CN107037247B - 一种数字信号的识别方法 - Google Patents

一种数字信号的识别方法 Download PDF

Info

Publication number
CN107037247B
CN107037247B CN201611029517.9A CN201611029517A CN107037247B CN 107037247 B CN107037247 B CN 107037247B CN 201611029517 A CN201611029517 A CN 201611029517A CN 107037247 B CN107037247 B CN 107037247B
Authority
CN
China
Prior art keywords
line segment
point
value
difference
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611029517.9A
Other languages
English (en)
Other versions
CN107037247A (zh
Inventor
丁大良
丁小良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201611029517.9A priority Critical patent/CN107037247B/zh
Publication of CN107037247A publication Critical patent/CN107037247A/zh
Application granted granted Critical
Publication of CN107037247B publication Critical patent/CN107037247B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明公开了一种数字信号的识别方法,涉及数据分析技术领域,包括偏置采样、查找线段、线段分类、识别跳变、识别上下拉、滤波识别及信号判断共七个步骤,本发明基于数字信号的特点,通过采集多段波形数据,信号识别准确度高;判断方法简单,该方法中的各个识别参数值可根据具体情况做出更改,以适应不同情况下的数据波形的检测。

Description

一种数字信号的识别方法
技术领域
本发明涉及数据分析技术领域,具体涉及一种数字信号的识别方法。
背景技术
通常在采集数据的过程中,采集的信号波形分为两种:模拟信号和数字信号。模拟信号与数字信号的本质区别就是模拟信号是连续变化的,而数字信号是不同电平值之间的变化。
现有的信号识别过程一般较为复杂和繁琐,识别速度和精度不能达到一个很好的平衡值,造成分析效率较低,不适应当今社会的发展需要。
现有的电子设备或电路板的数字接口识别一般较为困难,特别在对某件产品未知的情况下,就目前的设备而言,难以准确和快速地检测出数字接口的类型。
发明内容
本发明的目的在于提供一种数字信号的识别方法,以解决现有技术中导致的上述缺陷。
一种数字信号的识别方法,包括如下步骤:
(1)偏置采样
设置示波器通道的参考地与被测对象地线之间的电压差为X伏,然后采集一段电压波形作为待检波形;
(2)查找线段
设置取样点间隔=M,即相邻两个取样点的索引值之差,也就是每隔M-1个实际采集点取样一次;取样点个数=N=取样段数+1,相邻两个取样点之间的数据为一段取样;取样点离散值=0.1V,任一取样点的电压值与所有取样点的平均电压值之差的绝对值,用于判断取样的有效性;滤波点数=3,用于查找线段的起始点和结束点时,防止干扰产生的个别实际采集点影响查找的准确性;
按照索引值由小到大的顺序,从待检波形中提取这N个点记为:a1,a2,a3,a4……aN,假设a1点为采集到的第一个数据点,设置取样点间隔为M个点,这样a1=第1个实际采集点;a2=第M+1个实际采集点;a3=第2M+1个实际采集点;a4=第3M+1个实际采集点……,以此类推;
如果满足以下条件:
|a1-(a1+a2+……+aN)/N|≤0.1V(取样点离散值);
且|a2-(a1+a2+……+aN)/N|≤0.1V(取样点离散值);
……
且|aN-(a1+a2+……+aN)/N|≤0.1V(取样点离散值);
除a1≤a2≤……≤aN或a1≥a2≥……≥aN(不包括a1=a2=……=aN);
则表示找到的a1、a2……aN取样点有效;相反,如果取样点无效,则所有取样点的索引值+1,即a1=第2个实际采集点;a2=第M+2个实际采集点;a3=第2M+2个实际采集点;a4=第3M+2个实际采集点……,然后重复上述步骤,直到所有条件同时满足,(a1+a2+a3+……+aN)/N即为该条线段的平均电压值L,然后从a1和aN点分别向前找到a1’和向后找到aN’;其中:a1’满足其前面连续有3个及3个以上的点与线段平均电压值之差的绝对值大于0.1V,没有找到则认为第1个实际采集点为线段的起始点,aN’满足其后面连续有3个及3个以上的点与线段平均电压值之差的绝对值大于0.1V,没有找到则认为最后1个实际采集点为线段的结束点;此时找到的a1’和aN’即为线段的起始和结束点;
同理,使用上述方法从aN’之后的待检波形中找出所有的线段;
本步骤中,首先,通过相同间隔的取样点之间的关系以及分别与所有取样点平均值的关系,找到一条水平的线段;然后,逐个实际采集点向水平线段两端延伸的方法去找此线段的起始点和结束点;最后,通过滤波点数屏蔽掉干扰,找到线段真正的起始点和结束点;
(3)线段分类
默认设置:线段的合并电压差=0.1V,任一与参考线段的平均电压值之差的绝对值≤0.1V的线段,都可以合并为同一类线段,假设从待检波形中共找到了n条线段,它们的线段平均电压值分别是:L1、L2……Ln,从L1开始合并,首先判断L2能不能合并,如果条件|L1-L2|≤0.1V,即可合并,假设L2满足合并条件,再来合并L3,判断条件为:|L1-L3|≤0.1V是否成立,假设以上条件不成立,那么L3不能合并,暂时保留,继续合并L4,判断条件为:|L1-L4|≤0.1V是否成立,如果上述条件成立,即可合并L4;依次类推,合并到最后的Ln,即可得到第1类线段平均电压值;再进行第二轮的合并,将第一轮合并后剩下的所有线段,从最前面的线段依次向后合并到最后面的线段,即可得到第2类线段平均电压值;依次类推直到所有的线段不能再合并为止,即可得出线段平均电压值种类的数量;如果线段平均电压值种类的数量满足2≤线段平均电压值种类≤3为可疑数字信号,否则就是非数字信号,识别结束;
本步骤中,选取一条线段的线段平均电压值为参考,所有与此线段平均电压值之差的绝对值≤0.1V的线段,即可合并为同一类;
(4)识别跳变
默认设置:线段平均电压值之差=0.3V,线段平均电压值之差也就是相邻两条线段的平均电压值之差的绝对值;1ns≤线段间隔≤30nS,线段间隔也就是前一条线段结尾的aN’点与后一条线段开头的b1’点之间的时间差;
判断跳变的条件:线段平均电压值之差≥0.3V,计算方法是:aN’所在线段的平均电压值L1与b1’所在线段的平均电压值L2之差的绝对值,即|L1–L2|≥0.3V;时间间隔,由于采样速度决定了数据点之间的时间间隔,所以aN’和b1’之间数据点的间隔数×数据点之间的时间间隔就是aN’和b1’之间的时间间隔;计算方法是:|aN’的索引值-b1’的索引值|×1nS(采集一个点的用时),即1ns≤|aN’的索引值-b1’的索引值|×1nS≤30nS;
如果满足跳变条件:|L1–L2|≥0.3V且1ns≤|aN’的索引值-b1’的索引值|×1nS≤30nS,则表示跳变条件识别成功1次,以此向后判断第二条线段与第三条线段是否存在跳变,一直识别到待检波形的最后一条线段为止;不断累计次数;
本步骤中,线段平均电压值之差|L1–L2|≥0.3V是根据二极管典型的最小管压降,也就是锗管的0.3V来设置的;1ns≤线段间隔≤30nS是根据数字信号的典型特征和试验数据拿捏来的,具有识别的典型性;
(5)识别上下拉
默认设置:线段电压值之差=0.3V,线段电压值之差也就是前一条线段结尾的aN’点与后一条线段开头的b1’点的电压值之差的绝对值;200ns≤线段间隔≤10000nS,线段间隔还是前一条线段结尾的aN’点与后一条线段开头的b1’点之间的时间差;上拉面积比=1.000000,下拉面积比=1.000000,上拉/下拉面积比等于上升/下降沿面积与三角形面积(上升/下降沿处的三角形)的比值;
判断上下拉,相邻线段之间的变化满足共同前提条件:线段电压值之差:|aN’的电压值-b1’的电压值|≥0.3V;时间间隔:200ns≤|aN’的索引值-b1’的索引值|×10nS≤10000nS后,电压值由低向高变化时,上升沿面积/三角形面积≥1.000000,即为满足上拉条件1次,不断累计次数;相反,电压值由高向低变化时,下降沿面积/三角形面积≤1.000000,即为满足下拉条件1次,不断累计次数;
其中:上升沿面积=(aN’的电平值+(aN’+1)的电平值-2aN’(起点/低点电平值))×10nS(采样间隔)/2+((aN’+1)的电平值+(aN’+2)的电平值-2aN’(起点/低点电平值))×10nS(采样间隔)/2+……+((b1’-1)的电平值+b1’的电平值-2aN’(起点/低点电平值))×10nS(采样间隔)/2;
下降沿面积=(aN’的电平值+(aN’+1)的电平值-2b1’(终点/低点电平值))×10nS(采样间隔)/2+((aN’+1)的电平值+(aN’+2)的电平值-2b1’(终点/低点电平值))×10nS(采样间隔)/2+……+((b1’-1)的电平值+b1’的电平值-2b1’(终点/低点电平值))×10nS(采样间隔)/2;
三角形面积=|aN’的电平值-b1’的电平值|×|aN’的索引值-b1’的索引值|×10nS(采样间隔)/2;
由于是进行面积的比值运算10nS(采样间隔)/2即可忽略掉,以减小运算量;
本步骤中,200ns≤线段间隔≤10000nS是根据数字信号所用上拉电阻值的大小和试验数据拿捏来的,具有识别的典型性。使用上升/下降沿面积与三角形面积比值的方法,辨识了上下拉曲线的形状;
(6)滤波识别
相邻两条线段之间的变化,既不满足跳变条件又不满足上下拉条件的,即为满足滤波条件1次,不断累积次数;
本步骤中,为了防止干扰导致识别准确率下降,引入了与跳变、上下拉都无关的滤波识别;
(7)信号判断
如前所述共查找到n条线段,即线段间变化共n-1次;
判断普通数字信号的默认设置:上拉次数≤0;下拉次数≤0;上下拉次数≤0(上拉次数与下拉次数之和);滤波次数≤1;
如果满足如下判断条件:上拉次数≤0且下拉次数≤0且上下拉次数≤0且滤波次数≤1且跳变次数=n-1-上拉次数-下拉次数-滤波次数,即为普通数字信号;
判断三态数字信号的默认设置:上拉次数≥0;下拉次数≥0;上下拉次数≥1;滤波次数≤1;
如果满足如下判断条件:上拉次数≥0且下拉次数≥0且上下拉次数≥1且滤波次数≤1且跳变次数=n-1-上拉次数-下拉次数-滤波次数,即为三态数字信号;
既不是普通数字信号又不是三态数字信号,即为非数字信号,识别结束。
本步骤中,指明了普通数字信号、三态数字信号及非数字信号三者之间的关系,以及通过上拉次数、下拉次数及上下拉次数三项参数设置的默认值,表明了普通数字信号与三态数字信号区别的关键特征:普通数字信号没有上拉或下拉,三态数字信号至少有一个上拉或下拉。
优选的,所述步骤(1)中,如果采集到某小段电压值仍为0伏可判断此时为悬空电压,这样可以在采集数据的过程中将悬空电压这一特殊的状态采集到。
优选的,所述N和M均为正整数块,且N不小于3。
优选的,所述N为4,所述M为10。
优选的,所述步骤(2)中相邻取样点之间的间隔相等。
本发明的优点在于:
1.基于数字信号的特点,通过采集多段波形数据,信号识别准确度高;
2.判断方法简单,该方法中的各个识别参数值可根据具体情况做出更改,以适应不同情况下的数据波形的检测;
3.在工程应用中,当人工根据实际信号波形正确的设置识别参数后,计算机会自动记录这些识别参数值以达到自学习的目的,为实现根据采集波形自动匹配识别参数值奠定数据基础。
附图说明
图1为本发明实施例1的数据波形图。
图2、图3为本发明实施例2中的两种数据波形图。
图4为本发明实施例3的数据波形图。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
实施例1:
如图1所示,一种数字信号的识别方法,包括如下步骤:
(1)偏置采样
设置示波器通道的参考地与被测对象地线之间的电压差为X伏,然后采集一段电压波形作为待检波形;
(2)查找线段
设置取样点间隔=10,即相邻两个取样点的索引值之差,也就是每隔9个实际采集点取样一次;取样点个数=4=取样段数+1,相邻两个取样点之间的数据为一段取样;取样点离散值=0.1V,任一取样点的电压值与所有取样点的平均电压值之差的绝对值,用于判断取样的有效性;滤波点数=3,用于查找线段的起始点和结束点时,防止干扰产生的个别实际采集点影响查找的准确性;
按照索引值由小到大的顺序,从待检波形中提取这4个点记为:a1,a2,a3,a4,假设a1点为采集到的第一个数据点,设置取样点间隔为10个点,这样a1=第1个实际采集点;a2=第11个实际采集点;a3=第21个实际采集点;a4=第31个实际采集点;
如果满足以下条件:
|a1-(a1+a2+a3+a4)/4|≤0.1V(取样点离散值);
且|a2-(a1+a2+a3+a4)/4|≤0.1V(取样点离散值);
且|a3-(a1+a2+a3+a4)/4|≤0.1V(取样点离散值);
且|a4-(a1+a2+a3+a4)/4|≤0.1V(取样点离散值);
除a1≤a2≤a3≤a4(上升趋势)或a1≥a2≥a3≥a4(下降趋势)(不包括a1=a2=a3=a4),则表示找到的a1、a2、a3、a4取样点有效;相反,如果取样点无效,则所有取样点的索引值+1,即a1=第2个实际采集点;a2=第12个实际采集点;a3=第22个实际采集点;a4=第32个实际采集点,然后重复上述步骤,直到所有条件同时满足,(a1+a2+a3+a4)/4即为该条线段的平均电压值L,然后从a1和a4点分别向前找到a1’和向后找到a4’;其中:a1’满足其前面连续有3个及3个以上的点与线段平均电压值之差的绝对值大于0.1V,没有找到则认为第1个实际采集点为线段的起始点,a4’满足其后面连续有3个及3个以上的点与线段平均电压值之差的绝对值大于0.1V,没有找到则认为最后1个点为线段的结束点;此时找到的a1’和a4’即为线段的起始和结束点;
同理,使用上述方法从a4’之后的待检波形中找出所有的线段;
(3)线段分类
默认设置:线段的合并电压差=0.1V,任一与参考线段的平均电压值之差的绝对值≤0.1V的线段,都可以合并为同一类线段,假设从待检波形中共找到了4条线段,它们的线段平均电压值分别是:L1、L2、L3、L4,从L1开始合并,首先判断L2能不能合并,如果条件|L1-L2|≤0.1V,即可合并,假设L2满足合并条件,再来合并L3,判断条件为:|L1-L3|≤0.1V是否成立,假设以上条件不成立,那么L3不能合并,暂时保留,继续合并L4,判断条件为:|L1-L4|≤0.1V是否成立,如果上述条件成立,即可合并L4,即可得到第1类线段平均电压值;再进行第二轮的合并,将第一轮合并后剩下的所有线段,从最前面的线段(即第一轮合并时第一条不符合条件的L3)依次向后合并,因为L3后面已经没有可以合并的线段了,即可L3就是第2类线段平均电压值,到此所有线段合并完成;线段平均电压值种类的数量满足2≤线段平均电压值种类=2≤3,即为可疑数字信号,继续识别;
(4)识别跳变
默认设置:线段平均电压值之差=0.3V,线段平均电压值之差也就是相邻两条线段的平均电压值之差的绝对值;1ns≤线段间隔≤30nS,线段间隔也就是前一条线段结尾的a4’点与后一条线段开头的b1’点之间的时间差;
判断跳变的条件:线段平均电压值之差≥0.3V,计算方法是:a4’所在线段的平均电压值L1与b1’所在线段的平均电压值L2之差的绝对值,即|L1–L2|≥0.3V;
时间间隔,由于采样速度决定了数据点之间的时间间隔,所以a4’和b1’之间数据点的间隔数×数据点之间的时间间隔,就是a4’和b1’之间的时间间隔;计算方法是:|a4’的索引值-b1’的索引值|×1nS(采集一个点的用时),即1ns≤|a4’的索引值-b1’的索引值|×1nS≤30nS;
如果满足跳变条件(|L1–L2|≥0.3V且1ns≤|a4’的索引值-b1’的索引值|×1nS≤30nS)表示跳变条件识别成功1次,以此向后判断第二条线段与第三条线段是否存在跳变,一直识别到待检波形的最后一条线段为止;不断累计次数;
(5)识别上下拉
默认设置:线段电压值之差=0.3V,线段电压值之差也就是前一条线段结尾的a4’点与后一条线段开头的b1’点的电平值之差的绝对值;200ns≤线段间隔≤10000nS,线段间隔还是前一条线段结尾的a4’点与后一条线段开头的b1’点之间的时间差;上拉面积比=1.000000,下拉面积比=1.000000,上拉/下拉面积比等于上升/下降沿面积与三角形面积(上升/下降沿处的三角形)的比值;
判断上下拉,相邻线段之间的变化满足共同前提条件:线段电压值之差:|a4’的电平值-b1’的电平值|≥0.3V;时间间隔:200ns≤|a4’的索引值-b1’的索引值|×10nS(10nS采集一次,又称采样间隔)≤10000nS后,电压值由低向高变化时,上升沿面积/三角形面积≥1.000000,即为满足上拉条件1次,不断累计次数;相反,电压值由高向低变化时,下降沿面积/三角形面积≤1.000000,即为满足下拉条件1次,不断累计次数;
注:上升沿面积(即图2中弧形三角形面积)=(a4’的电平值+(a4’+1)的电平值-2a4’(起点/低点电平值))×10nS(采样间隔)/2+((a4’+1)的电平值+(a4’+2)的电平值-2a4’(起点/低点电平值))×10nS(采样间隔)/2+……+((b1’-1)的电平值+b1’的电平值-2a4’(起点/低点电平值))×10nS(采样间隔)/2;
下降沿面积(即图3中弧形三角形面积)=(a4’的电平值+(a4’+1)的电平值-2b1’(终点/低点电平值))×10nS(采样间隔)/2+((a4’+1)的电平值+(a4’+2)的电平值-2b1’(终点/低点电平值))×10nS(采样间隔)/2+……+((b1’-1)的电平值+b1’的电平值-2b1’(终点/低点电平值))×10nS(采样间隔)/2;
三角形面积=|a4’的电平值-b1’的电平值|×|a4’的索引值-b1’的索引值|×10nS(采样间隔)/2;
由于是进行面积的比值运算10nS(采样间隔)/2即可忽略掉,以减小运算量。
(6)滤波识别
相邻两条线段之间的变化,既不满足跳变条件又不满足上下拉条件的,即为满足滤波条件1次,不断累积次数;
(7)信号判断
共查找到4条线段,即线段间变化共3次;
判断普通数字信号的默认设置:上拉次数≤0;下拉次数≤0;上下拉次数≤0(上拉次数与下拉次数之和);滤波次数≤1;
经检测,上述线段满足如下判断条件:上拉次数≤0且下拉次数≤0且上下拉次数≤0且滤波次数≤1且跳变次数=3-上拉次数-下拉次数-滤波次数=3,故为普通数字信号。
实施例2:如图2和图3所示,图2为两个上拉和一个跳变,图3为两个下拉和一个跳变,其余部分与实施例1相同,不同之处在于:所述步骤(7)中,经检测,上述线段满足如下判断条件:上拉次数≥0且下拉次数≥0且上下拉次数≥1且滤波次数≤1且跳变次数=3-上拉次数-下拉次数-滤波次数=1,故为三态数字信号。
实施例3:如图4所示,其余部分与实施例1相同,不同之处在于:所述N=5。
本发明中,首先从采集的波形数据中寻找一条电平值相等的水平线段,并以此方法向后遍历所有的采集数据找出所有的线段;其次合并所有线段并判断线段平均电压值种类在预设范围内;再次识别两条相邻线段之间的变化数据;最后判断信号的类型;在工程应用中,当人工根据实际信号波形正确的设置识别参数后,计算机会自动记录这些识别参数值以达到自学习的目的,为实现根据采集波形自动匹配识别参数值奠定数据基础。
基于上述,本发明基于数字信号的特点,通过采集多段波形数据,信号识别准确度高;判断方法简单,该方法中的各个识别参数值可根据具体情况做出更改,以适应不同情况下的数据波形的检测。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。

Claims (5)

1.一种数字信号的识别方法,其特征在于,包括如下步骤:
(1)偏置采样
设置示波器通道的参考地与被测对象地线之间的电压差为X伏,然后采集一段电压波形作为待检波形;
(2)查找线段
设置取样点间隔=M,即相邻两个取样点的索引值之差,也就是每隔M-1个实际采集点取样一次;取样点个数=N=取样段数+1,相邻两个取样点之间的数据为一段取样;取样点离散值=0.1V,任一取样点的电压值与所有取样点的平均电压值之差的绝对值,用于判断取样的有效性;滤波点数=3,用于查找线段的起始点和结束点时,防止干扰产生的个别实际采集点影响查找的准确性;
按照索引值由小到大的顺序,从待检波形中提取这N个点记为:a1,a2,a3,a4……aN,假设a1点为采集到的第一个数据点,设置取样点间隔为M个点,这样a1=第1个实际采集点;a2=第M+1个实际采集点;a3=第2M+1个实际采集点;a4=第3M+1个实际采集点……,以此类推;
如果满足以下条件:
|a1-(a1+a2+……+aN)/N|≤0.1V;
且|a2-(a1+a2+……+aN)/N|≤0.1V;
……
且|aN-(a1+a2+……+aN)/N|≤0.1V;
除a1≤a2≤……≤aN或a1≥a2≥……≥aN,不包括a1=a2=……=aN;
则表示找到的a1、a2……aN取样点有效;相反,如果取样点无效,则所有取样点的索引值+1,即a1=第2个实际采集点;a2=第M+2个实际采集点;a3=第2M+2个实际采集点;a4=第3M+2个实际采集点……,然后重复上述步骤,直到所有条件同时满足,(a1+a2+a3+……+aN)/N即为该条线段的平均电压值L,然后从a1和aN点分别向前找到a1’和向后找到aN’;其中:a1’满足其前面连续有3个及3个以上的点与线段平均电压值之差的绝对值大于0.1V,没有找到则认为第1个实际采集点为线段的起始点,aN’满足其后面连续有3个及3个以上的点与线段平均电压值之差的绝对值大于0.1V,没有找到则认为最后1个实际采集点为线段的结束点;此时找到的a1’和aN’即为线段的起始和结束点;
同理,使用上述方法从aN’之后的待检波形中找出所有的线段;
(3)线段分类
默认设置:线段的合并电压差=0.1V,任一与参考线段的平均电压值之差的绝对值≤0.1V的线段,都可以合并为同一类线段,假设从待检波形中共找到了n条线段,它们的线段平均电压值分别是:L1、L2……Ln,从L1开始合并,首先判断L2能不能合并,如果条件|L1-L2|≤0.1V,即可合并,假设L2满足合并条件,再来合并L3,判断条件为:|L1-L3|≤0.1V是否成立,假设以上条件不成立,那么L3不能合并,暂时保留,继续合并L4,判断条件为:|L1-L4|≤0.1V是否成立,如果上述条件成立,即可合并L4;依次类推,合并到最后的Ln,即可得到第1类线段平均电压值;再进行第二轮的合并,将第一轮合并后剩下的所有线段,从最前面的线段依次向后合并到最后面的线段,即可得到第2类线段平均电压值;依次类推直到所有的线段不能再合并为止,即可得出线段平均电压值种类的数量;如果线段平均电压值种类的数量满足2≤线段平均电压值种类≤3为可疑数字信号,否则就是非数字信号,识别结束;
(4)识别跳变
默认设置:线段平均电压值之差=0.3V,线段平均电压值之差也就是相邻两条线段的平均电压值之差的绝对值;1ns≤线段间隔≤30nS,线段间隔也就是前一条线段结尾的aN’点与后一条线段开头的b1’点之间的时间差;
判断跳变的条件:线段平均电压值之差的绝对值≥0.3V,计算方法是:aN’所在线段的平均电压值L1与b1’所在线段的平均电压值L2之差的绝对值,即|L1–L2|≥0.3V;时间间隔,由于采样速度决定了数据点之间的时间间隔,所以aN’和b1’之间数据点的间隔数×数据点之间的时间间隔就是aN’和b1’之间的时间间隔;计算方法是:|aN’的索引值-b1’的索引值|×1nS,即1ns≤|aN’的索引值-b1’的索引值|×1nS≤30nS;
如果满足跳变条件:|L1–L2|≥0.3V且1ns≤|aN’的索引值-b1’的索引值|×1nS≤30nS,则表示跳变条件识别成功1次,以此向后判断第二条线段与第三条线段是否存在跳变,一直识别到待检波形的最后一条线段为止;不断累计次数;
(5)识别上下拉
默认设置:线段电压值之差=0.3V,线段电压值之差也就是前一条线段结尾的aN’点与后一条线段开头的b1’点的电压值之差的绝对值;200ns≤线段间隔≤10000nS,线段间隔还是前一条线段结尾的aN’点与后一条线段开头的b1’点之间的时间差;上拉面积比=1.000000,下拉面积比=1.000000,上拉/下拉面积比等于上升/下降沿面积与三角形面积的比值;
判断上下拉,相邻线段之间的变化满足共同前提条件:线段电压值之差:|aN’的电压值-b1’的电压值|≥0.3V;时间间隔:200ns≤|aN’的索引值-b1’的索引值|×10nS≤10000nS后,电压值由低向高变化时,上升沿面积/三角形面积≥1.000000,即为满足上拉条件1次,不断累计次数;相反,电压值由高向低变化时,下降沿面积/三角形面积≤1.000000,即为满足下拉条件1次,不断累计次数;
其中:上升沿面积=(aN’的电平值+(aN’+1)的电平值-2aN’(起点/低点电平值))×10nS(采样间隔)/2+((aN’+1)的电平值+(aN’+2)的电平值-2aN’(起点/低点电平值))×10nS(采样间隔)/2+……+((b1’-1)的电平值+b1’的电平值-2aN’(起点/低点电平值))×10nS(采样间隔)/2;
下降沿面积=(aN’的电平值+(aN’+1)的电平值-2b1’(终点/低点电平值))×10nS(采样间隔)/2+((aN’+1)的电平值+(aN’+2)的电平值-2b1’(终点/低点电平值))×10nS(采样间隔)/2+……+((b1’-1)的电平值+b1’的电平值-2b1’(终点/低点电平值))×10nS(采样间隔)/2;
三角形面积=|aN’的电平值-b1’的电平值|×|aN’的索引值-b1’的索引值|×10nS(采样间隔)/2;
(6)滤波识别
相邻两条线段之间的变化,既不满足跳变条件又不满足上下拉条件的,即为满足滤波条件1次,不断累积次数;
(7)信号判断
如前所述共查找到n条线段,即线段间变化共n-1次;
判断普通数字信号的默认设置:上拉次数≤0;下拉次数≤0;上下拉次数≤0;滤波次数≤1;
如果满足如下判断条件:上拉次数≤0且下拉次数≤0且上下拉次数≤0且滤波次数≤1且跳变次数=n-1-上拉次数-下拉次数-滤波次数,即为普通数字信号;
判断三态数字信号的默认设置:上拉次数≥0;下拉次数≥0;上下拉次数≥1;滤波次数≤1;
如果满足如下判断条件:上拉次数≥0且下拉次数≥0且上下拉次数≥1且滤波次数≤1且跳变次数=n-1-上拉次数-下拉次数-滤波次数,即为三态数字信号;
既不是普通数字信号又不是三态数字信号,即为非数字信号,识别结束。
2.根据权利要求1所述的一种数字信号的识别方法,其特征在于,所述步骤(1)中,如果采集到某小段电压值仍为0伏可判断此时为悬空电压,这样可以在采集数据的过程中将悬空电压这一特殊的状态采集到。
3.根据权利要求1所述的一种数字信号的识别方法,其特征在于,所述N和M均为正整数,且N不小于3。
4.根据权利要求3所述的一种数字信号的识别方法,其特征在于,所述N为4,所述M为10。
5.根据权利要求1所述的一种数字信号的识别方法,其特征在于,所述步骤(2)中相邻取样点之间的间隔相等。
CN201611029517.9A 2016-11-14 2016-11-14 一种数字信号的识别方法 Expired - Fee Related CN107037247B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611029517.9A CN107037247B (zh) 2016-11-14 2016-11-14 一种数字信号的识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611029517.9A CN107037247B (zh) 2016-11-14 2016-11-14 一种数字信号的识别方法

Publications (2)

Publication Number Publication Date
CN107037247A CN107037247A (zh) 2017-08-11
CN107037247B true CN107037247B (zh) 2019-03-15

Family

ID=59530289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611029517.9A Expired - Fee Related CN107037247B (zh) 2016-11-14 2016-11-14 一种数字信号的识别方法

Country Status (1)

Country Link
CN (1) CN107037247B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107527022B (zh) * 2017-08-04 2020-10-13 丁大良 信号周期计算方法
CN110503069B (zh) * 2019-08-28 2022-10-18 中广核研究院有限公司 电流波形波动起点识别方法及电子设备、可读存储介质
CN111912458A (zh) * 2020-07-20 2020-11-10 华东交通大学 一种适用于农业的环境信号最优稀疏采样方法
CN114325022B (zh) * 2021-11-24 2024-04-12 浙江中控技术股份有限公司 一种监测ao正弦信号跳变的方法、系统、设备以及介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10311545A1 (de) * 2003-03-17 2004-11-11 Blumschein, Eckard, Dr.-Ing. Verfahren zur spektralen Analyse eines Signals
CN1988383A (zh) * 2006-12-22 2007-06-27 中兴通讯股份有限公司 一种信号处理中波形识别的方法
WO2010096129A1 (en) * 2009-02-17 2010-08-26 Massachusetts Institute Of Technology Electronic system for modeling chemical reactions and biochemical processes
CN103902946A (zh) * 2014-04-22 2014-07-02 山东大学 一种符合iso/iec15693标准的信号分析系统及其工作方法
CN104133110A (zh) * 2014-07-29 2014-11-05 中国电子科技集团公司第四十一研究所 一种跳频信号时频特性测量的光标实现方法
CN104535970A (zh) * 2014-12-25 2015-04-22 西安电子工程研究所 基于最大值的频率步进雷达信号目标抽取方法
CN104655929A (zh) * 2015-01-04 2015-05-27 中国科学院物理研究所 一种时域信号的数字时频测量方法及相应的目标识别方法
CN105572473A (zh) * 2015-12-18 2016-05-11 中国航天科工集团八五一一研究所 高分辨率线性时频分析方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7809018B2 (en) * 2005-12-16 2010-10-05 Coding Technologies Ab Apparatus for generating and interpreting a data stream with segments having specified entry points
WO2008023640A1 (fr) * 2006-08-24 2008-02-28 Advantest Corporation Système analyseur de spectre et procédé d'analyse de spectre

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10311545A1 (de) * 2003-03-17 2004-11-11 Blumschein, Eckard, Dr.-Ing. Verfahren zur spektralen Analyse eines Signals
CN1988383A (zh) * 2006-12-22 2007-06-27 中兴通讯股份有限公司 一种信号处理中波形识别的方法
WO2010096129A1 (en) * 2009-02-17 2010-08-26 Massachusetts Institute Of Technology Electronic system for modeling chemical reactions and biochemical processes
CN103902946A (zh) * 2014-04-22 2014-07-02 山东大学 一种符合iso/iec15693标准的信号分析系统及其工作方法
CN104133110A (zh) * 2014-07-29 2014-11-05 中国电子科技集团公司第四十一研究所 一种跳频信号时频特性测量的光标实现方法
CN104535970A (zh) * 2014-12-25 2015-04-22 西安电子工程研究所 基于最大值的频率步进雷达信号目标抽取方法
CN104655929A (zh) * 2015-01-04 2015-05-27 中国科学院物理研究所 一种时域信号的数字时频测量方法及相应的目标识别方法
CN105572473A (zh) * 2015-12-18 2016-05-11 中国航天科工集团八五一一研究所 高分辨率线性时频分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Software customization to provide digital oscilloscope with enhanced period-measurement features;Maria Grazia D"Elia et al.;《IEEE Transactions on Instrumentation and Measurement 》;20060320;第55卷(第2期);第496-497页 *
基于联合参数数字信号识别算法的研究;杜红月 等;《科学技术与工程》;20140630;第14卷(第17期);第223-224页 *

Also Published As

Publication number Publication date
CN107037247A (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
CN107037247B (zh) 一种数字信号的识别方法
CN102319063B (zh) 一种提高胎心率数据加速识别准确性的装置和方法
CN107101984B (zh) 信号波形特征检测方法、装置、存储介质和计算机设备
CN103336226B (zh) 一种气体绝缘变电站中多种局部放电源类型的辨识方法
CN100507509C (zh) 基于主成分分析和支持向量机的油气水多相流流型识别方法
CN105203936A (zh) 一种基于频谱分析的电力电缆局部放电缺陷类型判别方法
CN105095482B (zh) 一种检测异常数据区间的数据挖掘方法及系统
CN103487788A (zh) 一种序列脉冲信号快速自动提取方法
CN116644373A (zh) 基于人工智能的汽车流量数据分析管理系统
CN110261746B (zh) 基于振荡波电压周期衰减特性的电缆缺陷检测方法
CN109977885A (zh) 一种基于多普勒特征的人车自动识别方法及装置
CN109934100A (zh) 一种基于滑动窗口的幅频时变工艺信号分割方法
CN110223522A (zh) 一种基于三轴地磁传感器的车辆位置识别方法
CN110562261A (zh) 一种基于马尔可夫模型检测驾驶员风险等级的方法
CN106650801B (zh) 一种基于gps数据的多类型车辆分类方法
CN107527022B (zh) 信号周期计算方法
CN108931463B (zh) 基于鞘流阻抗原理的血细胞脉冲识别方法及识别装置
CN106802293B (zh) 波形峰值检测方法及装置
CN103822867A (zh) 一种基于DSP Builder的血细胞脉冲信号检测统计方法
CN106597122A (zh) 一种雷达及通信信号的脉冲宽度检测算法
CN105447511A (zh) 一种基于Adaboost Haar-Like特征的SVM目标检测方法
CN106910340A (zh) 一种实现自动检测道路交通量的方法
CN102624367A (zh) 多通道脉冲同步识别装置和方法
CN110488279A (zh) 一种基于雷达的行人与树木区分方法与装置
JP4909554B2 (ja) パターン識別方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 450002, Henan province Zhengzhou Jinshui District Culture Road No. 66, Heng Daming, No. 2 building

Applicant after: Ding Daliang

Address before: 400020 No. 213 Huaxin village, Jiangbei District, Chongqing, attached 34, 9-7

Applicant before: Ding Daliang

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190315

Termination date: 20201114

CF01 Termination of patent right due to non-payment of annual fee