CN107017274A - LED display component and manufacturing method thereof - Google Patents

LED display component and manufacturing method thereof Download PDF

Info

Publication number
CN107017274A
CN107017274A CN201710192858.6A CN201710192858A CN107017274A CN 107017274 A CN107017274 A CN 107017274A CN 201710192858 A CN201710192858 A CN 201710192858A CN 107017274 A CN107017274 A CN 107017274A
Authority
CN
China
Prior art keywords
layer
stress
conductivity type
step
semiconductor
Prior art date
Application number
CN201710192858.6A
Other languages
Chinese (zh)
Inventor
郑锦坚
周启伦
钟志白
徐宸科
杜伟华
李志明
伍明跃
邓和清
林峰
李水清
康俊勇
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Priority to CN201710192858.6A priority Critical patent/CN107017274A/en
Publication of CN107017274A publication Critical patent/CN107017274A/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays

Abstract

The invention discloses an LED display component and a manufacturing method thereof. The LED display component comprises a plurality of groups of first conductive type second semiconductor layers etched by a first conductive type first semiconductor layer, an active layer, a stress control layer, a stress effect layer, a first separating layer, a second separating layer, a second conductive type third semiconductor layer, a first conductive contact layer, a second conductive contact layer, an electrode, and an integrated circuit control panel containing electric connection points, the active layer is provided with a plurality of groups of active layer units, the active layer units form the first separating layer through sidewalls for separation, first conductive type second semiconductors form the second separating layer through sidewalls for separation and are adjacent to the second conductive contact layer, the stress effect layer, the stress control layer and the first conductive contact layer are formed in the gap between the first separating layer and the second separating layer, and the first conductive contact layer and the second conductive contact layer are separately connected with the electric connection points of the integrated circuit control panel.

Description

一种LED显示组件及其制作方法 An LED display assembly and manufacturing method thereof

技术领域 FIELD

[0001]本发明涉及半导体光电器件领域,特别是一种半导体LED显示组件及其制作方法。 [0001] The present invention relates to the field of semiconductor optoelectronic devices, particularly to a semiconductor LED display assembly and manufacturing method thereof.

背景技术 Background technique

[0002]现今,发光二极管(LED),特别是氮化物发光二极管因其较高的发光效率,在普通照明领域已取得广泛的应用。 [0002] Nowadays, light emitting diode (the LED), in particular a nitride light emitting diode because of its high luminous efficiency, has wide range of applications in the field of general lighting. LED室内外显示屏技术目前在舞台、广告、体育设施等方面己获得广泛的应用。 Widely used to obtain LED indoor and outdoor display technology is already in stage, advertising, sports facilities and so on. 目前LED的封装尺寸在毫米级别,像素尺寸较大导致分辨率和画质较差。 LED current level package size in millimeters, the pixel size is large resulting in poor resolution and image quality. 未来的LED显示技术的发展的方向为实现超小尺寸的LED,以获得更小的发光像素尺寸,从而获得更高的分辨率和画质。 Future development direction of the LED display technology for the realization of ultra-small-sized LED, in order to obtain smaller pixel size, resulting in higher resolution and image quality. 基于氮化物和砷化物半导体发光二极管的微型发光二极体显示(Micro-LED)或纳米级发光二极管显示(Nano-LED)具有高亮度、低功耗、超高分辨率、色彩饱和度高,老化性能优越、外延晶圆技术成熟等优点,可直接利用目前的成熟量产化的外延磊晶的晶圆技术,具有与0LED、QLED等下一代半导体显示器技术抗衡的优势。 Nitride-based semiconductor and micro-arsenide light emitting diode light emitting diode display (Micro-LED) or nano-sized light emitting diode display (Nano-LED) with high brightness, low power, ultra-high resolution, high color saturation, excellent aging properties, epitaxial wafer mature technology, can directly use the current mass production of mature epitaxial wafer epitaxial technique has advantages and 0LED, QLED next-generation semiconductor and other display technologies compete.

[0003]传统的微型LED (Micro-LED)的制作需要将微元件从施体基板上转移到接收基板上,工艺较为复杂繁琐,且良品率低。 [0003] The conventional micro-LED (Micro-LED) production needs micro element from the donor substrate onto the receiving substrate, the process is more complex and cumbersome, and low yields. 传统微型LED—般采用先制作成一颗颗的微型芯片或元件后,再转移并集成至电路板上从而制作成LED显示屏。 Like the conventional micro-miniature LED- first made into chips or devices dolphin, and then transferred to the circuit board and integrated into the LED display to produce. 传统Micro-LED因转移和封装的尺寸和精度问题,制作工艺难以延伸至纳米级别的Nano-LED,导致芯片像素尺寸难以进一步缩小。 Traditional Micro-LED due to the transfer and the size of the package and accuracy problems, the production process is difficult to extend the nanoscale Nano-LED, resulting in difficult to further reduce the size of the pixel chip.

发明内容 SUMMARY

[0004] 为了克服上述技术问题,本发明的目的在于:提供一种晶圆级的微米-纳米级半导体LED显示组件及其制作方法,可直接外延制作不同发光波长的红绿蓝(RGB)芯粒在同一晶圆片上,不需要预先制作成微型芯片后再转移至接收基板,制作工艺流程方便,且可在晶圆级别控制RGB的任意排列和任意RGB波长组合,具有宽广的波长和RGB组合调控性能。 [0004] To overcome the above technical problems, an object of the present invention is: to provide a wafer level micron - nanoscale semiconductor LED display component and a manufacturing method can be directly produced epitaxial different emission wavelengths of red, green and blue (RGB) of the core tablets on the same wafer, the microchip does not need to be prepared in advance and then transferred to a receiving substrate, to facilitate the production process, and can be controlled in any order and any combination of RGB RGB wavelengths in the wafer level, and compositions having a wide wavelength RGB the regulation of performance.

[0005] 通过制作应力控制层和应力作用层的生长模板,然后,在生长模板上直接外延生长相同组分和厚度的有源层,通过应力控制实现不同发光波长的RGB芯粒外延在同一晶圆片,可在微米-纳米级别控制RGB的排列组合和任意波段组合,使半导体LED显示组件的分辨率达到微米级至纳米级的像素级别,可涵盖Micro-LED和Nano-LED的尺寸范围,从而制作高清、高画质半导体LED显示组件。 [0005] By making the growth of the stress control layer and template layer stress, and, on the growth of the active layer is epitaxially grown directly template same composition and thickness, to achieve epitaxial RGB core particles of different emission wavelengths in the same crystal by the stress control wafer, can micron - nanometer level control and arbitrary permutations RGB band combination, the semiconductor LED display resolution component reaches micron to nano-scale pixel level, and may encompass Micro-LED nano-LED size range, to prepare a high-definition, high-quality semiconductor LED display assembly. 或者,在传统的半导体LED的外延片上通过芯片制作技术制作应力控制层和应力作用层,通过控制有源层的应力获得可调控波长的RGB的半导体LED显示组件,实现制作微米级至纳米级的像素级别半导体LH)显示组件。 Alternatively, in the conventional semiconductor LED wafer by a chip fabrication techniques produce stress control layer, and a stress layer, to obtain adjustable wavelength by stress control of the active layer of the RGB semiconductor LED display components, to achieve production of micron to nano-scale semiconductor pixel level LH) display assembly.

[0006] 根据本发明的第一部分:一种晶圆级的微米-纳米级半导体LED显示组件,包括:由若干组第一导电型的第二半导体层组成的第一导电型的第一半导体层,有源层,应力控制层,应力作用层,第一隔离层,第二隔离层,第二导电型的第三半导体层,第一导电接触层, 第二导电接触层,电极以及包括电连接点的集成电路控制板;所述有源层设置有若干组的有源层单元,有源层单元通过侧壁形成第一隔离层进行分隔,所述第一导电型的第二半导体通过侧壁形成第二隔离层进行分隔,并邻接第二导电接触层;于所述第一隔离层和第二隔离层的间隙形成应力作用层、应力控制层及第一导电接触层;所述第一导电接触层、第二导电接触层分别与集成电路控制板的电连接点连接。 [0006] According to a first part of the invention: A wafer stage micron - nanoscale semiconductor LED display assembly, comprising: a first conductivity type first semiconductor layer of a first conductivity type by a number of groups of layers of the second semiconductor , an active layer, a stress control layer, a stress layer, a first spacer layer, a second spacer layer, a second conductivity type third semiconductor layer, a first conductive contact layer, the second conductive contact layer, and comprising electrodes electrically connected point integrated circuit board; the active layer, the active layer is provided with a plurality of cell groups, a first spacer layer separated active layer is formed by a sidewall section, said first conductivity type second semiconductor through the side wall forming a second spacer layer is separated, and adjacent to the second conductive contact layer; forming a layer of stress, the stress control layer and the first conductive contact layer in the gap of the first spacer layer and the second barrier layer; a first conductive contact layer, a second conductive contact layer are electrically connected to the connection point of the integrated circuit board.

[0007] 进一步地,所述第一导电型的第二半导体层的组数为N组,优选3N组,其中N取自然数且N彡1;所述有源层单元的组数为N组,优选3N组,其中N取自然数且1;组数还可根据需要进行制作;3N组的有源层形成的可调控波长的红绿蓝(RGB)微米-纳米级的半导体LED 显示组件,R/G/B的组成可进行任意组合,但不以此为限。 [0007] Further, the number of sets of said first conductivity type second semiconductor layer is N group, preferably 3N group, wherein N is a natural number and N San 1; number of sets of the active layer unit into N groups, preferably 3N group, wherein N is a natural number and 1; the number of groups may be produced according to need; regulatable wavelength of the active layer is formed of a group of 3N red green blue (RGB) micron - nanoscale semiconductor LED display components, R / composition G / B may be any combination of, but not limited thereto.

[0008] 进一步地,所述有源层的量子阱材料为同一组分且厚度相同的多量子阱。 [0008] Further, the active layer of quantum well material is the same component and the same multiple quantum well thickness.

[0009] 进一步地,所述有源层量子讲的材料为InxGai—xN/GaN多量子阴1、InxGai-xN/Al InGaN 多量子阱或AlyGai—yN/AlzGai-zN多量子阱,其中0<x,y,Z<1,所述的多量子阱的对数小于20 对。 [0009] Further, the active layer material is a quantum speaking InxGai-xN / GaN multiple quantum female 1, InxGai-xN / Al InGaN multiple quantum well or AlyGai-yN / AlzGai-zN multiple quantum well, where 0 < x, y, Z <1, the multiple quantum well is less than 20 the number pairs.

[0010] 进一步地,所述应力作用层为不同导热系数材料或磁致弹性材料,当应力作用层为磁致弹性材料时,应力控制层为磁性材料,在电流注入下可产生可控的磁场,控制应力作用层产生所需的应力,藉由应力作用于有源层控制发光波长;当所述应力作用层为不同导热系数的材料时,应力控制层为热电阻材料,通过控制注入电流可控制发热的功率,产生可控的温度,温度范围为50〜500°C,通过调整不同温度使不同导热系数材料产生可控的应力, 从而可调节有源层的应力大小,藉由应力作用于有源层控制发光波长。 [0010] Further, the stress layer is a different material or a thermal conductivity of magnetoelastic material, when the stress layer is a magnetoelastic material, the stress controlling layer is a magnetic material, a magnetic field can be generated at controllable current injection , the stress control layer to produce the desired stress, stress by controlling the emission wavelength of the active layer; when the stress layer is a material of different thermal conductivity, thermal stress control layer is a resistive material, by controlling the injection current controlling the power of heat, to produce a controlled temperature, the temperature range of 50~500 ° C, by adjusting the different temperatures so that the different materials to produce a controlled thermal conductivity of the stress, the stress can be adjusted so that the size of the active layer, by stress acts on the controlling the emission wavelength of the active layer.

[0011] 进一步地,所述应力控制层和应力作用层用于控制有源层受到不同应力作用,以3N组的有源层单元为例,通过控制第一组、第二组、第三组(共3N组)的应力控制层的输入电流,调控应力作用层产生第一应力、第二应力、第三应力,使第一组有源层发出波长为580〜 680nm范围的红光(R),第二组有源层发出波长为480~580nm范围的黄绿光(Y/G),第三组有源层发出波长380〜480nm范围的蓝光(B),从而形成晶圆级的可控波长的微米-纳米级的半导体LED显示组件,无需制作成一颗颗芯粒后再进行转移、键合、集成。 [0011] Furthermore, the stress control layer and the layer for controlling the stress of the active layer are subject to different stress to the active layer 3N cell group, for example, by controlling the first group, second group, third group (co 3N group) input current stress control layer, the first layer generates stress regulation of stress, stress second, third stress, so that a first set of active layer emits 580~ 680nm wavelength range red (R) a second set of active layer emits a wavelength range of 480 ~ 580nm green yellow (Y / G), a third set of active layer emits blue (B) wavelength range of 380~480nm, thereby forming a wafer level controlled wavelength micron - nanoscale semiconductor LED display assembly, without the core particles and then made into a dolphin transferred, bonding, integration.

[0012] 进一步地,所述第一隔离层始于有源层的上表面,终止于第一导电型的第二半导体层的下表面,所述第二隔离层始于有源层的下表面,终止于第一导电型的第二半导体层的下表面,第一隔离层和第二隔离层之间形成间隙,宽度为〇.5〜5wn。 [0012] Furthermore, the first release layer on the surface of the active layer begins, terminating at a second surface of the first conductivity type semiconductor layer, the second spacer layer began lower surface of the active layer , is formed between the first spacer layer and the second spacer layer terminates at a lower surface of the first conductive type semiconductor layer of a second gap width 〇.5~5wn.

[0013] 进一步地,所述第一隔离层,用以隔开相邻的第一导电型的第二半导体层、应力控制层以及应力作用层。 [0013] Furthermore, the first release layer to a first conductivity type second semiconductor layer spaced apart from adjacent stress control layer, and layer stress.

[0014] 进一步地,所述第一隔离层、第二隔离层的材料为绝缘氧化物或氮化物,包括Si02 或siNx等,所述第一半导体、第二半导体、第三半导体材料为mv族或ii-vi族化合物半导体材料。 [0014] Further, the first isolation layer, a second spacer layer is an insulating material is an oxide or nitride, comprises Si02 or the like siNx the first semiconductor, the second semiconductor, a third semiconductor material is a Group mv or ii-vi compound semiconductor material.

[0015] 根据本发明的第二部分:一种晶圆级的微米-纳米级半导体LED显示组件的制作方法,其包括以下步骤: 步骤(1):在第一衬底上,外延生长第一导电型的第一半导体层; 步骤(2):将第一导电型的第一半导体层蚀刻出若干组的第一导电型的第二半导体层, 其侧壁沉积第二隔离层;在相邻的第一导电型的第二半导体层的之间沉积第二隔离层,隔离出若干组的外延预生长区域; 步骤(3):在所述第一隔离层和第二隔离层的间隙,沉积应力控制层和应力作用层,作为生长模板; 步骤(4):在生长模板上外延生长有源层; 步骤(5):在有源层上依次外延生长第二导电型的第三半导体层和接触层; 步骤(6):在接触层上,键合第二衬底,并剥离第一衬底,裸露出第一导电型的第一半导体层、第一隔离层、第二隔离层和应力控制层的下表面; 步骤(7):在应力控制层上,沉积第一 [0015] According to a second part of the invention: A wafer stage micrometer - nanometer LED display method for fabricating a semiconductor component, which comprises the following steps: Step (1): on the first substrate, a first epitaxial growth a first conductivity type semiconductor layer; step (2): a first conductivity type first semiconductor layer of a first conductivity type, etching a second group of a plurality of semiconductor layers which is deposited a second sidewall spacer layer; adjacent It is deposited between the first conductive type second semiconductor layer, a second spacer layer, the spacer region of a number of pre-grown epitaxial group; step (3): a gap in the first isolation layer and the second barrier layer deposited stress control layer and a stress layer, as a growth template; step (4): the active layer is epitaxially grown on a growth template; step (5): on the active layer are sequentially epitaxially growing a second conductivity type third semiconductor layer, and a contact layer; step (6): on the contact layer, bonding a second substrate, and peeling the first substrate, the exposed first conductivity type first semiconductor layer, a first spacer layer, a second isolation layer and the stress the lower surface of the control layer; step (7): in the stress-controlling layer, depositing a first 导电接触层; 步骤(8):在第一导电型的第二半导体层上,沉积第二导电接触层; 步骤(9):将第一导电接触层与集成电路控制板上的电连接点连接,通过集成电路控制板控制应力控制层的输入电流,调控应力作用层产生的应力,使有源层单元发出不同波段的波长;将第二导电接触层与集成电路控制板上的电连接点连接,独立控制有源层单元的发光; 步骤(10):去除第二衬底,在接触层上方沉积电极,从而制作成晶圆级的可调控波长的微米-纳米级半导体LED显示组件。 Conductive contact layer; Step (8): on a first conductivity type second semiconductor layer, a second conductive contact layer is deposited; Step (9): a first connecting point electrically conductive contact layer is connected with the integrated circuit of the control board , the input current IC board by controlling the stress control layer, the stress generated in the regulation of stress layer, the active layer unit emits different wavelength bands; connecting point of the second electrically conductive contact layer is connected with the integrated circuit of the control board , independent control of the active layer, the light emitting unit; step (10): removing the second substrate, the contact layer is deposited over the electrode, made into a wafer level regulatable micron wavelength - nanoscale semiconductor LED display assembly.

[0016] 进一步地,所述应力作用层可以选用不同导热系数材料或磁致弹性材料,当应力作用层为磁致弹性材料时,应力控制层为磁性材料,在电流注入下可产生可控的磁场,控制应力作用层产生所需的应力,然后,藉由应力作用于有源层控制发光波长;当所述应力作用层为不同导热系数的材料时,应力控制层为热电阻材料,通过控制注入电流可控制发热的功率,产生可控的温度,温度范围为50〜50(TC,通过调整不同温度使不同导热系数材料产生可控的应力,从而可调节有源层的应力大小,然后藉由应力作用于有源层控制发光波长。 [0017]根据本发明的第三部分:一种晶圆级的微米-纳米级半导体LED显示组件的制作方法,其包括以下步骤: 步骤(1):在第一衬底上依次外延第一导电型的第一半导体层,有源层,第二导电型的第三半导体层以及接触层; 步骤(2) [0016] Further, the stress layer can choose different heat conductivity material or magnetoelastic material, when the stress layer is a magnetoelastic material, the stress controlling layer is a magnetic material, can produce a controlled current injection at the field, the stress control layer to produce the desired stress, and, by controlling the stress to the active layer emission wavelength; when the stress layer is a material of different thermal conductivity, thermal stress control layer is a resistive material, by controlling injection current can control the power of heat, to produce a controlled temperature, the temperature range of 50~50 (TC, by adjusting different temperatures so that the different materials to produce a controlled thermal conductivity of the stress, the stress can be adjusted so that the size of the active layer, and then by the active layer is controlled by the stress light-emitting wavelength [0017] according to a third part of the invention: a wafer stage micrometer - nanometer LED display method for fabricating a semiconductor component, which comprises the following steps: step (1): sequentially epitaxially on the first substrate of a first conductivity type first semiconductor layer, an active layer, a second conductivity type third semiconductor layer and the contact layer; step (2) :在接触层上方,键合第二衬底,并剥离第一衬底; 步骤(3):从第一导电型的第一半导体层蚀刻至有源层,蚀刻出若千组的有源层,并在侧壁沉积第二隔离层;在第一导电型的第一半导体层蚀刻出若干组的第一导电型的第二半导体,并在其侧壁沉积第一隔离层; 步骤(4):在第一隔离层和第二隔离层的间隙,沉积应力作用层; 步骤(5):在应力作用层上,沉积应力控制层; 步骤(6):在应力控制层上,沉积第一导电接触层; 步骤(7):在第一导电型的第二半导体层上,沉积第二导电接触层; 步骤(8):将第一导电接触层与集成电路控制板上的电连接点连接,通过集成电路控制板控制应力控制层的输入电流,调控应力作用层产生的应力,使有源层单元发出不同波段的波长;将第二导电接触层与集成电路控制板上的电连接点连接,独立控制有源层单元的发光; 步骤(9):去 : Over the contact layer, a second substrate is bonded, and peeling the first substrate; Step (3): from the first conductive type first semiconductor layer etching to the active layer, the active layer are etched if one thousand groups and depositing a second sidewall spacer layer; etching a first conductivity type second semiconductor several groups in a first conductivity type first semiconductor layer, and thereon depositing a first sidewall spacer layer; step (4) : in the gap between the first spacer layer and the second spacer layer deposited stress layer; step (5): stress layer on the deposited layer stress control; step (6): in the stress-controlling layer, depositing a first conductive a contact layer; step (7): on a first conductivity type second semiconductor layer, a second conductive contact layer is deposited; step (8): the connection point of the first electrically conductive contact layer is connected with the integrated circuit of the control board, input current control IC board by a stress control layer, the stress generated in the regulation of stress layer, the active layer unit emits different wavelength bands; connecting point of the second electrically conductive contact layer is connected with the integrated circuit of the control board, independent control of the active layer emitting unit; step (9): to 第二衬底,在接触层上方沉积电极,制作成晶圆级的可调控波长的微米-纳米级的半导体LED显示组件。 A second substrate, the contact layer is deposited over the m electrodes, made into a wafer level adjustable wavelength - nanoscale semiconductor LED display assembly.

[0018]进一步地,所述应力作用层可以选用不同导热系数材料或磁致弹性材料,当应力作用层为磁致弹性材料时,应力控制层为磁性材料,在电流注入下可产生可控的磁场,控制应力作用层产生所需的应力,然后,应力作用于有源层控制发光波长;当所述应力作用层为不同导热系数的材料时,应力控制层为热电阻材料,通过控制注入电流可控制发热的功率, 产生可控的温度,温度范围为5〇〜500°C,通过调整不同温度使不同导热系数材料产生可控的应力,从而可调节有源层的应力大小,然后藉由应力作用于有源层控制发光波长。 [0018] Further, the stress layer can choose different heat conductivity material or magnetoelastic material, when the stress layer is a magnetoelastic material, the stress controlling layer is a magnetic material, can produce a controlled current injection at the field, the stress control layer to produce the desired stress, and the stress acting on the control of the emission wavelength of the active layer; when the stress layer is a material of different thermal conductivity, thermal stress control layer is a resistive material, by controlling the injection current can control the power of heat, to produce a controlled temperature, the temperature range of 5〇~500 ° C, by adjusting the different temperatures so that the different materials to produce a controlled thermal conductivity of the stress, the stress can be adjusted so that the size of the active layer, and then by stress is applied to control the emission wavelength of the active layer.

附图说明 BRIEF DESCRIPTION

[0019]图1〜图10为本发明实施例1的LED显示组件及其制作步骤示意图。 [0019] FIG 1 ~ 10 Embodiment Example 1 LED display module and the manufacturing steps of the present invention, a schematic diagram.

[0020]图11〜图19本发明实施例2的LED显示组件及其制作步骤示意图。 LED Embodiment [0020] FIG. 11~ 19 Example 2 of the present invention display component and a manufacturing step of FIG.

[0021]图中标示说明:101:第一衬底;102:第一导电型的第一半导体层;1〇3:第一导电型的第二半导体层;104:第二隔离层;105:第一隔离层;106:应力控制层;1〇7:应力作用层; 108:有源层;1〇9:第二导电型的第三半导体层;110:接触层;111:第二衬底;112(112a、 11215、112〇):第一导电接触层;113(113&amp;、11313、113〇):第二导电接触层;114:集成电路控制板;115:透明导电层;116:电极;201:第一衬底;202:第一导电型的第一半导体层;203:有源层;204:第二导电型的第三半导体层;205:接触层;206:第二衬底;207:第二隔离层;208:第一导电型的第二半导体层;209:第一隔离层;210:应力作用层;211:应力控制层;212(212a、 2121^、212(:):第一导电接触层;213(213&amp;、21313、213〇):第二导电接触层;214:集成电路控制板;215:透明导电层;216:电极。 [0021] FIG denoted Description: 101: a first substrate; 102: a first semiconductor layer of a first conductivity type; 1〇3: a first conductivity type second semiconductor layer; 104: second isolation layer; 105: a first spacer layer; 106: stress control layer; 1〇7: stress layer; 108: an active layer; 1〇9: a second conductivity type third semiconductor layer; 110: contact layer; 111: second substrate, ; 112 (112a, 11215,112〇): a first conductive contact layer; 113 (113 & amp;, 11313,113〇): contacting the second conductive layer; 114: an integrated circuit board; 115: transparent conductive layer; 116: electrode ; 201: a first substrate; 202: a first conductivity type first semiconductor layer; 203: an active layer; 204: a second conductivity type third semiconductor layer; 205: contact layer; 206: second substrate; 207: second isolation layer; 208: a first conductivity type second semiconductor layer; 209: a first isolation layer; 210: stress layer; 211: stress control layers; 212 (212a, 2121 ^, 212 (:): The first conductive contact layer; 213 (213 & amp;, 21313,213〇): contacting the second conductive layer; 214: an integrated circuit board; 215: transparent conductive layer; 216: electrode.

[0022] [0022]

具体实施方式: 传统的微型LED (Micro-LED)的制作需要将微元件从施体基板上转移到接收基板上,工艺较为复杂繁琐,且良品率低。 DETAILED DESCRIPTION: The traditional micro-LED (Micro-LED) production needs micro element from the donor substrate onto the receiving substrate, the process is more complex and cumbersome, and low yields. 传统微型LED—般采用先制作成一颗颗的微型芯片或元件后,再转移并集成至电路板上从而制作成LED显示屏。 Like the conventional micro-miniature LED- first made into chips or devices dolphin, and then transferred to the circuit board and integrated into the LED display to produce. 本发明提供的一种晶圆级的微米-纳米级半导体LED显示组件及其制作方法。 The present invention provides a wafer level micron - nanoscale semiconductor LED display assembly and manufacturing method thereof.

[0023]通过制作应力控制层和应力作用层的生长模板,然后,在生长模板上外延生长相同组分和厚度的有源层,通过应力控制实现不同发光波长的RGB芯粒外延在同一晶圆片,可在微米-纳米尺度级别控制RGB的排列组合和任意波段组合,使LED显示组件的分辨率达到微米级至纳米级的像素级别,可涵盖Micro-LED和Nano-LED的尺寸范围,从而制作高清、高画质半导体LED显示组件。 [0023] By making the growth of the stress control layer and template layer stress, then the template is epitaxially grown on the growth of the active layer of the same composition and thickness, is achieved by controlling the stress core particles RGB emission wavelengths of different epitaxial wafer in the same tablets, may be in the micron - nanoscale level control permutations and combinations of any of the RGB bands, so that the resolution of the LED display assembly reaches micron to nano-scale pixel level, and may encompass Micro-LED nano-LED size range, whereby HD production, high-quality semiconductor LED display assembly.

[0024] 在传统的半导体LED的外延片上通过芯片制作技术制作应力控制层和应力作用层,通过控制有源层的应力获得可调控波段的RGB的半导体LED显示组件,实现制作微米级至纳米级的像素级别半导体LED显示组件。 [0024] providing adjustable band RGB by stress control active layer on a conventional semiconductor LED wafer by a chip fabrication techniques produce stress control layer, and a stress layer semiconductor LED display components, to achieve production of micron to nano the semiconductor LED display pixel level assembly.

[0025] 实施例1 如图1〜图10所示,本实施例提供一种晶圆级的微米-纳米级半导体LED显示组件的及其制作方法,包括: 如图1所不,步骤(1):在第一衬底101上,外延生长第一导电型的第一半导体层102; 如图2所示,步骤(2):将第一导电型的第一半导体层1〇2蚀刻出3N组的第一导电型的第二半导体层103,其两侧侧壁(但不以此为限,也可以是四周侧壁)沉积6N组的第二隔离层104;3N组的第二半导体层的之间沉积第一隔离层1〇5,隔离出3N组的RGB预生长区域; 如图3所示,步骤(3):在6N组的第二隔离层1〇4和3N组的第一隔离层105之间间隙,依次沉积应力控制层1〇6和应力作用层107,作为生长模板,其中间隙宽度为0.5〜5ym,应力作用层可以选用不同导热系数材料或磁致弹性材料,当应力作用层选用磁致弹性材料时,应力控制层选用磁性材料,在电流注入下可产生可控的磁场,控制 Example 1 FIG 1 ~ 10 [0025] embodiment shown, the present embodiment provides a micron wafer level - nanoscale semiconductor LED display module and its manufacturing method, comprising: 1 are not, step (1 ): 101 on the first substrate, epitaxially growing a first conductivity type first semiconductor layer 102; as shown in step (2) in FIG. 2: a first conductivity type first semiconductor layer are etched 3N 1〇2 a first conductivity type second semiconductor layer 103 is set, both sides of the side wall (but not limited to, the side walls may be four weeks) a second isolation layer 104 is deposited 6N groups; groups of the second semiconductor layer 3N depositing a first spacer layer between 1〇5, isolate the pre-growth region 3N RGB group; shown in step (3) in FIG. 3: a first and a second spacer layer 1〇4 group of 3N 6N group a gap between the spacer layer 105 are sequentially deposited and the stress control layer 1〇6 stress layer 107 as a growth template, wherein the gap width is 0.5~5ym, stress layer can choose different heat conductivity material or magnetoelastic material, when the stress when the active layer selected magneto-elastic material, the stress control layer of magnetic material selected, it may generate a magnetic field at a controlled current injection control 力作用层产生所需的应力, 然后,通过应力作用于有源层控制发光波长; 如图4所示,步骤(4):将沉积应力控制层106和应力作用层107的生长模板,传进MOCVD 反应室,采用金属有机化学气相外延的生长方法,生长3N组有源层单元的有源层108;所述有源层的量子阱材料为同一组分且厚度相同的多量子阱;所述有源层量子阱的材料为InxGai-xN/GaN 多量子讲、IruGai-xN/Al InGaN 多量子讲或AlyGai—yN/AlzGai—ZN 多量子讲,其中0 <x,y,z<l,所述的多量子阱的对数小于20对,优选多量子阱的对数为8对; 如图5所示,步骤⑸:在有源层108上方,采用MOCVD依次外延生长第二导电型的第三半导体层109和接触层110; 如图6所示,步骤(6):在接触层110上方,键合第二衬底111,并剥离第一衬底101,裸露出第一导电型的第一半导体层103、第二隔离层104、第一隔离层105和应力控制层106的下表面; Force to produce the desired stress level, and then, controls the emission wavelength of the active layer by stress; As illustrated, in step (4) 4: depositing a stress control layer 106 and template layer grown stress 107, pass into MOCVD reactor, metal organic chemical vapor epitaxy growth method, the active layer is grown 3N unit 108 sets the active layer; a quantum well layer of the active material for the same components and the same multiple-quantum well thickness; the a quantum well active layer material is a InxGai-xN / GaN multiple quantum speaking, IruGai-xN / Al InGaN multiple quantum speak or AlyGai-yN / AlzGai-ZN multiple quantum speaking, where 0 <x, y, z <l, the said multiple quantum well is less than 20 the number of, preferably a multiple quantum well on the number of 8; 5, step ⑸: above the active layer 108 are epitaxially grown by MOCVD a second conductivity type three semiconductor layer 109 and the contact layer 110; As shown, in step (6) 6: over the contact layer 110, a second substrate 111 is bonded, the first substrate 101 and peeled, the exposed first conductivity type 103, a second isolation layer 104, a first spacer layer 105 and the lower surface of the stress control layer 106 a semiconductor layer; 如图7所示,步骤(7):在3N组的应力控制层106的下方,沉积3N组的第一导电接触层112 (112、112b、112c); 如图8所示,步骤(8):在3N组的第二半导体层103下方,沉积3N组的第二导电接触层113 (113a、113b、113c); 如图9所示,步骤(9):第一导电接触层112 (112、112b、112c)分别与集成电路控制板114 上的电连接点1、3、5连接,通过集成电路控制板可独立控制第一组、第二组、第三组(共3N 组)的应力控制层的输入电流,调控应力作用层分别产生第一应力、第二应力、第三应力,使第一组有源层发出波长为580~680nm范围的红光,第二组有源层发出波长为480〜580mn范围的黄绿光,第三组有源层发出波长380〜480nm范围的蓝光;第二导电接触层113 (113a、113b、 113c)分别与集成电路控制板114上的电连接点2、4、6连接,独立控制第一组、第二组、第三组(共3N组)有源层的发光; 如图10所示,步骤 7, in step (7): under the stress control layer 3N group 106, the first conductive contact layer is deposited 3N group 112 (112,112b, 112c); 8, step (8) in FIG. : 3N semiconductor layer below the second group 103, the second conductive contact layer is deposited 3N group 113 (113a, 113b, 113c); as shown in step (9) in FIG. 9: a first conductive contact layer 112 (112, 112b, 112c) are electrically connected to the integrated circuit on the control board 114 is connected 1,3,5 point, by an integrated circuit board can be controlled independently of the first group, second group, third group (group co 3N) stress control input current layer, the regulation of the stress of the first stress layer is generated respectively, a second stress, the third stress, so that a first set of active layer emits red light having a wavelength of 580 ~ 680nm range, a second set of active layer emits wavelength 480~580mn yellow green range, the third set of the active layer emits blue light wavelength range of 380~480nm; a second conductive contact layer 113 (113a, 113b, 113c) is electrically connected to the point 2,4 on an integrated circuit board 114 , 6 is connected, a first set of independent control, a second group, the third group (group co 3N) emitting active layer; As illustrated, in step 10 10):去除第二衬底,在接触层110上方沉积透明导电层115和电极116,从而制作成晶圆级的可调控RGB波长的微米-纳米级半导体LED显示组件,从图10中可知,第一隔离层105始于有源层108的上表面,终止于第一导电型的第二半导体层103的下表面,所述第二隔离层104始于有源层108的下表面,终止于第一导电型的第二半导体层103的下表面,其中第一隔离层105,用以隔开相邻的第一导电型的第二半导体层103、应力控制层106以及应力作用层107。 10): removing the second substrate, the contact layer 110 is deposited over the conductive layer 115 and the transparent electrode 116, made into a wafer level so regulatable RGB wavelength micron - nanoscale semiconductor LED display assembly, seen from FIG. 10, the first isolation layer 105 begins on the surface of the active layer 108, terminating at a second surface of the first conductivity type semiconductor layer 103, the second spacer layer 104 starts the lower surface of the active layer 108, terminating at the lower surface of a first conductivity type second semiconductor layer 103, wherein the first isolation layer 105, to a first conductivity type second semiconductor layer 103 is spaced adjacent the stress control layer 106 and the stress application layer 107.

[0026] 实施例2 如图11〜19所示,本实施例提供一种晶圆级的微米-纳米级半导体LED显示组件的及其制作方法,包括: 如图11所示,步骤⑴:采用传统MOCVD的外延方法,在第一衬底201上,依次外延第一导电型的第一半导体层202,有源层203,第二导电型的第三半导体层204以及接触层205;所述有源层的量子阱材料为同一组分且厚度相同的多量子阱;所述有源层量子阱的材料为InxGai-xN/GaN 多量子阱、InxGai-xN/AlInGaN 多量子阱或AlyGai—yN/AlzGa!—ZN 多量子阱,其中0 <X,y,z<l,所述的多量子阱的对数小于20对,优选多量子阱的对数为8对; 如图12所示,步骤(2):在接触层205上方,键合第二衬底206,并剥离第一衬底; 如图13所示,步骤(3):从第一导电型的第一半导体层202,蚀刻至有源层203,从而蚀刻出3N组的有源层单元,并在有源层单元的侧壁沉积第二隔离层207;在第一导电型的第 [0026] Example 2 shown in FIG. 11~19, m the present embodiment provides a wafer level - nanoscale semiconductor LED display assembly and fabrication method, comprising: as shown in step 11 in FIG ⑴: using conventional MOCVD epitaxy method, and 201 on the first substrate, a first conductivity type successively epitaxially a first semiconductor layer 202, an active layer 203, a second conductivity type third semiconductor layer 204 and the contact layer 205; have the material of the quantum well active layer and the same component is the same multiple quantum well thickness; the quantum well active layer material is a InxGai-xN / GaN multiple quantum well, InxGai-xN / AlInGaN multiple quantum well or AlyGai-yN / ! AlzGa -ZN multi-quantum well, where 0 <X, y, z <l, the multiple quantum well is less than 20 the number of, preferably a multiple quantum well on the number of 8; shown in FIG. 12, step (2): 205 over the contact layer, a second substrate 206 bonded, and peeling the first substrate;, step (3) in FIG. 13: from a first conductivity type first semiconductor layer 202 is etched to an active layer 203, the active layer are etched thereby 3N cell group, in the sidewalls of the active layer and depositing a second isolation layer unit 207; a first conductivity type in the first 一半导体层202蚀刻出3N组的第一导电型的第二半导体层208,并在其侧壁沉积第一隔离层209; 如图14所不,步骤(4):在第一隔离层209和第二隔离层207之间间隙,宽度为〇. 5〜5um, 沉积3N组的应力作用层210,应力作用层选用不同导热系数材料或磁致弹性材料; 如图15所示,步骤(5):在第二隔离层207和第一隔离层209间隙的3N组的应力作用层210上方,沉积应力控制层211;当应力作用层为磁致弹性材料时,应力控制层为磁性材料, 在电流注入下可产生可控的磁场,控制应力作用层产生所需的应力,然后,藉由应力作用于有源层控制发光波长;当所述应力作用层为不同导热系数的材料时,应力控制层为热电阻材料,通过控制注入电流可控制发热的功率,产生可控的温度,温度范围为50〜50(rC,通过调整不冋温度使不冋导热系数材料产生可控的应力,从而可调节有源层的 A semiconductor layer 202 is etched a first conductivity type second semiconductor layer 208 3N group in its side wall and a first spacer layer 209 is deposited; 14 no, step (4) as shown: first isolation layer 209 and the second spacer layer gap width between 207 billion 5~5um, depositing a stress layer 210 3N group, stress layer or selection of materials of different thermal conductivity of magnetoelastic material; shown in Figure 15, step (5) : stress layer over the second isolation layers 207 and 209 of 3N group gaps the first insulating layer 210, depositing a stress control layer 211; when the stress layer is a magnetoelastic material, the stress controlling layer is a magnetic material, a current under controlled injection may generate a magnetic field, the stress control layer to produce the desired stress, and, by controlling the stress to the active layer emission wavelength; when the stress layer is a thermal conductivity of different materials, the stress control layers a heat resistance material, the injection current can be controlled by controlling the heating power, resulting in a controlled temperature, the temperature range of 50~50 (rC, by adjusting the temperature so as not to not Jiong Jiong heat conductivity material to produce a controlled stresses, so as to be adjustable the active layer 力大小,然后藉由应力作用于有源层控制发光波长; 如图16所示,步骤(6):在3N组应力控制层211下方,沉积3N组的第一导电接触层212 (212a、212b、212c); 如图I7所示,步骤(7):在3N组第一导电型的第二半导体层208上方,沉积3N组的第二导电接触层213(213&amp;、21313、213(:); 如图I8所示,步骤(8) :3N组的第一导电接触层212(212a、212b、212c)分别与集成电路控制板214上的电连接点1、3、5连接,通过集成电路控制板可独立控制第一组、第二组、第三组(共3N组)的应力控制层的输入电流,调控应力作用层产生第一应力、第二应力、第三应力,使第一组有源层发出波长为580〜680nm范围的红光,第二组有源层发出波长为480〜 580nm范围的黄绿光,第三组有源层发出波长380〜480nm范围的蓝光;3N组的第一导电型的第二半导体层2〇8通过第二导电接触层213(213a、213b、213c)分别与集成电 Force magnitude, then the stress to the active layer by controlling the emission wavelength;, step (6) in FIG. 16: 3N group under stress control layer 211, a first conductive contact layer is deposited 3N group 212 (212a, 212b , 212c); as shown in step (7) I7 FIG: a first conductivity type over the second semiconductor layer 208 3N group, a second group of 3N conductive contact layer 213 (213 & amp deposition;, 21313,213 (:) ; I8 shown in FIG, step (8): a first conductive contact layer 3N group 212 (212a, 212b, 212c) are electrically connected to the integrated circuit on the control board 214 is connected 1,3,5 point, by an integrated circuit a first board group may be independently controlled, the input current of the second group, the third group (group co 3N) stress control layer, the first layer generates stress regulation of stress, stress second, third stress, of the first group the active layer emits red light wavelength range of 580~680nm, a second set of active layer emits yellow-green light of a wavelength range of 480~ 580nm, a third set of active layer emits blue light of a wavelength range of 380~480nm; a first group of 3N a second conductivity type semiconductor layer by 2〇8 (213a, 213b, 213c) are integrated with the second conductive contact layer 213 控制板214上的电连接点2、4、6连接,独立控制第一组、第二组、第三组(共3N组)的有源层的发光; 如图19所不,步骤(9):去除第二衬底,在接触层205上方沉积透明导电层215和电极216,制作成晶圆级的可调控RGB波长的微米-纳米级半导体LED显示组件。 On the control board 214 electrically connected to the connection points 4, 6, independent control of the first group, a second light-emitting active layer, third (co 3N group); FIG. 19 is not, step (9) : removing the second substrate, depositing a transparent conductive layer 215 and the electrode 216 over the contact layer 205, made into a wafer-level RGB wavelength regulatable micron - nanoscale semiconductor LED display assembly.

[0027]以上实施方式仅用于说明本发明,而并非用于限定本发明,本领域的技术人员,在不脱离本发明的精神和范围的情况下,可以对本发明做出各种修饰和变动,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应视权利要求书范围限定。 [0027] The above embodiments are merely illustrative of the invention and are not intended to limit the present invention, those skilled in the art, without departing from the spirit and scope of the present invention, can make various modifications and variations of the present invention , all equivalent technical solutions also within the scope of the present invention, the scope of patent protection of the present invention should be defined depending on the scope of the claims.

Claims (10)

1. 一种LED显示组件,包括:由若干组第一导电型的第二半导体层组成的第一导电型的第一半导体层,有源层,应力控制层,应力作用层,第一隔离层,第二隔离层,第二导电型的第三半导体层,第一导电接触层,第二导电接触层,电极以及包括电连接点的集成电路控制板;所述有源层设置有若干组的有源层单元,有源层单元通过侧壁形成第一隔离层进行分隔,所述第一导电型的第二半导体层通过侧壁形成第二隔离层进行分隔,并邻接第二导电接触层;于所述第一隔离层和第二隔离层的间隙形成应力作用层、应力控制层及第一导电接触层;所述第一导电接触层、第二导电接触层分别与集成电路控制板的电连接点连接。 An LED display assembly, comprising: a first conductivity type first semiconductor layer of a first conductivity type by a number of groups of second semiconductor layers, an active layer, a stress control layer, a stress layer, the first spacer layer , a second spacer layer, a second conductivity type third semiconductor layer, a first conductive contact layer, the second conductive contact layer, and an electrode comprising an integrated circuit board electrical connections; the active layer is provided with a plurality of groups of means the active layer, the active layer unit is formed by a first sidewall spacer layer is separated, the separated second spacer layer of a first conductivity type second semiconductor layer formed by the side walls, and adjacent to the second conductive contact layer; a gap layer on the first isolation layer and the second spacer layer forming the stress, the stress control layer and the first conductive contact layer; the first conductive contact layer, a second electrically conductive contact layer, respectively, the integrated circuit board connection point.
2. 根据权利要求1所述的一种LED显示组件,其特征在于:所述第一导电型的第二半导体层的组数为3N组,所述有源层单元的组数为3N组,其中N取自然数且1。 An LED display assembly according to claim 1, characterized in that: the number of sets of a second conductivity type first semiconductor layer is 3N group, the number of units is set active layer 3N group, wherein N is a natural number and 1.
3. 根据权利要求1所述的一种LED显示组件,其特征在于:所述应力作用层为不同导热系数材料或磁致弹性材料。 3. The display of an LED assembly according to claim 1, wherein: said stress layer is a different heat conductivity material or magnetoelastic material.
4. 根据权利要求3所述的一种LED显示组件,其特征在于:当所述应力作用层为磁致弹性材料时,应力控制层为磁性材料,在电流注入下产生可控的磁场,控制应力作用层产生所需的应力,藉由应力作用于有源层控制发光波长。 4. An LED display assembly according to claim 3, wherein: when the stress layer is a magnetoelastic material, the stress controlling layer is a magnetic material, a magnetic field is generated at a controlled current injection control stress layer is desired stress, stress to the active layer by controlling the emission wavelength.
5. 根据权利要求3所述的一种LED显示组件,其特征在于:当所述应力作用层为不同导热系数材料时,应力控制层为热电阻材料,在电流注入下控制发热的功率,产生可控的温度,通过调整温度使不同导热系数材料产生可控的应力,藉由应力作用于有源层控制发光波长。 An LED display 5. The assembly according to claim 3, wherein: when the stress layer is a thermal conductivity of different materials, the stress control layer is a heat resistance material, the heating power is controlled at a current injection, resulting in temperature controlled, by adjusting the temperature so that the different heat conductivity material to produce a controlled stress, stress to the active layer by controlling the emission wavelength.
6. 根据权利要求1所述的一种LED显示组件,其特征在于:所述第一隔离层始于有源层的上表面,终止于第一导电型的第二半导体层的下表面,所述第二隔离层始于有源层的下表面,终止于第一导电型的第二半导体层的下表面。 6. An LED display assembly according to claim 1, wherein: said first spacer layer on the surface of the active layer begins, terminating at a second surface of the first conductivity type semiconductor layer, the said second spacer layer, the lower surface of the active layer begins, terminating at a second surface of the first conductivity type semiconductor layer.
7. 根据权利要求1所述的一种LED显示组件,其特征在于:所述第一隔离层和第二隔离层之间形成间隙,宽度为〇. 5〜5mi。 The display of the LED assembly according to one of claim 1, wherein: a gap is formed between the first spacer and the second spacer layer, a width of square 5~5mi..
8. 根据权利要求1所述的一种LED显示组件,其特征在于:所述第一隔离层,用以隔开相邻的第一导电型的第二半导体层、应力控制层以及应力作用层。 8. An LED display assembly according to claim 1, wherein: said first spacer layer to a first conductivity type second semiconductor layer spaced apart from adjacent stress control layer, and layer stress .
9. 一种LED显示组件的制作方法,其包括以下步骤: 步骤(1):在第一衬底上,外延生长第一导电型的第一半导体层; 步骤(2):将第一导电型的第一半导体层蚀刻出若干组的第一导电型的第二半导体层, 其侧壁沉积第二隔离层;在相邻的第一导电型的第二半导体层的之间沉积第一隔离层,隔离出若干组的外延预生长区域; 步骤(3):在所述第一隔离层和第二隔离层的间隙,沉积应力控制层和应力作用层,作为生长模板; 步骤(4):在生长模板上外延生长有源层; 步骤(5):在有源层上依次外延生长第二导电型的第三半导体层和接触层; 步骤(6):在接触层上,键合第二衬底,并剥离第一衬底,裸露出第一导电型的第一半导体层、第一隔离层、第二隔离层和应力控制层的下表面; 步骤(7):在应力控制层上,沉积第一导电接触层; 步骤(8):在第一导电型的第二半导体层上 9. A method for manufacturing an LED display assembly, which comprises the following steps: Step (1): on the first substrate, epitaxially growing a first conductivity type first semiconductor layer; Step (2): a first conductivity type etching the first semiconductor layer of a first conductivity type second semiconductor layer several sets of which is deposited a second sidewall spacer layer; depositing a first spacer layer between adjacent first conductivity type second semiconductor layer, , pre-epitaxial growth of the isolation region of several groups; step (3): a gap in the first isolation layer and the second barrier layer, and depositing a layer of stress control layer stress, as a growth template; step (4): in epitaxially growing an active layer grown on a template; step (5): on the active layer are sequentially epitaxially growing a second conductivity type third semiconductor layer and the contact layer; step (6): on the contact layer, a second substrate is bonded bottom, and peeling the first substrate, the exposed first conductivity type first semiconductor layer, a first spacer layer, a second spacer layer and the lower surface of the stress control layer; step (7): in the stress controlling layer is deposited the first conductive contact layer; step (8): a first conductivity type second semiconductor layer 沉积第二导电接触层; 步骤(9):将第一导电接触层与集成电路控制板上的电连接点连接,通过集成电路控制板控制应力拴制层的输人电流,调控应力作用层产生的应力,使有源层单元发出不同波段的波长;将第二导电接触层与集成电路控制板上的电连接点连接,独立控制有源层单元的发光; 步骤(10):去除第二衬底,在接触层上方沉积电极,从而制作成LED显示组件。 Depositing a second conductive contact layer; Step (9): a first electrically conductive contact layer connection point and a control board connected to the integrated circuit, the integrated circuit board is produced by a stress controlling layer is made of tied input current, stress-control layer the stress of the active layer emits a different wavelength band unit; a second electrically conductive contact layer is connected to the connection point of the integrated circuit on the control board, independent control of the light emitting unit, the active layer; step (10): removing the second liner bottom, layer is deposited over the contact electrode, to thereby produce LED display assembly.
10.—种LH)显示组件的制作方法,其包括以下步骤: 步骤(1):在第一衬底上依次外延第一导电型的第一半导体层,有源层,第二导电型的第三半导体层以及接触层; 步骤(2):在接触层上方,键合第二衬底,并剥离第一衬底; 步骤(3):从第一导电型的第一半导体层蚀刻至有源层,蚀刻出若干组的有源层单元, 并在侧壁沉积第二隔离层;在第一导电型的第一半导体层蚀刻出若千组的第一导电型的第二半导体,并在其侧壁沉积第一隔离层; 步骤(4):在第一隔离层和第二隔离层的间隙,沉积应力作用层; 步骤(5):在应力作用层上,沉积应力控制层; 步骤出):在应力控制层上,沉积第一导电接触层; 步骤(7):在第一导电型的第二半导体层上,沉积第二导电接触层; 步骤(8):将第一导电接触层与集成电路控制板上的电连接点连接,通过集成电路控制板控制应力控制 10.- species LH) method for fabricating a component, comprising the following steps: Step (1): successively epitaxially on a first substrate of a first conductivity type first semiconductor layer, an active layer, a second conductivity type three semiconductor layer and the contact layer; step (2): in the above the contact layer, a second substrate is bonded, and peeling the first substrate; step (3): from the first conductive type first semiconductor layer is etched to the active layer, the active layer is etched several sets of units, and a second spacer layer sidewall deposition; etched if the first conductivity type semiconductor second group of one thousand in the first semiconductor layer of a first conductivity type, and in which a first spacer layer sidewall deposition; step (4): in the gap between the first spacer layer and the second spacer layer deposited stress layer; step (5): on the layer of stress, the stress controlling layer is deposited; step a) : in the stress-controlling layer, the first conductive contact layer is deposited; step (7): on a first conductivity type second semiconductor layer, a second conductive contact layer is deposited; step (8): a first conductive contact layer electrical connections connected to the integrated circuit control board, the control board by controlling the stress control IC 层的输入电流,调控应力作用层产生的应力,使有源层单元发出不同波段的波长;将第二导电接触层与集成电路控制板上的电连接点连接,独立控制有源层单元的发光; 步骤(9):去除第二衬底,在接触层上方沉积电极,制作成LED显示组件。 Input current layer, the stress generated in the regulation of stress layer, the active layer emits a different wavelength band unit; a second electrically conductive contact layer is connected to the connection point of the integrated circuit on the control board, the light emitting active layer independent control units ; step (9): removing the second substrate, the contact layer is deposited over the electrode assemblies made into LED display.
CN201710192858.6A 2017-03-28 2017-03-28 LED display component and manufacturing method thereof CN107017274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710192858.6A CN107017274A (en) 2017-03-28 2017-03-28 LED display component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710192858.6A CN107017274A (en) 2017-03-28 2017-03-28 LED display component and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN107017274A true CN107017274A (en) 2017-08-04

Family

ID=59445892

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710192858.6A CN107017274A (en) 2017-03-28 2017-03-28 LED display component and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN107017274A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101711405A (en) * 2007-05-31 2010-05-19 无限科技全球公司 Method of manufacturing addressable and static electronic displays, power generating or other electronic apparatus
US20100317132A1 (en) * 2009-05-12 2010-12-16 Rogers John A Printed Assemblies of Ultrathin, Microscale Inorganic Light Emitting Diodes for Deformable and Semitransparent Displays
CN105226147A (en) * 2015-10-23 2016-01-06 厦门市三安光电科技有限公司 Nitride white light-emitting diode
CN105679902A (en) * 2015-05-21 2016-06-15 美科米尚技术有限公司 Micro-light-emitting diode
CN106328773A (en) * 2016-08-29 2017-01-11 厦门市三安光电科技有限公司 Nitride light-emitting diode and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101711405A (en) * 2007-05-31 2010-05-19 无限科技全球公司 Method of manufacturing addressable and static electronic displays, power generating or other electronic apparatus
US20100317132A1 (en) * 2009-05-12 2010-12-16 Rogers John A Printed Assemblies of Ultrathin, Microscale Inorganic Light Emitting Diodes for Deformable and Semitransparent Displays
CN105679902A (en) * 2015-05-21 2016-06-15 美科米尚技术有限公司 Micro-light-emitting diode
CN105226147A (en) * 2015-10-23 2016-01-06 厦门市三安光电科技有限公司 Nitride white light-emitting diode
CN106328773A (en) * 2016-08-29 2017-01-11 厦门市三安光电科技有限公司 Nitride light-emitting diode and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7981714B2 (en) Nitride based semiconductor device using nanorods and process for preparing the same
CN100379044C (en) Generation method of whitelight source, whitelight luminous element and its manufacturing method
JP5777948B2 (en) Light emitting diode
JP5554792B2 (en) Light emitting device and a manufacturing method thereof
KR100765240B1 (en) Light emitting diode package having light emitting cell with different size and light emitting device thereof
US8329482B2 (en) White-emitting LED chips and method for making same
CN102169934B (en) Semiconductor light emitting device having multi-cell array and method for manufacturing the same
CN103094269B (en) White light emitting device and manufacturing method thereof
CN1819255B (en) Micro-led based high voltage ac/dc indicator lamp
US8030666B2 (en) Group-III nitride epitaxial layer on silicon substrate
KR100849826B1 (en) Light emitting device and package including the same
CN206134683U (en) Miniature led display
US20100264454A1 (en) Semiconductor light emitting device growing active layer on textured surface
WO2009134095A2 (en) Light-emitting element and a production method therefor
JP5475833B2 (en) Vertical light emitting element
JP2010056458A (en) Method of manufacturing light emitting element
JP2007103951A (en) Nitride semiconductor light-emitting element and method for manufacture it
KR101262386B1 (en) Method of producing a nitride semiconductor light-emitting device
JP2004214592A (en) Color mixing light emitting diode
RU2515205C2 (en) Semiconductor light-emitting devices grown on composite wafers
JP2006504265A (en) Ac operation light emitting diode assembly and its manufacturing method
JP2002261335A (en) Image display device and manufacturing method therefor
JPH1140847A (en) Gallium nitride semiconductor device and manufacture thereof
CN101263610A (en) Light emitting device having vertically stacked light emitting diodes
KR100658938B1 (en) Light emitting device with nano-rod and method for fabricating the same

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination