针对现有技术的注入器与当前实施例的退火后缺陷对比剂量率的图。
图3A为根据本发明一个实施例的在离子注入后的晶片的显微照片,而图3B是在常规炉内在930℃下退火30分钟后的晶片。
图4是示出可以用于本文所描述方法的离子注入室的示意图。
具体实施方式
图1为比较现有技术与所公开方法的瞬间离子注入剂量的图。如图所示,通过使用“笔形”波束105来进行对晶片100进行离子注入,“笔形”形波束105被以二维方式扫描以覆盖该晶片。在该衬底上的各个点处得到的瞬间剂量率被绘制为处于高瞬间剂量率的周期性注入,但持续非常短的持续时间。这引起局部加热,随之引起自退火和缺陷团簇。与此相似,使用带状波束115来对晶片110进行离子注入,带状波束115被沿一方向扫描,以覆盖该晶片。在该衬底上的各个点处得到的瞬间剂量率被绘制为处于中等高的瞬间高剂量率的周期性注入,但持续非常短的持续时间。这也引起局部加热,随之引起自退火和缺陷团簇。与此相反,根据一个实施例,使用连续波束流125对晶片120进行注入,使得将被注入的各个点(在此为整个晶片)是被连续注入离子,而且不会发生自退火。
可以认识到,图1所示的总剂量率可以通过对各方法的图进行积分来算出。可以设定该系统,使得对于所有三种系统,积分后的剂量率相等,然而,在该晶片上的各个点处的瞬间剂量率,对于笔形波束是最高的,对于带状波束稍微低一些,而对于本实施例的“恒导通”的波束则是最低的。所以,该笔形波束及该带状波束的积分剂量率被限制以便不对晶片过度加热。另一方面,本实施例的恒导通波束可具有高得多的平均剂量率,并仍然将晶片维持在可接受的温度。例如,在一些实施例中,剂量率被设定为高于1E15离子/cm-2/秒。在一个例子中,注入条件被设定为:20keV的注入能量和3E15cm-2的剂量。
现在请参阅图2,从该图可明显看出本发明方法的优势。图2为针对现有技术的注入器与本实施例在退火后的缺陷数量对比剂量率的图。在图2中,本实施例被表示为“Intevac注入器”。如从图2的图能认识到的,笔形波束离子注入导致在退火过程后剩余数量最多的缺陷,而所公开的方法得到在退火过程后剩余数量最少的缺陷或没有缺陷。同时,图中所示的缺陷数量的差异进一步支持以下假设:缺陷是由自退火机制引起,使用所公开的方法并不存在自退火机制。
此外,图2示出了退火机制随平均剂量率的提高而提高。这可能表明:随着剂量率的提高,缺陷会更有效地累积,但随着平均剂量率提高,将可被更好地退火。同时,由于衬底在被连续注入时并无机会自退火,因此所公开的方法可提供对衬底较佳的非晶化。
在上述实施例中,可以利用常规炉或快速热处理(RTP)对衬底进行退火。在一个例子中,晶片在炉中在温度为例如930℃下被退火约30分钟,而使用RTP,晶片在温度600-1000℃下被退火约1-10秒(在特定例子中为5秒)。值得注意的是,对被注入波束线且被常规退火的样本的研究表明增加了氧化层。特别地,卢瑟福反向散射谱(RBS)示出了加宽的硅波峰,表示退火后的残余损伤。相反,根据所公开的方法经RTP退火后的晶片的RBS图并未显示有氧化物或加宽的硅波峰,表示该样本已经完全被再结晶。
图3A为根据一实施例的在离子注入后的晶片的显微照片,而图3B是晶片在常规炉内在930℃下退火30分钟后的显微照片。该注入是利用PH3气源在20keV及3E15cm-2下进行的。如在图3A的显微照片中可见,被注入层已完全被非晶化。而且,图3B的显微照片也显示了无缺陷的完全再结晶的层。
图4示出了等离子体网络注入系统800的一实施例的截面三维立体透视图,该系统可以用于所公开的方法中。系统800包括室810,室810容纳了第一格板850、第二格板855和第三格板857。这些格板可以由各种不同的材料形成,该材料包括但不限于硅、石墨、碳化硅和钨。每一格板包括多个孔,这些孔被配置为允许离子穿过。等离子体源在室810的等离子体区域中维持等离子体。在图4中,该等离子体区域位于第一格板850的上方。在一些实施例中,等离子体气体经由气体入口820被供给到该等离子体区域。等离子体气体可以是诸如氩之类的等离子体维持气体与诸如含有磷、硼等的气体的掺杂气体的组合。此外,也可以包括非掺杂的非晶化气体,例如锗。在一些实施例中,通过真空口830向室810内部施加真空。在一些实施例中,将绝缘体895布置在室810的外壁周围。在一些实施例中,室壁被配置为使用例如由永磁体或电磁体产生的电场和/或磁场,将离子抵制在等离子体区域内。
目标晶片840被定位在格板与等离子体区域相反的一侧上。在图4中,目标晶片840位于第三格板857的下方。由可调衬底保持器来支撑目标晶片840,从而允许该目标晶片840能够在同质注入位置(较靠近格板)与选择性注入位置(离格板较远)之间被调节。通过将DC电位施加到第一格板850,将等离子体离子以离子束870的形式朝着目标晶片840加速。这些离子被注入到晶片840中。通过利用第二格板855来避免因离子撞击晶片840和其他材料而产生的次级电子的有害效应,该第二格板855相对于最初格板是被负偏压的。该具有负偏压的第二格板855抑制了从晶片840逃逸的电子。在一些实施例中,第一格板850被偏压到80kV,而第二格板855被偏压到-2kV。不过,其他的偏压电压也可被预期使用。第三格板857用作波束限定网格,而且通常是接地的。第三格板857被定位成与衬底表面接触或非常接近衬底表面,以便提供对注入的最终限定。如果需要选择性的注入,格板857可以用作波束限定掩膜,并提供所需的关键对准。第三格板857可以被配置成荫罩(shadow mask),以实现限定波束的选择性注入。此外,可以使用不需要掩膜的任何形式的波束成形来替代或补充该第三格板857。
在图4的实施例中,离子被从等离子体区中抽取,并被朝着衬底加速。当衬底与格板充分间隔开时,离子束870具有足够的行进距离,以形成向着该衬底行进的一个离子列(column)。这是由各离子束870一旦离开格板后自然的发散趋势所致的。可以通过调节格板中孔的数量、尺寸及形状,各格板间的距离,以及格板与衬底间的距离等等,来控制离子列的截面的均匀性。应当注意的是,虽然在图4的实施例中,格板和/或衬底被用来控制离子列的产生以及其均匀性,但也可使用其他手段。主要的目的是为了产生单个列的离子,其中该列具有足够大的截面,以使能对衬底的整个表面进行并发且连续地注入。当然,如果执行选择性的注入,第三格板可以用来挡住该列的部分。
如从上文可理解的,该方法的实施例是以下列步骤进行:将衬底引入离子注入器,产生截面尺寸足够大以覆盖衬底的整个面积的离子束或离子列,并引导该束以便连续地将离子注入到该衬底上并且非晶化该衬底的层。然后,为提高产量,利用SPER退火机制将衬底在RTP室中进行退火,其中,非晶化层再结晶。该退火步骤还激活了从离子束注入的掺杂物。根据用于太阳能电池制造的另一实施例,在离子注入后,在非晶化层上制作太阳能电池的另外层,包括金属化层。然后将该衬底转移入RTP室中,以同时将该金属化层及该非晶化层进行退火。也就是说,该SPER退火是以金属化退火步骤来实现的,使得在该离子注入过程后不存在单独的退火步骤。尽管已经根据特定材料和特定步骤的示例性实施例讨论了本发明,本领域技术人员应当理解,可做出这些特定示例的变型或使用这些特定示例的变型,并且将从通过所描述及说明的实践以及对操作的讨论而得到的理解来由此产生这样的结构及方法,以便促进在不脱离所附权利要求限定的本发明范围的情况下做出修改。

Claims (20)

1.一种使用离子注入来制造太阳能电池的方法,包括:
将衬底引入离子注入室;
产生具有足够大以覆盖所述衬底的整个表面的截面的离子种类的束;
将所述离子束引向所述衬底的表面,从而引起以高于1E14离子/cm-2/秒的剂量率对所述衬底的所述表面的连续离子轰击,由此将离子注入到所述衬底中,同时对所述衬底的层进行非晶化并且防止自退火。
2.根据权利要求1所述的方法,还包括对所述衬底进行退火,以使得非晶化的所述层再结晶并且激活注入到所述衬底的所述离子种类。
3.根据权利要求2所述的方法,其中,使用快速热处理执行退火。
4.根据权利要求2所述的方法,其中,所述退火在600-1000℃下执行1-20秒。
5.根据权利要求1所述的方法,其中,注入的能量为5-100keV。
6.根据权利要求1所述的方法,其中,注入的能量为20-40keV。
7.根据权利要求1所述的方法,其中,所述剂量率在1E14离子/cm-2/秒到5E16离子/cm-2/秒的范围内。
8.根据权利要求1所述的方法,还包括:
沉积封装层;
沉积金属化网格;以及
使用快速热处理对所述衬底进行退火。
9.根据权利要求8所述的方法,其中,所述退火在600-1000℃下执行约1-10秒。
10.根据权利要求1所述的方法,还包括:
在所述离子注入的过程之后,并且在不执行退火步骤的情况下,在所述衬底上制作金属化层;以及,
在形成所述金属化层之后,对所述衬底进行退火,以同时执行以下操作:对所述金属化层退火、使非晶化的所述层再结晶和激活所注入的掺杂物。
11.一种用于对衬底进行离子注入的方法,包括:
将衬底引入到离子注入室中;
从PH3气源产生连续离子流;
将所述离子流引向所述衬底的表面,以引起对所述衬底的所述表面的连续离子轰击,从而将所述离子注入到所述衬底中,同时对所述衬底的层进行非晶化并且防止所述衬底的自退火;
在不执行退火步骤的情况下,在所述衬底上制作金属化层;以及,
对所述衬底进行退火,以同时执行以下操作:对所述金属化层退火、使非晶化的所述层再结晶和激活所注入的掺杂物。
12.根据权利要求11所述的方法,其中,防止所述衬底的自退火包括引起离子种类对在待注入的整个所述表面的连续轰击。
13.根据权利要求11所述的方法,其中,退火是在600-1000℃下持续约1-10秒执行的快速热处理。
14.根据权利要求12所述的方法,其中,所述衬底的整个前表面被同时注入。
15.根据权利要求11所述的方法,其中,产生连续离子流的步骤包括:
使用所述PH3气源来维持等离子体;
抽取所述种类的离子列,其中,所述列具有足够大截面以实现对所述衬底的整个所述表面的同时注入。
16.根据权利要求15所述的方法,其中,抽取离子列的步骤包括从所述等离子体中抽取多个离子束,并使得将多个所述离子束组合为单个离子列。
17.根据权利要求16所述的方法,其中,注入的能量为5-100keV。
18.根据权利要求16所述的方法,其中,剂量率被设计成使得将所述衬底的指定层完全非晶化。
19.根据权利要求18所述的方法,其中,所述剂量率高于1E15离子/cm-2/秒。
20.根据权利要求18所述的方法,其中,平均剂量为5E14-5E16cm-2
CN201710051689.4A 2010-11-17 2011-11-17 用于太阳能电池制造中的固相外延再生长的直流离子注入 Active CN107039251B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US41458810P 2010-11-17 2010-11-17
US61/414,588 2010-11-17
CN201180060732.4A CN103370769B (zh) 2010-11-17 2011-11-17 用于太阳能电池制造中的固相外延再生长的直流离子注入

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201180060732.4A Division CN103370769B (zh) 2010-11-17 2011-11-17 用于太阳能电池制造中的固相外延再生长的直流离子注入

Publications (2)

Publication Number Publication Date
CN107039251A true CN107039251A (zh) 2017-08-11
CN107039251B CN107039251B (zh) 2021-02-09

Family

ID=46048148

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201180060732.4A Expired - Fee Related CN103370769B (zh) 2010-11-17 2011-11-17 用于太阳能电池制造中的固相外延再生长的直流离子注入
CN201710051689.4A Active CN107039251B (zh) 2010-11-17 2011-11-17 用于太阳能电池制造中的固相外延再生长的直流离子注入

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201180060732.4A Expired - Fee Related CN103370769B (zh) 2010-11-17 2011-11-17 用于太阳能电池制造中的固相外延再生长的直流离子注入

Country Status (8)

Country Link
US (1) US20120122273A1 (zh)
EP (1) EP2641266A4 (zh)
JP (1) JP2014502048A (zh)
KR (1) KR20130129961A (zh)
CN (2) CN103370769B (zh)
SG (1) SG190332A1 (zh)
TW (1) TWI469368B (zh)
WO (1) WO2012068417A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110042053A (ko) * 2008-06-11 2011-04-22 솔라 임플란트 테크놀로지스 아이엔씨. 주입을 이용한 솔라 셀-선택 에미터의 형성 및 어닐링 방법
US8749053B2 (en) 2009-06-23 2014-06-10 Intevac, Inc. Plasma grid implant system for use in solar cell fabrications
SG183267A1 (en) * 2010-02-09 2012-09-27 Intevac Inc An adjustable shadow mask assembly for use in solar cell fabrications
US9324598B2 (en) 2011-11-08 2016-04-26 Intevac, Inc. Substrate processing system and method
KR20140003693A (ko) * 2012-06-22 2014-01-10 엘지전자 주식회사 태양 전지의 불순물층 형성용 마스크 및 이의 제조 방법, 그리고 이를 이용한 태양 전지용 불순물층의 제조 방법
US9318332B2 (en) 2012-12-19 2016-04-19 Intevac, Inc. Grid for plasma ion implant
CN103515483A (zh) * 2013-09-09 2014-01-15 中电电气(南京)光伏有限公司 一种晶体硅太阳能电池发射结的制备方法
CN103730541B (zh) * 2014-01-13 2016-08-31 中国科学院物理研究所 太阳能电池纳米发射极及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1198597A (zh) * 1997-04-28 1998-11-11 夏普公司 太阳电池及其制备方法
US20060019477A1 (en) * 2004-07-20 2006-01-26 Hiroji Hanawa Plasma immersion ion implantation reactor having an ion shower grid
US20080090392A1 (en) * 2006-09-29 2008-04-17 Varian Semiconductor Equipment Associates, Inc. Technique for Improved Damage Control in a Plasma Doping (PLAD) Ion Implantation
CN101188258A (zh) * 2006-11-24 2008-05-28 信越化学工业株式会社 单结晶硅太阳能电池的制造方法及单结晶硅太阳能电池
CN100505180C (zh) * 2003-09-18 2009-06-24 国际商业机器公司 改善有缺陷的半导体材料质量的方法
US20090227061A1 (en) * 2008-03-05 2009-09-10 Nicholas Bateman Establishing a high phosphorus concentration in solar cells
US20090308439A1 (en) * 2008-06-11 2009-12-17 Solar Implant Technologies Inc. Solar cell fabrication using implantation
US20110053351A1 (en) * 2009-09-03 2011-03-03 Atomic Energy Council-Institute Of Nuclear Energy Research Solar Cell Defect Passivation Method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534381B2 (en) * 1999-01-08 2003-03-18 Silicon Genesis Corporation Method for fabricating multi-layered substrates
KR100410574B1 (ko) * 2002-05-18 2003-12-18 주식회사 하이닉스반도체 데카보렌 도핑에 의한 초박형 에피채널을 갖는반도체소자의 제조 방법
US7745803B2 (en) * 2004-02-03 2010-06-29 Sharp Kabushiki Kaisha Ion doping apparatus, ion doping method, semiconductor device and method of fabricating semiconductor device
KR100675891B1 (ko) * 2005-05-04 2007-02-02 주식회사 하이닉스반도체 불균일 이온주입장치 및 불균일 이온주입방법
US7410852B2 (en) * 2006-04-21 2008-08-12 International Business Machines Corporation Opto-thermal annealing methods for forming metal gate and fully silicided gate field effect transistors
US7608521B2 (en) * 2006-05-31 2009-10-27 Corning Incorporated Producing SOI structure using high-purity ion shower
US8815634B2 (en) * 2008-10-31 2014-08-26 Varian Semiconductor Equipment Associates, Inc. Dark currents and reducing defects in image sensors and photovoltaic junctions
US7820532B2 (en) * 2008-12-29 2010-10-26 Honeywell International Inc. Methods for simultaneously forming doped regions having different conductivity-determining type element profiles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1198597A (zh) * 1997-04-28 1998-11-11 夏普公司 太阳电池及其制备方法
CN100505180C (zh) * 2003-09-18 2009-06-24 国际商业机器公司 改善有缺陷的半导体材料质量的方法
US20060019477A1 (en) * 2004-07-20 2006-01-26 Hiroji Hanawa Plasma immersion ion implantation reactor having an ion shower grid
US20080090392A1 (en) * 2006-09-29 2008-04-17 Varian Semiconductor Equipment Associates, Inc. Technique for Improved Damage Control in a Plasma Doping (PLAD) Ion Implantation
CN101188258A (zh) * 2006-11-24 2008-05-28 信越化学工业株式会社 单结晶硅太阳能电池的制造方法及单结晶硅太阳能电池
US20090227061A1 (en) * 2008-03-05 2009-09-10 Nicholas Bateman Establishing a high phosphorus concentration in solar cells
US20090308439A1 (en) * 2008-06-11 2009-12-17 Solar Implant Technologies Inc. Solar cell fabrication using implantation
US20110053351A1 (en) * 2009-09-03 2011-03-03 Atomic Energy Council-Institute Of Nuclear Energy Research Solar Cell Defect Passivation Method

Also Published As

Publication number Publication date
EP2641266A4 (en) 2014-08-27
CN107039251B (zh) 2021-02-09
EP2641266A1 (en) 2013-09-25
KR20130129961A (ko) 2013-11-29
TWI469368B (zh) 2015-01-11
WO2012068417A1 (en) 2012-05-24
JP2014502048A (ja) 2014-01-23
CN103370769B (zh) 2017-02-15
CN103370769A (zh) 2013-10-23
US20120122273A1 (en) 2012-05-17
TW201232796A (en) 2012-08-01
SG190332A1 (en) 2013-06-28

Similar Documents

Publication Publication Date Title
CN103370769B (zh) 用于太阳能电池制造中的固相外延再生长的直流离子注入
KR100351489B1 (ko) 반도체기판내에회로및매립절연층을형성하는방법
KR102635849B1 (ko) Dram 디바이스 및 이를 형성하는 방법, 및 게이트 산화물 층을 형성하는 방법
US8598025B2 (en) Doping of planar or three-dimensional structures at elevated temperatures
US8975603B2 (en) Systems and methods for plasma doping microfeature workpieces
US7378335B2 (en) Plasma implantation of deuterium for passivation of semiconductor-device interfaces
US7868306B2 (en) Thermal modulation of implant process
KR20100106374A (ko) 박막 물질들의 입자 빔 보조 변형
US20080242066A1 (en) Method Of Manufacturing Semiconductor
TW201025405A (en) Techniques for ion implantation of molecular ions
GB2316224A (en) A method of implanting ions in semiconductors
TWI527091B (zh) 半導體裝置之製造方法
US20100112788A1 (en) Method to reduce surface damage and defects
Current Perspectives on low-energy ion (and neutral) implantation
CN112885716B (zh) 半导体结构的形成方法
Current Ion implantation for fabrication of semiconductor devices and materials
CN114242656A (zh) P型mosfet器件及其制备方法
JP3578345B2 (ja) 半導体装置の製造方法および半導体装置
JP2013531372A (ja) ダメージのない接合形成方法
JP3296052B2 (ja) 不純物の活性化方法
JP2003188110A (ja) ドーピング方法およびイオン注入装置
CN114927411A (zh) 半导体器件的制备方法及结构
CN101090094A (zh) 制造半导体器件的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant