TWI523262B - Semiconductor light emitting device having multi-cell array and method for manufacturing the same - Google Patents

Semiconductor light emitting device having multi-cell array and method for manufacturing the same Download PDF

Info

Publication number
TWI523262B
TWI523262B TW100103015A TW100103015A TWI523262B TW I523262 B TWI523262 B TW I523262B TW 100103015 A TW100103015 A TW 100103015A TW 100103015 A TW100103015 A TW 100103015A TW I523262 B TWI523262 B TW I523262B
Authority
TW
Taiwan
Prior art keywords
light
semiconductor layer
light emitting
emitting device
conductive
Prior art date
Application number
TW100103015A
Other languages
Chinese (zh)
Other versions
TW201242079A (en
Inventor
金制遠
張泰盛
禹鍾均
李鍾昊
Original Assignee
三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星電子股份有限公司 filed Critical 三星電子股份有限公司
Publication of TW201242079A publication Critical patent/TW201242079A/en
Application granted granted Critical
Publication of TWI523262B publication Critical patent/TWI523262B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Computer Hardware Design (AREA)
  • Led Devices (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)

Description

具多單元陣列之半導體發光裝置及製造其之方法Semiconductor light emitting device with multi-cell array and method of manufacturing same

本發明係關於半導體發光裝置,更特定而言,係關於其中排列有複數個發光單元之半導體發光裝置及其製造方法。The present invention relates to a semiconductor light-emitting device, and more particularly to a semiconductor light-emitting device in which a plurality of light-emitting units are arranged and a method of manufacturing the same.

通常,半導體發光二極體(LEDs)在照明方面具有功率、效率及可靠性的優勢。因此,半導體發光二極體係已蓬勃地發展為各種照明設備與顯示裝置的背光單元用之高功率、高效率光源。對於此類作為照明光源之半導體發光二極體的商品化,必須增加它們的發光效率以及減少它們的產品成本,同時提升它們的功率到達所需程度時。In general, semiconductor light-emitting diodes (LEDs) have the advantage of power, efficiency and reliability in terms of illumination. Therefore, the semiconductor light-emitting diode system has been vigorously developed into a high-power, high-efficiency light source for backlight units of various illumination devices and display devices. Commercialization of such semiconductor light-emitting diodes as illumination sources must increase their luminous efficiency and reduce their product cost while increasing their power to the desired level.

然而,相較於使用低額定電流之低功率發光二極體,使用高額定電流之高功率發光二極體因高電流密度而具有低發光效率。具體來說,若增加額定電流以獲得相同面積發光二極體晶片中之高度光通量(luminous flux)以獲得高功率,發光效率可能因增加的電流密度而衰減。此外,發光效率衰減會因裝置產生的熱能而加速。However, a high power light-emitting diode using a high rated current has a low luminous efficiency due to a high current density compared to a low power light emitting diode using a low rated current. Specifically, if the rated current is increased to obtain a high luminous flux in the same area of the light-emitting diode wafer to obtain high power, the luminous efficiency may be attenuated by the increased current density. In addition, the attenuation of luminous efficiency is accelerated by the thermal energy generated by the device.

為解決這些問題,業已發表一種高功率發光裝置,其中,複數個低功率發光二極體晶片以封裝程度晶片黏合於高功率發光裝置上,且其晶片係藉由導線黏合連接。據此方法,由於使用具有相對小尺寸之低功率發光二極體晶片,相較於使用具有大尺寸之高功率發光二極體晶片,電流密度進一步減低,並因此提升整體光效率。然而,當增加導線黏合的數量時,將增加製造成本以及製造製程將變得複雜。此外,失敗率亦因導線打開情形(wire open condition)而增加。當晶片藉由導線連接時,其難以實現複雜的串並聯互連結構。由於空間被導線所佔據,其難以達成封裝的小型化。此外,可安裝至單一封裝的晶片數量亦有限制。In order to solve these problems, a high-power light-emitting device has been disclosed in which a plurality of low-power light-emitting diode wafers are bonded to a high-power light-emitting device in a package degree, and the wafers are bonded by wire bonding. According to this method, since a low-power light-emitting diode wafer having a relatively small size is used, the current density is further reduced as compared with the use of a high-power light-emitting diode wafer having a large size, and thus the overall light efficiency is improved. However, when the number of wire bonds is increased, the manufacturing cost is increased and the manufacturing process becomes complicated. In addition, the failure rate is also increased by the wire open condition. When a wafer is connected by wires, it is difficult to implement a complicated series-parallel interconnection structure. Since the space is occupied by the wires, it is difficult to achieve miniaturization of the package. In addition, the number of wafers that can be mounted to a single package is also limited.

本發明之一態樣提供一種半導體發光裝置,該半導體發光裝置可藉由增加每單位面積的電流密度而改善光效率,且可發射具有高演色性(high color rendering)的白光。One aspect of the present invention provides a semiconductor light emitting device which can improve light efficiency by increasing a current density per unit area, and can emit white light having high color rendering.

本發明之一態樣亦提供可不需使用磷光體而獲得高效率白光之半導體發光裝置及其製造方法。One aspect of the present invention also provides a semiconductor light-emitting device which can obtain high-efficiency white light without using a phosphor and a method of manufacturing the same.

本發明之一態樣亦提供可確保足夠的發光面積之半導體發光裝置,同時其中提供有複數個發光單元於半導體發光裝置。One aspect of the present invention also provides a semiconductor light emitting device that ensures a sufficient light emitting area while providing a plurality of light emitting units to the semiconductor light emitting device.

根據本發明之一態樣,係提供半導體發光裝置,包括:基板;排列於基板上之複數個發光單元,每一發光單元包括第一導電型半導體層、第二導電型半導體層以及設置於第一導電型半導體層及第二導電型半導體層之間的主動層以發射藍光;互連結構,係將發光單元之第一導電型半導體層及第二導電型半導體層之至少一者電性連接至另一發光單元之第一導電型半導體層及第二導電型半導體層之至少一者;以及光轉換元件,係形成於藉由複數個發光單元所定義的發光區域之至少一部份中,光轉換元件包括具有紅光轉換材料之紅光轉換元件以及具有綠光轉換材料之綠光轉換元件之至少一者。According to an aspect of the present invention, a semiconductor light emitting device includes: a substrate; a plurality of light emitting units arranged on the substrate, each of the light emitting units including a first conductive type semiconductor layer, a second conductive type semiconductor layer, and a first An active layer between a conductive semiconductor layer and a second conductive semiconductor layer to emit blue light; and an interconnect structure electrically connecting at least one of the first conductive semiconductor layer and the second conductive semiconductor layer of the light emitting unit And at least one of the first conductive semiconductor layer and the second conductive semiconductor layer to the other light emitting unit; and the light converting element is formed in at least a portion of the light emitting region defined by the plurality of light emitting units, The light conversion element includes at least one of a red light conversion element having a red light conversion material and a green light conversion element having a green light conversion material.

光轉換元件可不需形成於一部份發光區域中。The light conversion element does not need to be formed in a part of the light-emitting area.

光轉換元件可包括磷光體及量子點之至少一者。The light conversion element can include at least one of a phosphor and a quantum dot.

複數個發光單元之至少一者之第一導電型半導體層可電性連接另一發光單元之第二導電型半導體層。The first conductive semiconductor layer of at least one of the plurality of light emitting cells may be electrically connected to the second conductive semiconductor layer of the other light emitting cell.

複數個發光單元之至少一者之第一導電型半導體層可電性連接另一發光單元之第一導電型半導體層。The first conductive semiconductor layer of at least one of the plurality of light emitting cells may be electrically connected to the first conductive semiconductor layer of the other light emitting cell.

複數個發光單元之至少一者之第二導電型半導體層可電性連接另一發光單元之第二導電型半導體層。The second conductive semiconductor layer of at least one of the plurality of light emitting cells may be electrically connected to the second conductive semiconductor layer of the other light emitting cell.

複數個發光單元之第一導電型半導體層可一體成形(integrally formed)。The first conductive type semiconductor layer of the plurality of light emitting units may be integrally formed.

紅光轉換元件及綠光轉換元件之一可形成於每一發光單元上。One of the red light conversion element and the green light conversion element may be formed on each of the light emitting units.

紅光轉換元件及綠光轉換元件之一可相對於複數個發光單元之二或更多個為一體成形。One of the red light conversion element and the green light conversion element may be integrally formed with respect to two or more of the plurality of light emitting units.

光轉換元件可沿著發光單元之表面形成。The light conversion element can be formed along the surface of the light emitting unit.

光轉換元件可包括紅光轉換元件以及綠光轉換元件,複數個發光單元可分割成:紅色群組,包括紅光轉換元件形成於其中之一或多個單元;綠色群組,包括綠光轉換元件形成於其中之一或多個單元;以及藍色群組,包括藍光轉換元件形成於其中之一或多個單元,且半導體發光裝置可進一步包括各自連接紅色群組、綠色群組以及藍色群組的三對墊件。The light conversion element may include a red light conversion element and a green light conversion element, and the plurality of light emitting units may be divided into: a red group including a red light conversion element formed in one or more of the units; a green group including a green light conversion The element is formed in one or more of the units; and the blue group includes one or more units in which the blue light conversion element is formed, and the semiconductor light emitting device may further include a respective connection red group, green group, and blue Three pairs of cushions for the group.

經由墊件應用至紅色群組、綠色群組以及藍色群組的電流可獨立地控制。The current applied to the red group, the green group, and the blue group via the pad can be independently controlled.

根據本發明另一態樣,係提供一種半導體發光裝置,包括:基板;排列於基板上之複數個發光單元,每一發光單元包括第一導電型半導體層、第二導電型半導體層以及設置於第一導電型半導體層及第二導電型半導體層之間的主動層以發射藍光;互連結構,係將發光單元之第一導電型半導體層及第二導電型半導體層之至少一者電性連接至另一發光單元之第一導電型半導體層及第二導電型半導體層之至少一者;以及光轉換元件,係形成於藉由複數個發光單元所定義的發光區域之至少一部份中,光轉換元件包括光轉換材料及綠光轉換材料之至少一者,其中,光轉換元件分割成具有紅光轉換材料及綠光轉換材料之至少一者之不同混合比率的複數個群組。According to another aspect of the present invention, a semiconductor light emitting device includes: a substrate; a plurality of light emitting units arranged on the substrate, each of the light emitting units including the first conductive type semiconductor layer, the second conductive type semiconductor layer, and the An active layer between the first conductive type semiconductor layer and the second conductive type semiconductor layer to emit blue light; and an interconnect structure to electrically connect at least one of the first conductive type semiconductor layer and the second conductive type semiconductor layer of the light emitting unit Connecting at least one of the first conductive type semiconductor layer and the second conductive type semiconductor layer of the other light emitting unit; and the light converting element is formed in at least a portion of the light emitting area defined by the plurality of light emitting units The light conversion element includes at least one of a light conversion material and a green light conversion material, wherein the light conversion element is divided into a plurality of groups having different mixing ratios of at least one of a red light conversion material and a green light conversion material.

根據本發明另一態樣,係提供一種半導體發光裝置,包括:封裝基板;排列於封裝基板上之複數個多晶片裝置,每一多晶片裝置包括第一導電型半導體層、第二導電型半導體層以及設置於第一導電型半導體層及第二導電型半導體層之間的主動層以發射藍光;互連結構,係將發光單元之第一導電型半導體層及第二導電型半導體層之至少一者電性連接至另一發光單元之第一導電型半導體層及第二導電型半導體層之至少一者;以及複數個光轉換元件,係設置於多晶片裝置之光路徑上,光轉換元件包括紅光轉換材料及綠光轉換材料之至少一者,其中,光轉換元件分割成具有紅光轉換材料及綠光轉換材料之至少一者之不同混合比率之複數個群組。According to another aspect of the present invention, a semiconductor light emitting device includes: a package substrate; a plurality of multi-wafer devices arranged on the package substrate, each multi-chip device including a first conductive type semiconductor layer and a second conductive type semiconductor And an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer to emit blue light; and the interconnect structure is configured to at least the first conductive semiconductor layer and the second conductive semiconductor layer of the light emitting unit One of the first conductive type semiconductor layer and the second conductive type semiconductor layer electrically connected to the other light emitting unit; and the plurality of light converting elements are disposed on the light path of the multi-chip device, and the light converting element At least one of a red light conversion material and a green light conversion material, wherein the light conversion element is divided into a plurality of groups having different mixing ratios of at least one of a red light conversion material and a green light conversion material.

光轉換元件可進一步包括黃光轉換材料,且光轉換元件分割成具有紅光轉換材料、綠光轉換材料以及黃光轉換材料之至少一者之不同混合比率的複數個群組。The light conversion element may further include a yellow light conversion material, and the light conversion element is divided into a plurality of groups having different mixing ratios of at least one of a red light conversion material, a green light conversion material, and a yellow light conversion material.

半導體發光裝置可進一步包括連接複數個群組之複數個墊件。The semiconductor light emitting device can further include a plurality of pads connected to a plurality of groups.

通過複數個墊件施加至複數個群組的電流可分別地加以控制。The current applied to the plurality of groups by the plurality of pads can be separately controlled.

光轉換元件可包括屏障元件,且屏障元件內部可以光轉換材料填充。The light converting element can include a barrier element, and the interior of the barrier element can be filled with a light converting material.

屏障元件可包括與光轉換材料相同的材料。The barrier element can comprise the same material as the light converting material.

屏障元件可由與填充光轉換元件內部之其餘部分相同的材料形成。The barrier element can be formed of the same material as the rest of the interior of the filled light conversion element.

根據本發明另一態樣,係提供一種半導體發光裝置,包括:基板;排列於基板上之複數個發光單元,每一發光單元包括第一導電型半導體層、第二導電型半導體層以及設置於第一導電型半導體層及第二導電型半導體層之間的主動層;以及互連結構,係電性連接發光單元之至少一第一導電型半導體層及第二導電型半導體層至另一發光單元之至少一第一導電型半導體層及第二導電型半導體層,其中,一部分發光單元發射紅光,一部分發光單元發射綠光,其它發光單元發射藍光。According to another aspect of the present invention, a semiconductor light emitting device includes: a substrate; a plurality of light emitting units arranged on the substrate, each of the light emitting units including the first conductive type semiconductor layer, the second conductive type semiconductor layer, and the An active layer between the first conductive type semiconductor layer and the second conductive type semiconductor layer; and an interconnect structure electrically connecting at least one of the first conductive type semiconductor layer and the second conductive type semiconductor layer of the light emitting unit to another light emitting At least one of the first conductive semiconductor layer and the second conductive semiconductor layer, wherein a part of the light emitting unit emits red light, a part of the light emitting unit emits green light, and the other light emitting unit emits blue light.

半導體發光裝置可進一步包括基層,係形成於基板及第一導電型半導體層之間,且連接發光單元之第一導電型半導體層。The semiconductor light emitting device may further include a base layer formed between the substrate and the first conductive type semiconductor layer and connected to the first conductive type semiconductor layer of the light emitting unit.

基層可由第一導電型半導體材料形成。The base layer may be formed of a first conductive type semiconductor material.

基層可由未摻雜之半導體材料形成。The base layer may be formed of an undoped semiconductor material.

發光單元之第一導電型半導體層可一體成形。The first conductive type semiconductor layer of the light emitting unit may be integrally formed.

根據本發明另一態樣,係提供一種製造半導體發光裝置之方法,包括:於基板之第一區域上,藉由連續地生長第一導電型半導體層、第一主動層以及第二導電型半導體層形成第一發光結構;於基板之第二區域上,藉由連續地生長第一導電型半導體層、第二主動層以及第二導電型半導體層形成第二發光結構;於基板之第三區域上,藉由連續地生長第一導電型半導體層、第三主動層以及第二導電型半導體層形成第三發光結構;以及形成互連結構,以電性連接第一發光結構至第三發光結構,其中,第一主動層至第三主動層之一者發射紅光,另一主動層發射綠光,以及其餘主動層發射藍光。According to another aspect of the present invention, a method of fabricating a semiconductor light emitting device includes: continuously growing a first conductive type semiconductor layer, a first active layer, and a second conductive type semiconductor on a first region of a substrate Forming a first light emitting structure; forming a second light emitting structure by continuously growing the first conductive semiconductor layer, the second active layer, and the second conductive semiconductor layer on the second region of the substrate; in the third region of the substrate Forming a third light emitting structure by continuously growing the first conductive type semiconductor layer, the third active layer, and the second conductive type semiconductor layer; and forming an interconnect structure to electrically connect the first light emitting structure to the third light emitting structure Wherein one of the first active layer to the third active layer emits red light, the other active layer emits green light, and the remaining active layers emit blue light.

在形成第一發光結構之前,該方法可進一步包括於基板上形成具有第一開口區域之罩體層,其中,第一發光結構係形成於第一開口區域中。Before forming the first light emitting structure, the method may further include forming a cap layer having a first opening region on the substrate, wherein the first light emitting structure is formed in the first opening region.

在形成第二發光結構之前,該方法可進一步包括於基板上形成具有第二開口區域之罩體層,其中,第二發光結構係形成於第二開口區域中。Before forming the second light emitting structure, the method may further include forming a cap layer having a second opening region on the substrate, wherein the second light emitting structure is formed in the second opening region.

在形成第三發光結構之前,該方法可進一步包括於基板上形成具有第三開口區域之罩體層,其中,第三發光結構係形成於第三開口區域中。Before forming the third light emitting structure, the method may further include forming a cap layer having a third opening region on the substrate, wherein the third light emitting structure is formed in the third opening region.

第一發光結構至第三發光結構可不必彼此接觸。The first to third light emitting structures may not necessarily be in contact with each other.

在形成第一發光結構至第三發光結構之前,該方法可進一步包括於基板上形成基層。The method may further include forming a base layer on the substrate before forming the first to third light emitting structures.

基層可由第一導電型半導體材料形成。The base layer may be formed of a first conductive type semiconductor material.

基層可由未摻雜之半導體層形成。The base layer may be formed of an undoped semiconductor layer.

生長第一導電型半導體層之製程可為於基層上再生長(re-growing)第一導電型半導體層之製程。The process of growing the first conductive type semiconductor layer may be a process of re-growing the first conductive type semiconductor layer on the base layer.

根據本發明另一態樣,係提供一種製造半導體發光裝置之方法,包括:於基板上生長第一導電型半導體層;於第一導電型半導體層之第一區域至第三區域中生長第一主動層至第三主動層;生長第二導電型半導體層以覆蓋第一主動層至第三主動層;藉由移除一部份第二導電型半導體層形成第一發光結構至第三發光結構,使得第二對應第一主動層至第三主動層位置的導電型半導體層留下;以及形成互連結構以電性連接第一發光結構至第三發光結構,其中,第一主動層至第三主動層其中之一發射紅光,另一主動層發射綠光,其它主動層發射藍光。According to another aspect of the present invention, a method of fabricating a semiconductor light emitting device includes: growing a first conductive semiconductor layer on a substrate; growing a first in a first region to a third region of the first conductive semiconductor layer Active layer to third active layer; growing a second conductive semiconductor layer to cover the first active layer to the third active layer; forming a first light emitting structure to a third light emitting structure by removing a portion of the second conductive type semiconductor layer Having leaving the second conductive layer to the first active layer to the third active layer; and forming an interconnect structure to electrically connect the first to third light emitting structures, wherein the first active layer One of the three active layers emits red light, the other active layer emits green light, and the other active layers emit blue light.

第一發光結構至第三發光結構之形成可包括移除一部份第一導電型半導體層,使得對應第一主動層至第三主動層位置之第一導電型半導體層留下。The forming of the first to third light emitting structures may include removing a portion of the first conductive semiconductor layer such that the first conductive semiconductor layer corresponding to the first active layer to the third active layer remains.

根據本發明之另一態樣,係提供一種半導體發光裝置,包括:排列於導電基板上之複數個發光單元,每一發光單元包括第一導電型半導體層、第二導電型半導體層以及形成於第一導電型半導體層及第二導電型半導體層之間的主動層,其中,第二導電型半導體層係對準(directed to)導電基板且電性連接導電基板;以及互連結構,係將至少一發光單元之第一導電型半導體層電性連接至另一發光單元之第一導電型半導體層。According to another aspect of the present invention, a semiconductor light emitting device includes: a plurality of light emitting cells arranged on a conductive substrate, each of the light emitting cells including a first conductive semiconductor layer, a second conductive semiconductor layer, and formed on An active layer between the first conductive semiconductor layer and the second conductive semiconductor layer, wherein the second conductive semiconductor layer is directed to the conductive substrate and electrically connected to the conductive substrate; and the interconnect structure The first conductive semiconductor layer of the at least one light emitting unit is electrically connected to the first conductive semiconductor layer of the other light emitting unit.

半導體發光裝置可進一步包括形成於導電基板及複數個發光單元之間的反射金屬層。The semiconductor light emitting device may further include a reflective metal layer formed between the conductive substrate and the plurality of light emitting units.

互連結構可由金屬形成。The interconnect structure can be formed of a metal.

形成於至少第一導電型半導體層頂面上之一部份互連結構可由透明導電材料形成。A portion of the interconnect structure formed on at least the top surface of the first conductive semiconductor layer may be formed of a transparent conductive material.

半導體發光裝置可進一步包括形成於導電基板及複數個發光單元之間的隔離層(barrier layer)。The semiconductor light emitting device may further include a barrier layer formed between the conductive substrate and the plurality of light emitting units.

隔離層可電性連接發光單元之第二導電型半導體層。The isolation layer is electrically connected to the second conductive type semiconductor layer of the light emitting unit.

複數個發光單元可以並聯電性連接。A plurality of light emitting units can be electrically connected in parallel.

本發明之示範實施例將伴隨圖示詳細描述。然而,本發明可以許多不同形式據以實施,不應限制為此處所揭露之實施例內容。更確切地說,提供之實施例係便於揭露內容可詳盡及完整的,且充分表達熟知該技術領域者本發明之範圍。圖示中,為清楚起見,係誇大層及區域的厚度。圖示中類似元件符號定義類似元件,因此可忽略其敘述。Exemplary embodiments of the present invention will be described in detail with the accompanying drawings. However, the invention may be embodied in many different forms and should not be limited to the embodiments disclosed herein. Rather, the embodiments are provided so that this disclosure will be thorough and complete, and the scope of the invention is well known to those skilled in the art. In the drawings, the thickness of layers and regions are exaggerated for clarity. Similar component symbols in the figures define similar components, so their description can be ignored.

第1圖係為繪示根據本發明之實施例之半導體發光裝置之平面示意圖。第2圖係為沿著第1圖A-A’線段之剖面示意圖。第3圖係為繪示第1圖半導體發光裝置中發光單元的連接之等效電路圖。第4圖係為繪示第1圖半導體發光裝置修改的剖面示意圖。1 is a schematic plan view showing a semiconductor light emitting device according to an embodiment of the present invention. Fig. 2 is a schematic cross-sectional view taken along line A-A' of Fig. 1. Fig. 3 is an equivalent circuit diagram showing the connection of the light-emitting units in the semiconductor light-emitting device of Fig. 1. Figure 4 is a cross-sectional view showing a modification of the semiconductor light-emitting device of Figure 1.

參閱第1圖及第2圖,根據本發明之實施例,半導體發光裝置100包括基板101以及排列於基板101上之複數個發光單元C。發光單元C藉由互連結構106電性連接在一起。此例中,術語「發光單元」表示具有主動層區域之半導體多層結構,其有別於其它單元。此實施例中,25個發光單元係以5x5陣列(pattern)排列;然而,發光單元C之數量及排列可以各種方式改變。關於另一個元件,用於外部電子訊號應用之第一及第二墊件107a,107b可形成於基板101上。此實施例中,墊件107a及107b直接接觸發光單元C。然而,在另一實施例中,墊件107a,107b以及發光單元可藉由互連結構106彼此間隔開來並連接在一起。此實施例中,該單元被分開成複數個發光單元C,每單位面積的電流密度可相較於使用單一單元的例子進一步減小。因此,可改善半導體發光裝置100之發光效率。Referring to FIGS. 1 and 2, a semiconductor light emitting device 100 includes a substrate 101 and a plurality of light emitting cells C arranged on the substrate 101, in accordance with an embodiment of the present invention. The light emitting units C are electrically connected together by the interconnect structure 106. In this example, the term "lighting unit" means a semiconductor multilayer structure having an active layer region, which is different from other units. In this embodiment, 25 illumination units are arranged in a 5x5 pattern; however, the number and arrangement of illumination units C can be varied in various ways. Regarding another component, first and second pads 107a, 107b for external electronic signal applications may be formed on the substrate 101. In this embodiment, the pads 107a and 107b directly contact the light emitting unit C. However, in another embodiment, the pads 107a, 107b and the lighting units may be spaced apart from each other by the interconnect structure 106 and joined together. In this embodiment, the unit is divided into a plurality of light-emitting units C, and the current density per unit area can be further reduced as compared with the example using a single unit. Therefore, the luminous efficiency of the semiconductor light emitting device 100 can be improved.

如第2圖所示,每一發光單元C1,C2及C3包括形成於基板101上之第一導電型半導體層102、主動層103以及第二導電型半導體層104。如第3圖所示,發光單元C1,C2及C3係藉由互連結構106串聯連接。此例中,由透明導電氧化物形成之透明電極105可設置於第二導電型半導體層104上。發光單元C1,C2及C3之串聯連接結構中,第一發光單元C1之第二導電型半導體層104以及第二發光單元C2之第一導電型半導體層102可連接在一起。除了串聯連接之外,此處亦可使用並聯連接或串並聯連接,其將於稍後敘述。此實施例中,互連結構106並非導線,且沿著發光單元C1,C2及C3以及基板101的表面形成,絕緣部108可設置於發光單元C1,C2及C3以及互連結構106之間,因而預防不必要的電性短路。此例中,絕緣部108可以習知的材料形成,例如氧化矽或氮化矽。此實施例中,由於未使用導線作為單元之間用於電性連接的結構,因此可減少電性短路的機率且改善互相連接製程的難易度。As shown in FIG. 2, each of the light-emitting units C1, C2, and C3 includes a first conductive semiconductor layer 102, an active layer 103, and a second conductive semiconductor layer 104 formed on a substrate 101. As shown in FIG. 3, the light-emitting units C1, C2, and C3 are connected in series by the interconnect structure 106. In this example, the transparent electrode 105 formed of a transparent conductive oxide may be disposed on the second conductive type semiconductor layer 104. In the series connection structure of the light emitting units C1, C2 and C3, the second conductive type semiconductor layer 104 of the first light emitting unit C1 and the first conductive type semiconductor layer 102 of the second light emitting unit C2 may be connected together. In addition to the series connection, a parallel connection or a series-parallel connection may also be used herein, which will be described later. In this embodiment, the interconnect structure 106 is not a wire, and is formed along the surfaces of the light emitting units C1, C2 and C3 and the substrate 101. The insulating portion 108 may be disposed between the light emitting units C1, C2 and C3 and the interconnect structure 106. Thus, unnecessary electrical short circuits are prevented. In this case, the insulating portion 108 may be formed of a conventional material such as hafnium oxide or tantalum nitride. In this embodiment, since the wires are not used as the structure for electrical connection between the cells, the probability of electrical short circuits can be reduced and the ease of the interconnection process can be improved.

可使用具有電性絕緣性質之基板作為基板101,因此發光單元C可與另一發光單元電性絕緣。使用導電基板之例中,其可藉由沈積絕緣層於導電基板上而加以使用。此例中,基板101可為用於生長單晶半導體之成長基板。有鑑於此,可使用藍寶石基板。藍寶石基板係為具有菱形六面R3c(Hexa-Rhombo R3c)對稱性之晶體。藍寶石基板在C軸向具有13.001埃的晶格常數,在a軸向具有4.758埃的晶格常數;且具有C(0001)平面、A(1120)平面以及R(1102)平面。此例中,藍寶石基板之C平面允許氮化矽薄膜相對容易地在其上成長,且即使在高溫下亦可穩定,因此其主要作為用於氮化物半導體生長之基板。於其它例子中,亦可使用由碳化矽(SiC)、氮化鎵(GaN)、氧化鋅(ZnO)、鋁酸鎂(MgAl2O4)、氧化鎂(MgO)、偏鋁酸鋰(LiAlO2)或著偏鎵酸鋰(LiGaO2)所形成之基板。A substrate having electrical insulating properties can be used as the substrate 101, and thus the light emitting unit C can be electrically insulated from another light emitting unit. In the case of using a conductive substrate, it can be used by depositing an insulating layer on a conductive substrate. In this example, the substrate 101 may be a growth substrate for growing a single crystal semiconductor. In view of this, a sapphire substrate can be used. The sapphire substrate is a crystal having a rhombic R3c (Hexa-Rhombo R3c) symmetry. The sapphire substrate has a lattice constant of 13.001 angstroms in the C-axis, a lattice constant of 4.758 angstroms in the a-axis, and a C (0001) plane, an A (1120) plane, and an R (1102) plane. In this case, the C-plane of the sapphire substrate allows the tantalum nitride film to grow relatively easily thereon, and is stable even at high temperatures, so it is mainly used as a substrate for nitride semiconductor growth. In other examples, tantalum carbide (SiC), gallium nitride (GaN), zinc oxide (ZnO), magnesium aluminate (MgAl 2 O 4 ), magnesium oxide (MgO), lithium metaaluminate (LiAlO) may also be used. 2 ) or a substrate formed by lithium gallate (LiGaO 2 ).

第一導電型半導體層102及第二導電型半導體層104可由具有AlxInyGa(1-x-y)N()成分之氮化物半導體形成,且可以n型雜質或p型雜質摻雜。此例中,第一導電型半導體層102及第二導電型半導體層104可藉由習知製程生長,例如,金屬有機化學氣相沈積(MetalOrganicChemicalVaporDeposition,MOCVD)製程、氫化物氣相外延(HydrideVaporPhaseEpitaxy,HVPE)製程或著分子束磊晶(MolecularBeamEpitaxy,MBE)製程。形成於第一導電型半導體層102及第二導電型半導體層104之間的主動層103藉由電子-電洞再結合而發射具有預定能階的光。主動層103可具有包含InxGa1-xN(0x1)成分之積層結構,其係根據銦的含量調整能帶間隙成為分層的結構。此例中,主動層103可具有量子隔離層及量子井層係交替積層的多重量子井(MQW)結構,例如,氮化鎵銦/氮化鎵(InGaN/GaN)結構。雖然並非一定需要,但是由透明導電氧化物形成之透明層可形成於第二導電型半導體層104上。透明電極可提供以執行歐姆接觸以及電流分佈功能。同時,如後所述,包括第一導電型半導體層102、第二導電型半導體層104以及主動層103之每一發光單元C可藉由單獨生長獲得或者可藉由生長發光積層本體獲得,並且分離發光單元C為個別單元。The first conductive type semiconductor layer 102 and the second conductive type semiconductor layer 104 may have Al x In y Ga (1-xy) N ( The nitride semiconductor of the composition is formed and may be doped with an n-type impurity or a p-type impurity. In this example, the first conductive semiconductor layer 102 and the second conductive semiconductor layer 104 can be grown by a conventional process, for example, a metal organic chemical vapor deposition (MOCVD) process, a hydride vapor phase epitaxy (HydrideVaporPhaseEpitaxy, HVPE) process or Molecular Beam Epitaxy (MBE) process. The active layer 103 formed between the first conductive type semiconductor layer 102 and the second conductive type semiconductor layer 104 emits light having a predetermined energy level by electron-hole recombination. The active layer 103 may have an In x Ga 1-x N (0) x 1) A laminated structure of components, which is a structure in which the band gap is adjusted according to the content of indium. In this example, the active layer 103 may have a quantum well isolation layer and a quantum well layer (MQW) structure in which the quantum well layers are alternately stacked, for example, a gallium indium nitride/gallium nitride (InGaN/GaN) structure. Although not necessarily required, a transparent layer formed of a transparent conductive oxide may be formed on the second conductive type semiconductor layer 104. A transparent electrode can be provided to perform ohmic contact and current distribution functions. Meanwhile, as will be described later, each of the light-emitting units C including the first conductive type semiconductor layer 102, the second conductive type semiconductor layer 104, and the active layer 103 can be obtained by separate growth or can be obtained by growing a light-emitting laminated body, and The separation light-emitting unit C is an individual unit.

此實施例中,主動層103發射藍光,例如,具有大約430至480nm峰值波長的光。檢視上述複數個發光單元C,紅光及綠光轉換元件109R,109G係形成於至少一部份發光區域中。關於第1圖,發光區域可視為由發光單元C所定義之一組矩形發光表面。發光區域中形成的光轉換元件相當於可轉換光經由發光區域通過的路徑上的光波材料應用。例如,紅光轉換元件109R係形成於一部分發光單元C(例如,第2圖的C1)之發光表面上,綠光轉換元件109G可形成於至少一部分其它發光元件C(例如,第2圖的C2)的發光表面上。據此,可混合自發光單元C發射的藍光以及自紅光轉換元件及綠光轉換元件109R,109G發射的光以獲得白光。然而,紅光及藍光轉換元件109R,109G並非必要元件。在一些實施例中,僅紅光及綠光轉換元件109R,109G其中之一可於提供發光單元C之發光表面上。In this embodiment, the active layer 103 emits blue light, for example, light having a peak wavelength of about 430 to 480 nm. The plurality of light-emitting units C are viewed, and the red and green light-converting elements 109R, 109G are formed in at least a portion of the light-emitting regions. Regarding FIG. 1, the light-emitting area can be regarded as a set of rectangular light-emitting surfaces defined by the light-emitting unit C. The light converting element formed in the light emitting region corresponds to the application of the light wave material on the path through which the convertible light passes through the light emitting region. For example, the red light conversion element 109R is formed on a light emitting surface of a part of the light emitting unit C (for example, C1 of FIG. 2), and the green light converting element 109G may be formed on at least a part of other light emitting elements C (for example, C2 of FIG. 2) ) on the glowing surface. According to this, the blue light emitted from the light emitting unit C and the light emitted from the red light converting element and the green light converting elements 109R, 109G can be mixed to obtain white light. However, the red and blue light converting elements 109R, 109G are not essential components. In some embodiments, only one of the red and green light converting elements 109R, 109G can be provided on the light emitting surface of the light emitting unit C.

紅光及綠光轉換元件109R,109G可包括磷光體及/或量子點。此例中,紅光及綠光轉換元件109R,109G可分散於矽氧樹脂(silicon resin)中及塗佈於發光結構表面上;然而,本發明並不限於此。此實施例中,由於光轉換元件109R,109G係塗佈於複數個發光單元C上,塗佈製程可應用於相對廣大的面積。因此,相較於塗佈磷光體材料於每一單元晶片上的例子,於單一裝置中形成複數個單元C以及於發光區域中形成光轉換元件109R,109G的例子係有利於製程簡易化。此實施例中,光轉換元件109R,109G的面積係比發光單元C所佔據的面積較為寬廣。然而,根據製程條件及需要,可形成發光元件109R,109G以覆蓋一部份發光單元C之表面,例如,僅覆蓋發光單元C之頂面。The red and green light converting elements 109R, 109G may comprise phosphors and/or quantum dots. In this example, the red and green light conversion elements 109R, 109G may be dispersed in a silicon resin and coated on the surface of the light emitting structure; however, the present invention is not limited thereto. In this embodiment, since the light converting elements 109R, 109G are applied to a plurality of light emitting units C, the coating process can be applied to a relatively large area. Therefore, an example in which a plurality of cells C are formed in a single device and the light conversion elements 109R, 109G are formed in the light-emitting region is advantageous in terms of process simplification as compared with the example in which the phosphor material is coated on each unit wafer. In this embodiment, the area of the light converting elements 109R, 109G is wider than the area occupied by the light emitting unit C. However, depending on process conditions and needs, the light-emitting elements 109R, 109G may be formed to cover the surface of a portion of the light-emitting unit C, for example, covering only the top surface of the light-emitting unit C.

此外,此實施例中,將紅光及綠光轉換元件109R,109G其中之一應用至每一發光單元C。然而,紅光及綠光轉換元件109R,109G之一可形成於二或更多個發光單元C之上。亦可應用此類結構於下列實施例中。再者,雖然第2圖中所示,光轉換元件109R,109G係沿著發光單元C之表面形成,因此光轉換元件具有類似發光單元C之形狀,然而光轉換元件109R,109G亦可不沿著發光單元C之表面形成,且可形成如第4圖的修飾例中的圓頂狀(dome shape)。此外,如第4圖修飾例中,可將單一光轉換元件109R’一體成形地應用至二或更多個發光單元C1,C2。Further, in this embodiment, one of the red and green light conversion elements 109R, 109G is applied to each of the light emitting units C. However, one of the red and green light conversion elements 109R, 109G may be formed over two or more light emitting units C. Such structures can also be applied in the following examples. Furthermore, although shown in FIG. 2, the light converting elements 109R, 109G are formed along the surface of the light emitting unit C, and thus the light converting element has a shape similar to that of the light emitting unit C, however, the light converting elements 109R, 109G may not follow The surface of the light-emitting unit C is formed, and a dome shape as in the modification of Fig. 4 can be formed. Further, as in the modification of Fig. 4, the single light conversion element 109R' can be integrally formed to be applied to two or more light-emitting units C1, C2.

可使用於紅光轉換元件109R中的紅色磷光體的例子包括具有MAlSiNx:Re(1x5)成分的氮化物磷光體或者具有MD:Re成分的硫化物磷光體。M係為選自鋇、鍶、鈣及鎂之至少一者;D係為選自硫、硒及碲之至少一者;以及Re係為選自銪、釔、鑭、鈰、釹(Nd)、鉅(Pm)、釤(Sm)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺、銩、鐿、鎦、氟、氯、溴以及碘之至少一者。此外,可使用於綠光轉換元件109G中的綠色磷光體之例子包括具有M2SiO4:Re成分的矽酸鹽磷光體、具有MA2D4:Re成分的硫化物磷光體、具有β-SiAlON:Re成分的磷光體以及具有MA’2O4:Re’成分的氧化物磷光體。M係為選自鋇、鍶、鈣及鎂之至少一者;A係為選自鎵、鋁以及銦之至少一者;D係為選自硫、硒及碲之至少一者;A’係為選自鈧、釔、釓、鑭、鎦、鋁以及銦之至少一者;Re係為至少一選自銪、釔、鑭、鈰、釹、鉅、釤、釓、鋱、鏑、鈥、鉺、銩、鐿、鎦、氟、氯、溴以及碘之至少一者;以及Re’係為選自鈰、釹、鉅、釤、鋱、鏑、鈥、鉺、銩、鐿、氟、氯、溴以及碘之至少一者。An example of a red phosphor that can be used in the red light conversion element 109R includes MAlSiNx:Re(1) x 5) A nitride phosphor of the composition or a sulfide phosphor having an MD:Re component. The M system is at least one selected from the group consisting of strontium, barium, calcium and magnesium; the D system is at least one selected from the group consisting of sulfur, selenium and tellurium; and the Re system is selected from the group consisting of ruthenium, osmium, iridium, osmium and iridium (Nd). , at least one of mega (Pm), strontium (Sm), strontium (Gd), strontium (Tb), strontium (Dy), strontium (Ho), strontium, strontium, barium, strontium, fluorine, chlorine, bromine and iodine . Further, examples of the green phosphor which can be used in the green light converting element 109G include a tellurite phosphor having a M 2 SiO 4 :Re component, a sulfide phosphor having a MA 2 D 4 :Re component, having β- SiAlON: a phosphor of the Re component and an oxide phosphor having a MA' 2 O 4 :Re' component. The M system is at least one selected from the group consisting of lanthanum, cerium, calcium and magnesium; the A system is at least one selected from the group consisting of gallium, aluminum and indium; and the D system is at least one selected from the group consisting of sulfur, selenium and tellurium; It is at least one selected from the group consisting of ruthenium, osmium, iridium, osmium, iridium, aluminum, and indium; and the Re is at least one selected from the group consisting of ruthenium, osmium, iridium, osmium, iridium, yttrium, yttrium At least one of ruthenium, osmium, iridium, osmium, fluorine, chlorine, bromine and iodine; and Re' is selected from the group consisting of ruthenium, osmium, mega, iridium, osmium, iridium, osmium, iridium, osmium, iridium, fluorinated, chloro At least one of bromine and iodine.

此外,量子點係為具有核與殼(core and shell)之奈米粒子。量子點的核具有2nm(毫微米)到100nm的尺寸範圍。藉由調整中心的尺寸,量子點可以使用作為發射各種顏色的磷光體材料,例如,藍色(B)、黃色(Y)、綠色(G)以及紅。構成量子點的核-殼結構可藉由選自下述之至少兩種半導體之異質接面形成:II-VI族化合物半導體(硫化鋅、硒化鋅、碲化鋅、硫化鎘、硒化鎘、碲化鎘、硫化汞、硒化汞、碲化汞、碲化鎂等等)、III-V族化合物半導體(氮化鎵、磷化鎵、砷化鎵、銻化鎵、氮化銦、磷化銦、砷化銦、銻化銦、砷化鋁、磷化鋁、銻化鋁、硫化鋁等等)或者IV族半導體(鍺、矽、鉛等等)。此例中,使用例如油酸材料的有機配體可形成於量子點的外殼,以終止(terminate)殼表面的分子鍵結、抑制量子點的聚集、改善例如矽氧樹脂或環氧樹脂的樹脂內之分散,或者改善磷光體的功能。Further, the quantum dots are nanoparticles having a core and a shell. The core of the quantum dot has a size range of 2 nm (nanometer) to 100 nm. By adjusting the size of the center, quantum dots can be used as phosphor materials that emit various colors, such as blue (B), yellow (Y), green (G), and red. . The core-shell structure constituting the quantum dot can be formed by a heterojunction of at least two semiconductors selected from the group consisting of a Group II-VI compound semiconductor (zinc sulfide, zinc selenide, zinc telluride, cadmium sulfide, cadmium selenide) , cadmium telluride, mercury sulfide, mercury selenide, mercury telluride, magnesium telluride, etc.), III-V compound semiconductors (gallium nitride, gallium phosphide, gallium arsenide, gallium antimonide, indium nitride, Indium phosphide, indium arsenide, indium antimonide, aluminum arsenide, aluminum phosphide, aluminum telluride, aluminum sulfide, etc.) or Group IV semiconductors (锗, 矽, lead, etc.). In this case, an organic ligand such as an oleic acid material may be formed on the outer shell of the quantum dot to terminate molecular bonding of the shell surface, inhibit aggregation of quantum dots, and improve resin such as epoxy resin or epoxy resin. Dispersion within, or improve the function of the phosphor.

同時,由於存在非由紅光及綠光轉換元件109R,109G轉換且通過紅光及綠光轉換元件109R,109G的藍光,紅光或綠光轉換元件109R或109G可形成於發光單元C的整個發光表面上。然而,為改善顯色指數(rendering index)或者獲得具有低色溫(color temperature)的白光,光轉換元件可不形成於一部分發光單元(例如,第2圖的C2)之發光表面上。紅光及綠光轉換元件109R,109G的數量或排列可根據裝置中所需的色溫以及顯色指數使用分級技術予以適當地決定。藉此,此實施例中,單一裝置可發射紅光、綠光以及藍光,且裝置之數量以及排列可視需要加以調整。因此,根據本發明實施例之半導體發光裝置係適用於例如情感式照明(emotional illumination)設備之照明設備。Meanwhile, since there are blue light which is not converted by the red and green light conversion elements 109R, 109G and passed through the red and green light conversion elements 109R, 109G, the red or green light conversion element 109R or 109G can be formed in the entire light emitting unit C On the glowing surface. However, in order to improve the rendering index or obtain white light having a low color temperature, the light conversion element may not be formed on the light emitting surface of a part of the light emitting unit (for example, C2 of FIG. 2). The number or arrangement of the red and green light conversion elements 109R, 109G can be appropriately determined using a classification technique according to the color temperature required in the apparatus and the color rendering index. Thereby, in this embodiment, a single device can emit red light, green light, and blue light, and the number and arrangement of the devices can be adjusted as needed. Accordingly, a semiconductor light emitting device according to an embodiment of the present invention is applicable to a lighting device such as an emotional illumination device.

第5圖係為繪示第1圖半導體發光裝置的另一種修改中可使用之發光單元的互連結構剖面示意圖,而第6圖係為繪示可藉由第5圖互連結構獲得之AC驅動裝置之等效電路圖。在第1圖之實施例中,發光單元係串聯電性連接。具體而言,發光單元之連接係對應n-p連接。然而,如第5圖所示,第一發光單元C1之第二導電型半導體層104可電性連接第二發光單元C2之第二導電型半導體層104,且第二發光單元C2之第一導電型半導體層102可電性連接第三發光單元C3之第一導電型半導體層102。此類連接對應具有相同極性(p-p連接或n-n連接)半導體層之連接。此類互連結構可實施為如第6圖所示之AC驅動裝置。第6圖之電路即所謂的梯型網路電路(ladder network circuit),其中,11個發光單元可相對於正向及反向所提供的電子訊號中發光。5 is a cross-sectional view showing the interconnection structure of the light-emitting unit which can be used in another modification of the semiconductor light-emitting device of FIG. 1, and FIG. 6 is a view showing the AC which can be obtained by the interconnection structure of FIG. The equivalent circuit diagram of the drive unit. In the embodiment of Fig. 1, the light emitting units are electrically connected in series. Specifically, the connection of the light emitting units corresponds to an n-p connection. However, as shown in FIG. 5, the second conductive semiconductor layer 104 of the first light emitting unit C1 is electrically connected to the second conductive semiconductor layer 104 of the second light emitting unit C2, and the first conductive layer of the second light emitting unit C2 is electrically conductive. The semiconductor layer 102 can be electrically connected to the first conductive semiconductor layer 102 of the third light emitting unit C3. Such connections correspond to connections of semiconductor layers of the same polarity (p-p connection or n-n connection). Such an interconnect structure can be implemented as an AC drive as shown in FIG. The circuit of Fig. 6 is a so-called ladder network circuit in which eleven light-emitting units are capable of emitting light with respect to electronic signals supplied in the forward and reverse directions.

第7圖係為繪示根據本發明另一實施例之半導體發光裝置之平面示意圖。第8圖係為繪示第7圖半導體發光裝置中發光單元之連接的等效電路圖。第9圖係為繪示第7圖半導體發光裝置的修改之平面示意圖。Figure 7 is a plan view showing a semiconductor light emitting device according to another embodiment of the present invention. Figure 8 is an equivalent circuit diagram showing the connection of the light-emitting units in the semiconductor light-emitting device of Figure 7. Figure 9 is a plan view showing a modification of the semiconductor light-emitting device of Figure 7.

參閱第7圖,根據本發明實施例之半導體發光裝置200,包括基板201上的16個發光單元C。16個發光單元C係以4x4陣列排列。此例中,可修改發光單元C之數量及排列。如前所述之實施例,紅光轉換元件209R係形成於複數個發光單元C所形成的一部份發光區域中,且綠光轉換元件209G可形成於其它區域的一部份中。據此,自紅光及綠光轉換元件209R,209G發射的光以及自紅光及綠光轉換元件209R,209G未形成於其中之發光單元C發射的藍光可加以混合以發射白光。Referring to FIG. 7, a semiconductor light emitting device 200 according to an embodiment of the present invention includes 16 light emitting units C on a substrate 201. The 16 light-emitting units C are arranged in a 4x4 array. In this example, the number and arrangement of the light-emitting units C can be modified. In the embodiment described above, the red light converting element 209R is formed in a portion of the light emitting region formed by the plurality of light emitting cells C, and the green light converting element 209G may be formed in a portion of other regions. Accordingly, the light emitted from the red and green light conversion elements 209R, 209G and the blue light emitted from the light emitting unit C in which the red and green light conversion elements 209R, 209G are not formed may be mixed to emit white light.

第一及第二墊件207a,207b係形成於基板201的其它區域,且電性連接發光單元C的第一導電型半導體層202以及第二導電型半導體層。第7圖中,並未繪示第二導電型半導體層,但繪示了形成於第二導電型半導體層上之透明電極205。此實施例中,發光單元C係設置成分配第一導電型半導體層202。意即,有關基於發光單元C的隔離化,第一導電型半導體層202並非分隔的且第一導電型半導體層202可一體成形於整個發光單元C之上。連接第一墊件207a之第一互連結構206a自第一墊件207b延伸,使得第一互連結構206a連接第一導電型半導體層202。同樣地,連接第二墊件207b之第二互連結構206b自第二墊件207b延伸,使得第二互連結構206b連接第二導電型半導體層。可形成連接部m以連接相鄰發光單元C之第二導電型半導體層。此例中,雖然第7圖未繪示,由於第二互連結構206b以及連接部m需要自第一導電型半導體層202或主動層電性地分離,因此可於其間設置絕緣材料或者空中橋接結構。The first and second pads 207a, 207b are formed in other regions of the substrate 201, and are electrically connected to the first conductive semiconductor layer 202 and the second conductive semiconductor layer of the light emitting unit C. In Fig. 7, the second conductive type semiconductor layer is not shown, but the transparent electrode 205 formed on the second conductive type semiconductor layer is illustrated. In this embodiment, the light emitting unit C is disposed to distribute the first conductive type semiconductor layer 202. That is, regarding the isolation based on the light-emitting unit C, the first conductive type semiconductor layer 202 is not separated and the first conductive type semiconductor layer 202 may be integrally formed over the entire light-emitting unit C. The first interconnect structure 206a connecting the first pad member 207a extends from the first pad member 207b such that the first interconnect structure 206a connects the first conductive type semiconductor layer 202. Likewise, the second interconnect structure 206b connecting the second pad member 207b extends from the second pad member 207b such that the second interconnect structure 206b connects the second conductive type semiconductor layer. The connection portion m may be formed to connect the second conductive type semiconductor layers of the adjacent light emitting units C. In this example, although not shown in FIG. 7, since the second interconnect structure 206b and the connection portion m need to be electrically separated from the first conductive type semiconductor layer 202 or the active layer, an insulating material or an air bridge may be disposed therebetween. structure.

如第8圖所示,由於此類電性連接結構,16個發光單元C係並聯連接。此類並聯連接結構通常可作為在直流電壓操作下之高功率光源。第9圖之半導體發光裝置200’與第1圖之實施例相似在於第一導電型半導體層202係提供至個別的發光單元C,但其電性連接結構對應第7圖並聯連接結構。自第一墊件207a延伸之第一互連結構206a並不直接連接發光單元C,但經由連接部m連接發光單元C之第一導電型半導體層202。As shown in Fig. 8, due to such an electrical connection structure, 16 light-emitting units C are connected in parallel. Such parallel connection structures are typically used as high power sources under DC voltage operation. The semiconductor light-emitting device 200' of Fig. 9 is similar to the embodiment of Fig. 1 in that the first conductive type semiconductor layer 202 is provided to the individual light-emitting units C, but the electrical connection structure corresponds to the parallel connection structure of Fig. 7. The first interconnect structure 206a extending from the first pad member 207a is not directly connected to the light emitting unit C, but the first conductive type semiconductor layer 202 of the light emitting unit C is connected via the connecting portion m.

第10圖係為繪示根據本發明另一實施例之半導體發光裝置之平面示意圖,而第11圖係為繪示第10圖半導體發光裝置中發光單元的連接之等效電路圖。10 is a schematic plan view showing a semiconductor light emitting device according to another embodiment of the present invention, and FIG. 11 is an equivalent circuit diagram showing a connection of a light emitting unit in the semiconductor light emitting device of FIG.

參閱第10圖,根據本發明實施例之半導體發光裝置300,包括基板301上之16個發光單元C。16個發光單元C係以4x4陣列排列。此例中,可修改發光單元C之數量及排列。如前所述之實施例,紅光轉換元件309R係形成於複數個發光單元C所形成的一部份發光區域中,且綠光轉換元件309G可形成於其它區域的一部份中。據此,自紅光及綠光轉換元件309R,309G發射的光以及自紅光及綠光轉換元件309R,309G未形成於其中之發光單元C發射的藍光可加以混合以發射白光。此實施例中,第一及第二墊件307a,307b係形成係形成於基板301的其它區域,且電性連接發光單元C的第一導電型半導體層302以及第二導電型半導體層。第10圖中,並未繪示第二導電型半導體層,而繪示了形成於第二導電型半導體層上之透明電極305。意即,連接第一墊件307a之第一互連結構306a係連接提供於一部分發光單元C之第二導電型半導體層。同樣地,連接第二墊件307b之第二互連結構306b係連接一部分其它發光單元C之第一導電型半導體層。其它發光單元C並未直接連接第一及第二互連結構306a,306b且藉由連接結構m串聯連接。據此,如第11圖所示,可獲得串聯連接及並聯連接混合於其中的結構。Referring to FIG. 10, a semiconductor light emitting device 300 according to an embodiment of the present invention includes 16 light emitting units C on a substrate 301. The 16 light-emitting units C are arranged in a 4x4 array. In this example, the number and arrangement of the light-emitting units C can be modified. In the embodiment described above, the red light converting element 309R is formed in a portion of the light emitting region formed by the plurality of light emitting cells C, and the green light converting element 309G may be formed in a portion of the other regions. Accordingly, the light emitted from the red and green light conversion elements 309R, 309G and the blue light emitted from the light emitting unit C in which the red and green light conversion elements 309R, 309G are not formed may be mixed to emit white light. In this embodiment, the first and second pads 307a, 307b are formed in other regions of the substrate 301, and are electrically connected to the first conductive semiconductor layer 302 and the second conductive semiconductor layer of the light emitting unit C. In Fig. 10, the second conductive type semiconductor layer is not shown, and the transparent electrode 305 formed on the second conductive type semiconductor layer is illustrated. That is, the first interconnect structure 306a connecting the first pad member 307a is connected to the second conductive type semiconductor layer provided to a part of the light emitting unit C. Similarly, the second interconnect structure 306b connecting the second pad member 307b is connected to the first conductive type semiconductor layer of a portion of the other light emitting cells C. The other light-emitting units C are not directly connected to the first and second interconnect structures 306a, 306b and are connected in series by the connection structure m. Accordingly, as shown in Fig. 11, a structure in which a series connection and a parallel connection are mixed can be obtained.

第12、13及30圖係為繪示根據本發明另一實施例之半導體發光裝置之平面示意圖。第31圖係為沿著第30圖A-A’線段之剖面示意圖。12, 13 and 30 are schematic plan views showing a semiconductor light emitting device according to another embodiment of the present invention. Figure 31 is a schematic cross-sectional view taken along line A-A' of Figure 30.

第12圖之實施例中,半導體發光裝置400包括基板401上的24個發光單元C。24個發光單元C係以4x6陣列排列。複數個發光單元C分割成三個群組:紅色群組RG、綠色群組GG以及藍色群組BG。覆蓋發光單元C之紅光轉換材料係形成於對應紅色群組RG之發光區域中。覆蓋發光單元C之綠光轉換材料係形成於對應綠色群組GG之發光區域中。光轉換材料並未形成於對應藍色群組BG之發光區域中。紅色群組RG、綠色群組GG以及藍色群組BG各包括八個發光單元C,且發光單元C間係形成串聯連接結構。然而,發光單元C之數量或著電性連接可適當地修飾。例如,單一群組RG、GG或著BG內之單元可形成並聯結構或串並聯結構。如第12圖所示,為了均勻地混合不同顏色的光,紅色群組RG、綠色群組GG以及藍色群組BG可單獨地排列於複數個區域內,使得紅色群組RG、綠色群組GG以及藍色群組BG可與其它群組混合,而非排列成在單一區域中具有相同種類群組。此例中,屬於不同群組的發光單元C之連接結構m可排列成彼此重疊。為此目的,可在對應區域之連接結構m之間提供絕緣材料或空中橋接結構。In the embodiment of Fig. 12, the semiconductor light emitting device 400 includes 24 light emitting units C on the substrate 401. The 24 light-emitting units C are arranged in a 4x6 array. The plurality of light emitting units C are divided into three groups: a red group RG, a green group GG, and a blue group BG. The red light conversion material covering the light emitting unit C is formed in the light emitting region corresponding to the red group RG. The green light conversion material covering the light emitting unit C is formed in the light emitting area corresponding to the green group GG. The light conversion material is not formed in the light emitting region of the corresponding blue group BG. The red group RG, the green group GG, and the blue group BG each include eight light emitting units C, and the light emitting units C form a series connection structure. However, the number or electrically connected connection of the light-emitting units C can be appropriately modified. For example, a single group of RGs, GGs, or cells within the BG can form a parallel structure or a series-parallel structure. As shown in FIG. 12, in order to uniformly mix light of different colors, the red group RG, the green group GG, and the blue group BG may be individually arranged in a plurality of regions, such that the red group RG, the green group The GG and the blue group BG may be mixed with other groups instead of being arranged to have the same category group in a single area. In this example, the connection structures m of the light-emitting units C belonging to different groups may be arranged to overlap each other. For this purpose, an insulating material or an air bridge structure can be provided between the connection structures m of the corresponding regions.

此實施例中,半導體發光裝置400包括三對墊件。具體而言,連接紅色群組RG之第一及第二墊件407a,407b、連接藍色群組BG之第一及第二墊件407a’,407b’以及連接綠色群組GG之第一及第二墊件407a”,407b”係排列於基板401上。通過三對墊件施加至紅色群組RG、綠色群組GG以及藍色群組BG上之電流可分別地加以控制。據此,自每一群組發光的量可藉由調整施加至紅色群組RG、綠色群組GG以及藍色群組BG電流之強度控制。因此,可改變白光的色溫以及顯色指數至所需程度。例如,可藉由相對地增加紅色群組RG發光的強度獲得熱白光。以此類似方式,可藉由相對地增加藍色群組BG發光的強度獲得冷白光。此外,白光以外的顏色光可藉由分組電流控制方法實施。根據本發明實施例之半導體發光裝置可用於有感染力的照明設備中。In this embodiment, the semiconductor light emitting device 400 includes three pairs of pads. Specifically, the first and second pads 407a, 407b connecting the red group RG, the first and second pads 407a', 407b' connecting the blue group BG, and the first and the green group GG are connected The second pads 407a", 407b" are arranged on the substrate 401. The current applied to the red group RG, the green group GG, and the blue group BG by the three pairs of pads can be separately controlled. Accordingly, the amount of illumination from each group can be controlled by adjusting the intensity applied to the red group RG, the green group GG, and the blue group BG current. Therefore, the color temperature of the white light and the color rendering index can be changed to the desired degree. For example, hot white light can be obtained by relatively increasing the intensity of the red group RG illumination. In a similar manner, cool white light can be obtained by relatively increasing the intensity of the blue group BG illumination. In addition, color light other than white light can be implemented by a packet current control method. A semiconductor light emitting device according to an embodiment of the present invention can be used in an infective lighting device.

在第13圖實施例中,半導體發光裝置400’包括在基板401上的24個發光單元C。24個發光單元C類似第12圖實施例的方式以4x6陣列排列。然而,複數個發光單元C分割成RGG1、RGG2、以及RGG3三個群組,且覆蓋發光單元C之紅光及綠光轉換材料的混合物係形成於對應RGG1、RGG2、以及RGG3各自群組的發光區域中。意即,此實施例中,應用於單一群組之光轉換元件包括二或更多個光轉換材料,例如,紅光及綠光轉換材料。此例中,群組RGG1、RGG2及RGG3之至少一者中的紅光及綠光轉換材料之至少一者的混合比率係不同於另一者。據此,可混合不同顏色。此例中,單一光轉換元件可包括另一種材料以及紅及綠顏色的光轉換材料。例如,光轉換元件可包括紅色、綠色以及藍色的光轉換材料。據此,可進一步改善白光的品質。In the embodiment of Fig. 13, the semiconductor light emitting device 400' includes 24 light emitting cells C on the substrate 401. The 24 light-emitting units C are arranged in a 4x6 array in a manner similar to the embodiment of Fig. 12. However, the plurality of light-emitting units C are divided into three groups of RGG1, RGG2, and RGG3, and the mixture of the red light and the green light-converting material covering the light-emitting unit C is formed in the respective groups corresponding to RGG1, RGG2, and RGG3. In the area. That is, in this embodiment, the light conversion element applied to a single group includes two or more light conversion materials, for example, red light and green light conversion materials. In this example, the mixing ratio of at least one of the red light and the green light conversion material in at least one of the groups RGG1, RGG2, and RGG3 is different from the other. According to this, different colors can be mixed. In this case, the single light converting element may comprise another material as well as a red and green color light converting material. For example, the light converting element may include red, green, and blue light converting materials. According to this, the quality of white light can be further improved.

如第12圖之實施例,組RGG1、RGG2及RGG3各包括八個發光單元C,且發光單元C之間形成串聯連接結構。然而,可適當地修飾發光單元C之數量或電性連接。如第13圖所示,為均勻地混合不同顏色,複數個群組RGG1、RGG2及RGG3可分別地排列於複數個區域中,使得複數個群組RGG1、RGG2及RGG3可彼此混合,而非相同種類的群組排列於單一區域中。此例中,屬於不同群組之發光單元C的連接結構m可排列成彼此重疊。為此目的,在對應區域的連接結構m之間可提供絕緣材料或空中橋接結構。此外,在基板401上提供三對墊件。具體而言,將連接第一群組RRG1之第一及第二墊件407a,407b、連接第二群組RGG2之第一及第二墊件407a’,407b’以及連接第三群組RGG3之第一及第二墊件407a”,407b”排列於基板401上。通過三對墊件施加至複數個群組上RGG1、RGG2及RGG3之電流可分別地加以控制。據此,可改變白光的色溫以及顯色指數至所需程度。如本實施例中,色溫以及顯色指數可以下述這種方式更準確加以控制:藉由混合二或更多種光轉換材料以及將光轉換材料之混合比率不同地應用至各群組RGG1、RGG2及RGG3,分別地控制施加至各群組RGG1、RGG2及RGG3之電流。As in the embodiment of FIG. 12, the groups RGG1, RGG2, and RGG3 each include eight light emitting units C, and the light emitting units C form a series connection structure. However, the number or electrical connection of the light-emitting units C can be appropriately modified. As shown in FIG. 13, in order to uniformly mix different colors, a plurality of groups RGG1, RGG2, and RGG3 may be respectively arranged in a plurality of regions, so that a plurality of groups RGG1, RGG2, and RGG3 may be mixed with each other instead of the same Groups of categories are arranged in a single area. In this example, the connection structures m of the light-emitting units C belonging to different groups may be arranged to overlap each other. For this purpose, an insulating material or an air bridge structure can be provided between the connection structures m of the corresponding regions. Further, three pairs of pads are provided on the substrate 401. Specifically, the first and second pads 407a, 407b of the first group RRG1, the first and second pads 407a', 407b' connected to the second group RGG2, and the third group RGG3 are connected. The first and second pads 407a", 407b" are arranged on the substrate 401. The current applied to the plurality of groups RGG1, RGG2, and RGG3 by the three pairs of pads can be separately controlled. Accordingly, the color temperature of the white light and the color rendering index can be changed to a desired level. As in the present embodiment, the color temperature and the color rendering index can be more accurately controlled by mixing two or more kinds of light conversion materials and applying the mixing ratio of the light conversion materials to the respective groups RGG1. RGG2 and RGG3 control the current applied to each of the groups RGG1, RGG2, and RGG3, respectively.

同時,雖然已於第12圖以及第13圖之實施例中說明將白光之色溫控制於單一多晶片中,但白光之色溫亦可以在封裝層級下加以控制。第30圖以及第31圖之實施例中,半導體發光裝置400”包括排列於封裝基板410上之複數個多晶片裝置400G1,400G2。如第31圖所示,每一多晶片裝置400G1,400G2具有複數個發光單元連接在一起的結構。此例中,每一多晶片裝置400G1,400G2可形成相同發光單元連接結構,如先前實施例所述。意即,多晶片裝置400G1,400G2具有複數個發光單元排列於基板401上的結構,且每一發光單元包括第一導電型半導體層402、主動層403、第二導電型半導體層404以及透明電極405。此外,互連結構406並非導線且係沿著基板401以及發光單元之表面形成,絕緣部408可設置於發光單元以及互連結構406之間,因而預防不必要的電性短路。Meanwhile, although the color temperature of white light has been controlled to be controlled in a single multi-wafer in the embodiments of Figs. 12 and 13, the color temperature of white light can also be controlled at the package level. In the embodiment of the 30th and 31st, the semiconductor light emitting device 400" includes a plurality of multi-wafer devices 400G1, 400G2 arranged on the package substrate 410. As shown in Fig. 31, each of the multi-chip devices 400G1, 400G2 has A structure in which a plurality of light-emitting units are connected together. In this example, each of the multi-wafer devices 400G1, 400G2 can form the same light-emitting unit connection structure as described in the previous embodiment. That is, the multi-wafer device 400G1, 400G2 has a plurality of light-emitting devices. The unit is arranged on the substrate 401, and each of the light emitting units includes a first conductive type semiconductor layer 402, an active layer 403, a second conductive type semiconductor layer 404, and a transparent electrode 405. Further, the interconnect structure 406 is not a wire and a tie The substrate 401 and the surface of the light emitting unit are formed, and the insulating portion 408 can be disposed between the light emitting unit and the interconnect structure 406, thereby preventing unnecessary electrical short circuits.

此實施例中,多晶片裝置400G1,400G2包括具有不同混合比率之紅光及綠光轉換材料,如第12圖及第13圖之實施例。此實施例中,多晶片分割成兩個群組400G1,400G2。因此,半導體發光裝置之總色溫及顯色指數可藉由分別地調整施加至群組400G1及400G2的電流準確地控制。同時,此實施例中,光轉換元件包括屏障元件411。屏障元件411內部係以光轉換材料412填充。屏障元件411可藉由屏障以及填充製程形成。屏障以及填充製程係為下述之製程:形成屏障元件411以包圍在封裝基板410或發光單元基板401中之發光單元,以及用光轉換材料412填充屏障元件411。此實施例中,屏障元件411可包括和光轉換材料412相同的材料。再者,屏障元件411本身可由相同材料形成,作為其填充的部分。意即,屏障元件411可進一步包括磷光體以及樹脂和填充料(三氧化二鋁、二氧化矽、二氧化鈦等等)。據此,可改善其變凝性(thixotropy)以有助於屏障的形成。此外,光可經由屏障元件411發射至外部。此外,由於可完成波長轉換,可預期由屏障元件411所造成的光損失可最小化,且可改善光效率及光定向性(light orientation)。In this embodiment, the multi-wafer device 400G1, 400G2 includes red and green light conversion materials having different mixing ratios, as in the embodiments of Figures 12 and 13. In this embodiment, the multi-wafer is divided into two groups 400G1, 400G2. Therefore, the total color temperature and color rendering index of the semiconductor light emitting device can be accurately controlled by separately adjusting the currents applied to the groups 400G1 and 400G2. Meanwhile, in this embodiment, the light conversion element includes the barrier element 411. The interior of the barrier element 411 is filled with a light converting material 412. The barrier element 411 can be formed by a barrier and a filling process. The barrier and filling process is a process in which the barrier element 411 is formed to surround the light emitting unit in the package substrate 410 or the light emitting unit substrate 401, and the barrier element 411 is filled with the light conversion material 412. In this embodiment, the barrier element 411 can comprise the same material as the light converting material 412. Furthermore, the barrier element 411 itself may be formed of the same material as part of its filling. That is, the barrier element 411 may further include a phosphor and a resin and a filler (aluminum oxide, cerium oxide, titanium oxide, etc.). Accordingly, its thixotropy can be improved to contribute to the formation of a barrier. Further, light can be emitted to the outside via the barrier element 411. Furthermore, since wavelength conversion can be accomplished, it is expected that the light loss caused by the barrier element 411 can be minimized, and light efficiency and light orientation can be improved.

第14圖係為繪示根據本發明另一實施例之半導體發光裝置之平面示意圖。第15圖係為沿著第14圖B-B’線段之剖面示意圖。第16圖係為沿著第15圖D-D’之剖面示意圖。Figure 14 is a plan view showing a semiconductor light emitting device according to another embodiment of the present invention. Fig. 15 is a schematic cross-sectional view taken along line B-B' of Fig. 14. Fig. 16 is a schematic cross-sectional view taken along line D-D' of Fig. 15.

參閱第14圖至第16圖,半導體發光裝置500包括排列於基板501上之複數個發光單元C。每一發光單元C包括第一導電型半導體層502、主動層503以及第二導電型半導體層504。此外,透明電極505可進一步設置於第二導電型半導體層504上。此實施例中,連接發光單元C所提供之第一導電型半導體層502的基層502’係設置於發光單元以及基板501之間。基層502’可一體成形於整個發光單元之上。基層502’可由第一導電型半導體材料或未摻雜半導體材料形成。如於下文將說明者,基層502’可提供作為用於再生長第一導電型半導體層502之種子層。在基層502’由第一導電型半導體材料所形成的例子中,第一導電型半導體層係藉由發光單元C分配。據此,發光單元C係並聯電性連接。此例中,可生長主動層503而不需再生長第一導電型半導體層502。再者,於一些例子中,不需形成基層502’。此例中,發光單元C可直接地形成於基板501上。Referring to FIGS. 14 to 16, the semiconductor light emitting device 500 includes a plurality of light emitting cells C arranged on a substrate 501. Each of the light emitting units C includes a first conductive type semiconductor layer 502, an active layer 503, and a second conductive type semiconductor layer 504. Further, the transparent electrode 505 may be further disposed on the second conductive type semiconductor layer 504. In this embodiment, the base layer 502' connecting the first conductive type semiconductor layer 502 provided by the light emitting unit C is disposed between the light emitting unit and the substrate 501. The base layer 502' can be integrally formed over the entire light emitting unit. The base layer 502' may be formed of a first conductive type semiconductor material or an undoped semiconductor material. As will be described later, the base layer 502' may be provided as a seed layer for regenerating the long first conductivity type semiconductor layer 502. In the example in which the base layer 502' is formed of the first conductive type semiconductor material, the first conductive type semiconductor layer is distributed by the light emitting unit C. Accordingly, the light-emitting units C are electrically connected in parallel. In this example, the active layer 503 can be grown without regrown the first conductive type semiconductor layer 502. Again, in some examples, the base layer 502' need not be formed. In this example, the light emitting unit C can be directly formed on the substrate 501.

第一墊件507a係形成於基層502’上,而第一互連結構506a自第一墊件507a延伸,且連接第一導電型半導體層502。此外,第二墊件507b係形成於第一導電型半導體層502上,而第二互連結構506b自第二墊件507b延伸,且連接第二導電型半導體層504。然而,由於第二墊件507b以及第二互連結構506b需要自第一導電型半導體層502以及主動層503電性分離,可於其間設置絕緣部508。同時,雖然第一墊件507a及第二墊件507b係形成於第一導電型半導體層502上,其形成可類似於先前實施例。意即,第一墊件507a以及第二墊件507b可形成於其中未形成第一導電型半導體層502之基板501的預定區域中。The first pad member 507a is formed on the base layer 502', and the first interconnect structure 506a extends from the first pad member 507a and connects the first conductive type semiconductor layer 502. Further, the second pad member 507b is formed on the first conductive type semiconductor layer 502, and the second interconnect structure 506b extends from the second pad member 507b and connects the second conductive type semiconductor layer 504. However, since the second pad member 507b and the second interconnect structure 506b need to be electrically separated from the first conductive type semiconductor layer 502 and the active layer 503, the insulating portion 508 may be disposed therebetween. Meanwhile, although the first pad member 507a and the second pad member 507b are formed on the first conductive type semiconductor layer 502, the formation thereof can be similar to the previous embodiment. That is, the first pad member 507a and the second pad member 507b may be formed in a predetermined region of the substrate 501 in which the first conductive type semiconductor layer 502 is not formed.

此實施例中,半導體發光裝置500包括三或更多種發光單元C。第一發光單元C1發射紅光,第二發光單元C2發射綠光,以及第三發光單元C3發射藍光。意即,單一裝置可發射紅光、綠光及藍光。由於可視需要地調整發光單元C之數量及排列,其可適用於例如情感式照明設備之照明設備。為此目的,調整第一、第二及第三發光單元C1、C2及C3之主動層503R、503G及503B的成分使得主動層503R、503G及503B具有不同能帶間隙,以藉此發射不同顏色的光。如下文將說明者,當發光單元C1、C2及C3藉由不同再生長製程形成,可容易地調整第一、第二及第三發光單元C1、C2及C3所提供之主動層503R、503G及503B的生長條件。此外,由於提供發射紅光、綠光以及藍光之發光單元C,光轉換元件可不必分開地形成於發光單元C之發光表面。因此,可減少由磷光體或量子點所造成的光損失。In this embodiment, the semiconductor light emitting device 500 includes three or more light emitting units C. The first light emitting unit C1 emits red light, the second light emitting unit C2 emits green light, and the third light emitting unit C3 emits blue light. That is, a single device can emit red, green, and blue light. Since the number and arrangement of the light-emitting units C can be adjusted as needed, it can be applied to a lighting device such as an emotional lighting device. For this purpose, the components of the active layers 503R, 503G, and 503B of the first, second, and third light-emitting units C1, C2, and C3 are adjusted such that the active layers 503R, 503G, and 503B have different energy band gaps to thereby emit different colors. Light. As will be described later, when the light-emitting units C1, C2, and C3 are formed by different regrowth processes, the active layers 503R, 503G provided by the first, second, and third light-emitting units C1, C2, and C3 can be easily adjusted. Growth conditions of 503B. Further, since the light-emitting unit C that emits red light, green light, and blue light is provided, the light conversion element may not necessarily be separately formed on the light-emitting surface of the light-emitting unit C. Therefore, light loss caused by phosphors or quantum dots can be reduced.

第17圖至第20圖係為說明根據本發明之實施例之製造第14圖半導體發光裝置之方法剖面圖。如第17圖所示,基層502’係生長於基板501上。如上所述,基層502’可由第一導電型半導體材料或著未摻雜半導體材料形成。例如,基層502’可由氮化物半導體形成。此例中,基層502’可使用習知半導體薄膜生長製程形成,例如金屬有機化學蒸氣沈積(MOCVD)製程、氫化物汽相外延(HVPE)製程或著分子束磊晶法(MBE)製程。17 to 20 are cross-sectional views illustrating a method of fabricating the semiconductor light emitting device of Fig. 14 according to an embodiment of the present invention. As shown in Fig. 17, the base layer 502' is grown on the substrate 501. As described above, the base layer 502' may be formed of a first conductive type semiconductor material or an undoped semiconductor material. For example, the base layer 502' may be formed of a nitride semiconductor. In this example, the base layer 502' can be formed using conventional semiconductor thin film growth processes such as metal organic chemical vapor deposition (MOCVD) processes, hydride vapor phase epitaxy (HVPE) processes, or molecular beam epitaxy (MBE) processes.

如第18圖所示,具有暴露一部份基層502’之開口區域的罩體層510係形成於基板501上。提供的開口區域作為經由再生長製程形成發光單元的區域。罩體層510可通過沈積製程或濺鍍製程,由例如氧化矽或氮化矽的材料形成。此外,罩體層510的開口區域可使用習知的光阻製程形成。如第19圖所示,發光單元係經由開口區域,藉由連續地生長第一導電型半導體層502、主動層503R以及第二導電型半導體層504於基層502上形成。雖然生長的次序並無特別限制,發射紅光的主動層503R可經由此生長製程生長。As shown in Fig. 18, a cover layer 510 having an opening region exposing a portion of the base layer 502' is formed on the substrate 501. The open area is provided as a region where the light emitting unit is formed through the regrowth process. The shell layer 510 may be formed of a material such as hafnium oxide or tantalum nitride by a deposition process or a sputtering process. Additionally, the open area of the shell layer 510 can be formed using conventional photoresist processes. As shown in FIG. 19, the light-emitting unit is formed on the base layer 502 by continuously growing the first conductive semiconductor layer 502, the active layer 503R, and the second conductive semiconductor layer 504 via the opening region. Although the order of growth is not particularly limited, the active layer 503R that emits red light can be grown through this growth process.

如第20圖所示,另一開口區域係形成於罩體層510中。包括第一導電型半導體層502、發射綠光的主動層503G以及第二導電型半導體層504的發光單元係形成於基層502’上。包括第一導電型半導體層502、發射藍光的主動層503B以及第二導電型半導體層504的發光單元係形成於基層502’上。在此步驟中,發光單元可不需分開地排列而不彼此接觸。雖然未繪示,透明電極可形成於第二導電型半導體層504上。形成的互連結構用以電性連接發光單元,因此可獲得第14圖之結構。上述製造半導體發光裝置之方法中,並未使用蝕刻製程於分離發光單元C。取而代之是,使用半導體層的再生長以自發性地分離發光單元。此外,可不必蝕刻第一導電型半導體層502以連接互連結構至第一導電型層502。據此,能預防在蝕刻製程期間造成發光單元C的損害。由於主動層503的面積是確保足夠的,因此可改善半導體發光裝置之發光效率。As shown in Fig. 20, another open area is formed in the cover layer 510. A light-emitting unit including a first conductive type semiconductor layer 502, an active layer 503G that emits green light, and a second conductive type semiconductor layer 504 is formed on the base layer 502'. A light-emitting unit including a first conductive type semiconductor layer 502, a blue light-emitting active layer 503B, and a second conductive type semiconductor layer 504 is formed on the base layer 502'. In this step, the light emitting units may not need to be separately arranged without being in contact with each other. Although not shown, a transparent electrode may be formed on the second conductive type semiconductor layer 504. The interconnect structure is formed to electrically connect the light emitting unit, and thus the structure of Fig. 14 can be obtained. In the above method of manufacturing a semiconductor light-emitting device, an etching process is not used to separate the light-emitting unit C. Instead, the regrowth of the semiconductor layer is used to spontaneously separate the light-emitting units. Further, the first conductive type semiconductor layer 502 does not have to be etched to connect the interconnect structure to the first conductive type layer 502. According to this, it is possible to prevent damage of the light-emitting unit C during the etching process. Since the area of the active layer 503 is ensured to be sufficient, the luminous efficiency of the semiconductor light-emitting device can be improved.

第32圖至第34圖係為繪示根據本發明另一實施例之製造半導體記憶體裝置之方法剖面圖。如第32圖所示,第一導電型半導體層502係生長於基板501上,且第一主動層至第三主動層503R、503B及503G係形成於第一導電型半導體層502之第一區域至第三區域。如前述實施例,第一主動層至第三主動層503R、503B及503G各自發射紅光、藍光以及綠光。此例中,第一主動層至第三主動層503R、503B及503G可以使用具有適當形狀之開口區域的罩體層510生長。如第33圖所示,生長第二導電型半導體層504以覆蓋第一主動層至第三主動層503R、503B及503G。第二導電型半導體層504可一體成形,同時覆蓋第一主動層至第三主動層503R、503B及503G之頂面及側面。32 through 34 are cross-sectional views showing a method of fabricating a semiconductor memory device in accordance with another embodiment of the present invention. As shown in FIG. 32, the first conductive semiconductor layer 502 is grown on the substrate 501, and the first to third active layers 503R, 503B, and 503G are formed in the first region of the first conductive semiconductor layer 502. To the third area. As in the foregoing embodiment, the first to third active layers 503R, 503B, and 503G each emit red light, blue light, and green light. In this example, the first to third active layers 503R, 503B, and 503G may be grown using a cap layer 510 having an appropriately shaped open region. As shown in FIG. 33, the second conductive type semiconductor layer 504 is grown to cover the first to third active layers 503R, 503B, and 503G. The second conductive semiconductor layer 504 may be integrally formed while covering the top and side surfaces of the first to third active layers 503R, 503B, and 503G.

如第34圖所示,進行發光結構(發光單元)分離製程。意即,第一發光結構至第三發光結構係藉由移除一部份第二導電型半導體層504形成,使得對應第一主動層至第三主動層503R、503B及503G的位置之第二導電型半導體層504留下。此例中,如第34圖所示,可不必移除第一導電型半導體層502。據此,發光結構可並聯連接。或著,為應用於另一連接結構,可移除一部份第一導電型半導體層502,,使得對應第一主動層至第三主動層503R、503B及503G的位置之第一導電型半導體層502留下。雖然未繪示,多晶片裝置可藉由在發光結構之間,形成適當地電性互連結構完成。As shown in Fig. 34, a light-emitting structure (light-emitting unit) separation process is performed. That is, the first to third light emitting structures are formed by removing a portion of the second conductive type semiconductor layer 504 such that the positions of the first to third active layers 503R, 503B, and 503G are second. The conductive semiconductor layer 504 is left behind. In this example, as shown in Fig. 34, it is not necessary to remove the first conductive type semiconductor layer 502. Accordingly, the light emitting structures can be connected in parallel. Alternatively, in order to apply to another connection structure, a portion of the first conductive type semiconductor layer 502 may be removed such that the first conductive type semiconductor corresponding to the positions of the first active layer to the third active layers 503R, 503B, and 503G Layer 502 is left. Although not shown, a multi-wafer device can be completed by forming a suitably electrically interconnected structure between the light-emitting structures.

第21圖係為繪示根據本發明另一實施例之半導體發光裝置之平面示意圖,而第22圖係為沿著第21圖E1-E1’線段之剖面示意圖。Figure 21 is a plan view showing a semiconductor light-emitting device according to another embodiment of the present invention, and Figure 22 is a schematic cross-sectional view taken along line E1-E1' of Figure 21.

參閱第21圖及第22圖,半導體發光裝置600包括排列於導電基板606上之複數個發光單元C。每一發光單元C包括第一導電型半導體層601、主動層602以及第二導電型半導體層603。反射金屬層604可設置於發光單元C以及導電基板606之間,具體而言,於第二導電型半導體層603以及導電基板606之間。反射金屬層604並非必要元件而是選擇性元件。用以電性連接複數個發光單元C之互連結構607係形成於第一導電型半導體層601上。可進一步提供連接互連結構607的墊件608。施加外部電子訊號通過墊件608。此例中,如第22圖所示,互連結構607係沿著發光單元C1及C2的表面形成,以連接二發光單元C1及C2所提供之第一導電型半導體層601。主動層602、第二導電型半導體層603、反射金屬層604以及導電基板606可藉由絕緣部609彼此電性分離。此實施例中,由於第二導電型半導體層603之電性連接結構可藉由導電基板606完成,因此不需形成另外的互連結構。此外,由於第一導電型半導體層601或第二導電型半導體層603不需台面蝕刻,因此可確保足夠的發光面積。Referring to FIGS. 21 and 22, the semiconductor light emitting device 600 includes a plurality of light emitting cells C arranged on the conductive substrate 606. Each of the light emitting units C includes a first conductive type semiconductor layer 601, an active layer 602, and a second conductive type semiconductor layer 603. The reflective metal layer 604 can be disposed between the light emitting unit C and the conductive substrate 606, specifically, between the second conductive type semiconductor layer 603 and the conductive substrate 606. The reflective metal layer 604 is not an essential component but a selective component. An interconnect structure 607 for electrically connecting a plurality of light emitting cells C is formed on the first conductive semiconductor layer 601. A pad 608 that connects the interconnect structure 607 can be further provided. An external electronic signal is applied through the pad 608. In this example, as shown in FIG. 22, the interconnection structure 607 is formed along the surface of the light-emitting units C1 and C2 to connect the first conductive type semiconductor layer 601 provided by the two light-emitting units C1 and C2. The active layer 602, the second conductive semiconductor layer 603, the reflective metal layer 604, and the conductive substrate 606 may be electrically separated from each other by the insulating portion 609. In this embodiment, since the electrical connection structure of the second conductive type semiconductor layer 603 can be completed by the conductive substrate 606, it is not necessary to form an additional interconnect structure. Further, since the first conductive type semiconductor layer 601 or the second conductive type semiconductor layer 603 does not require mesa etching, a sufficient light emitting area can be secured.

導電基板606在例如雷射剝離製程的後續製程中提供作為支撐發光結構的支撐本體。導電基板606可由選自金、鎳、鋁、銅、鎢、矽、硒以及砷化鎵的一或多種材料形成。例如,導電基板606可由鋁摻雜至矽中的材料形成。此例中,導電基板606可根據所選材料藉由電鍍製程或黏合製程形成。導電基板606係電性連接每一發光單元C之第二導電型半導體層603。據此,此實施例中,發光單元C係並聯電性連接。反射金屬層604可反射從裝置的向上方向中之主動層602所發射的光,意即,第一導電型半導體層601的方向中。再者,考慮到電性性質,反射金屬層604可形成與第二導電型半導體層603間的歐姆接觸。考慮此類功能,反射金屬層604可包括銀、鎳、鋁、銠、鈀、銥、釕、鎂、鋅、鉑或金。此例中,雖然未詳繪示,反射效率可藉由利用多層結構中的反射金屬層604改善。具有多層結構反射金屬層的例子包括鎳/銀、鋅/銀、鎳/鋁、鈀/銀、鈀/鋁、銥/銀、銥/金、鉑/銀、鉑/鋁以及鎳/銀/鉑。雖然繪示反射金屬層604提供於每一發光單元C中,但反射金屬層604亦可一體成形於整個發光單元C之上。The conductive substrate 606 provides a support body as a supporting light emitting structure in a subsequent process such as a laser stripping process. The conductive substrate 606 may be formed of one or more materials selected from the group consisting of gold, nickel, aluminum, copper, tungsten, tantalum, selenium, and gallium arsenide. For example, the conductive substrate 606 may be formed of a material doped with aluminum into the crucible. In this example, the conductive substrate 606 can be formed by an electroplating process or a bonding process depending on the selected material. The conductive substrate 606 is electrically connected to the second conductive type semiconductor layer 603 of each of the light emitting units C. Accordingly, in this embodiment, the light-emitting units C are electrically connected in parallel. The reflective metal layer 604 can reflect light emitted from the active layer 602 in the upward direction of the device, that is, in the direction of the first conductive type semiconductor layer 601. Furthermore, the reflective metal layer 604 can form an ohmic contact with the second conductive type semiconductor layer 603 in consideration of electrical properties. In view of such functionality, the reflective metal layer 604 can comprise silver, nickel, aluminum, ruthenium, palladium, rhodium, iridium, magnesium, zinc, platinum, or gold. In this example, although not shown in detail, the reflection efficiency can be improved by utilizing the reflective metal layer 604 in the multilayer structure. Examples of reflective metal layers having a multilayer structure include nickel/silver, zinc/silver, nickel/aluminum, palladium/silver, palladium/aluminum, iridium/silver, iridium/gold, platinum/silver, platinum/aluminum, and nickel/silver/platinum. . Although the reflective metal layer 604 is provided in each of the light emitting units C, the reflective metal layer 604 may be integrally formed over the entire light emitting unit C.

第23圖及24圖係為繪示第21圖半導體發光裝置的修飾之剖面示意圖。參閱第23圖,半導體發光裝置600’進一步包括第21圖實施例中之隔離層605。隔離層605可一體成形於整個發光單元C1及C2之上。隔離層605可形成於導電基板606以及發光單元C1,C2之間,以預防在黏合導電基板606至發光結構的製程期間,材料的影響或無法預期的擴散。隔離層605可由鎢化鈦(TiW)形成。參閱第24圖,半導體發光裝置600”之互連結構607’可分割成金屬區域607a以及透明區域607b。可藉由將至少一第一導電型半導體層601的上方區域形成透明區域607a,以減少光損失。此例中,互連結構607’之透明區域607b可由透明導電氧化物形成。23 and 24 are schematic cross-sectional views showing the modification of the semiconductor light emitting device of Fig. 21. Referring to Fig. 23, the semiconductor light emitting device 600' further includes the isolation layer 605 in the embodiment of Fig. 21. The isolation layer 605 can be integrally formed over the entire light emitting cells C1 and C2. The isolation layer 605 can be formed between the conductive substrate 606 and the light-emitting units C1, C2 to prevent the influence of material or unpredictable diffusion during the process of bonding the conductive substrate 606 to the light-emitting structure. The isolation layer 605 may be formed of titanium tungsten (TiW). Referring to Fig. 24, the interconnect structure 607' of the semiconductor light emitting device 600" can be divided into a metal region 607a and a transparent region 607b. The upper region of the at least one first conductive semiconductor layer 601 can be formed into a transparent region 607a to reduce Light loss. In this example, the transparent region 607b of the interconnect structure 607' may be formed of a transparent conductive oxide.

第25圖至第28圖係為繪示根據本發明之實施例之製造第21圖半導體發光裝置之方法剖面圖。如第25圖所示,發光積層本體係藉由使用例如下述之一或多種半導體層生長製程連續地生長第一導電型半導體層601、主動層602以及第二導電型半導體層603形成:金屬有機化學氣相沈積(MetalOrganicChemicalVaporDeposition,MOCVD)製程、氫化物氣相外延(HydrideVaporPhaseEpitaxy,HVPE)製程或著分子束磊晶(MolecularBeamEpitaxy,MBE)製程。如第26圖所示,具有開口區域的絕緣部609係形成於第二導電型半導體層603上,且形成反射金屬層604以填充開口區域。此例中,絕緣部609以及反射金屬層604可使用習知的沈積製程或濺鍍製程形成。25 to 28 are cross-sectional views showing a method of manufacturing the semiconductor light emitting device of Fig. 21 according to an embodiment of the present invention. As shown in Fig. 25, the light-emitting laminate system is formed by continuously growing the first conductive type semiconductor layer 601, the active layer 602, and the second conductive type semiconductor layer 603 by using, for example, one or more of the following semiconductor layer growth processes: metal Organic Chemical Vapor Deposition (MOCVD) process, Hydride Vapor Phase Epitix (HVPE) process or Molecular Beam Epitaxy (MBE) process. As shown in Fig. 26, an insulating portion 609 having an opening region is formed on the second conductive type semiconductor layer 603, and a reflective metal layer 604 is formed to fill the opening region. In this example, the insulating portion 609 and the reflective metal layer 604 can be formed using a conventional deposition process or a sputtering process.

如第27圖所示,導電基板606係形成於反射金屬層604之上。例如,由共晶(eutectic)金屬形成的黏合附著層(圖未示)可塗覆於反射金屬層604以及導電基板606之間,且導電基板606可附著於其上。成長基板610亦自發光分層本體分離。成長基板610可使用雷射剝離製程(laser lift-off process)或化學剝離製程分離。第27圖繪示成長基板610移除的狀態,同時相較於第26圖旋轉180度。As shown in FIG. 27, a conductive substrate 606 is formed over the reflective metal layer 604. For example, an adhesive adhesion layer (not shown) formed of a eutectic metal may be applied between the reflective metal layer 604 and the conductive substrate 606, and the conductive substrate 606 may be attached thereto. The growth substrate 610 is also separated from the luminescent layered body. The growth substrate 610 can be separated using a laser lift-off process or a chemical lift-off process. Fig. 27 is a view showing a state in which the growth substrate 610 is removed while being rotated by 180 degrees compared to Fig. 26.

如第28圖所示,進行內部單元分離製程以移除發光單元C1及C2之間的區域,因此形成複數個發光單元C1,C2。此例中,可使用例如離子蝕刻(ICP-RIE)製程的已知蝕刻製程完成內部單元分離製程。在此製程期間,絕緣部609可作為蝕刻隔離層。雖然未繪示,絕緣部609係進一步形成於發光單元C1,C2之表面上,且係形成互連結構607以連接第一導電型半導體層601。以此方式,可獲得第21圖所示的半導體發光裝置600。As shown in Fig. 28, an internal cell separation process is performed to remove the region between the light-emitting cells C1 and C2, thus forming a plurality of light-emitting cells C1, C2. In this example, the internal cell separation process can be completed using a known etching process such as an ion etching (ICP-RIE) process. During this process, the insulating portion 609 can serve as an etch barrier. Although not shown, the insulating portion 609 is further formed on the surface of the light emitting cells C1, C2, and the interconnect structure 607 is formed to connect the first conductive type semiconductor layer 601. In this way, the semiconductor light emitting device 600 shown in Fig. 21 can be obtained.

同時,第29圖係為繪示根據本發明之實施例之半導體發光裝置之例示性應用之示意組態圖。參閱第29圖,照明設備700包括發光模組701、支撐結構704,其上設置有發光模組701、以及電源供應器703。發光模組701包括藉由本發明實施例所提供之方法製造的一或多個半導體發光裝置702。再者,照明設備700包括迴授電路以及記憶體裝置,迴授電路係用以比較半導體發光裝置702發光的量以及目前發光的量,記憶體裝置儲存所需亮度或顯色(color rendering)方面的資訊。照明設備700可用作為室內照明,例如燈泡或牌照燈,或著室外照明,例如路燈或標誌。此外,照明設備700可使用於各種交通工具,例如,像是船或飛機的運載工具。此外,照明設備700將更廣泛的應用於家電器具,例如電視或或冰箱以及醫學應用。Meanwhile, Fig. 29 is a schematic configuration diagram showing an exemplary application of a semiconductor light emitting device according to an embodiment of the present invention. Referring to FIG. 29, the lighting device 700 includes a light emitting module 701, a support structure 704, and a light emitting module 701 and a power supply 703 are disposed thereon. The light emitting module 701 includes one or more semiconductor light emitting devices 702 fabricated by the method provided by embodiments of the present invention. Furthermore, the illumination device 700 includes a feedback circuit for comparing the amount of light emitted by the semiconductor light-emitting device 702 with the amount of current illumination, and a memory device for storing desired brightness or color rendering. Information. The lighting device 700 can be used as indoor lighting, such as a light bulb or license plate light, or outdoor lighting, such as a street light or sign. Additionally, lighting device 700 can be used with a variety of vehicles, such as vehicles such as boats or airplanes. In addition, lighting device 700 will be more widely used in home appliances, such as televisions or refrigerators, and medical applications.

使用根據本發明具體實施例之半導體發光裝置時,增加每單位面積的電流密度以改善其光萃取效率。再者,可獲得具有高顯色的白光。When a semiconductor light-emitting device according to a specific embodiment of the present invention is used, the current density per unit area is increased to improve its light extraction efficiency. Furthermore, white light with high color development can be obtained.

此外,根據本發明具體實施例之半導體發光裝置,可不需使用磷光體而獲得高效率白光。此外,當半導體發光裝置提供複數個發光單元時,可確保足夠的發光面積。Further, according to the semiconductor light-emitting device of the embodiment of the present invention, high-efficiency white light can be obtained without using a phosphor. Further, when the semiconductor light-emitting device provides a plurality of light-emitting units, a sufficient light-emitting area can be secured.

本發明已結合具體實施例說明及描述,該技術領域中具有通常知識者可顯而易見所做之修改及變更不違背本發明之精神及範疇,如下之專利申請範圍所述。The present invention has been described and described in detail with reference to the specific embodiments of the invention, and the modifications and changes in the scope of the invention may be made without departing from the spirit and scope of the invention.

100、100”、200、200’、300、400、400’、400”、500、600、600’、600”、702...半導體發光裝置100, 100", 200, 200', 300, 400, 400', 400", 500, 600, 600', 600", 702... semiconductor light-emitting devices

101、201、401、501...基板101, 201, 401, 501. . . Substrate

502’...基層502’. . . Grassroots

102、202、302、502、601...第一導電型半導體層102, 202, 302, 502, 601. . . First conductive semiconductor layer

103、403、503、503R、503G、503B、602...主動層103, 403, 503, 503R, 503G, 503B, 602. . . Active layer

104、504、603...第二導電型半導體層104, 504, 603. . . Second conductive semiconductor layer

604...反射金屬層604. . . Reflective metal layer

105、205、305、405、505...透明電極105, 205, 305, 405, 505. . . Transparent electrode

605...隔離層605. . . Isolation layer

106、406、607、607’...互連結構106, 406, 607, 607’. . . Interconnect structure

606...導電基板606. . . Conductive substrate

206a、306a、506a...第一互連結構206a, 306a, 506a. . . First interconnect structure

206b、306b、506b...第二互連結構206b, 306b, 506b. . . Second interconnect structure

608...墊件608. . . Cushion

107a、207a、307a、407a、407a’、407a”、507a...第一墊件107a, 207a, 307a, 407a, 407a', 407a", 507a... first pad

107b、207b、307b、407b、407b’、407b”、507b...第二墊件107b, 207b, 307b, 407b, 407b', 407b", 507b... second pad

607a...金屬區域607a. . . Metal area

607b...透明區域607b. . . Transparent area

108、508、609...絕緣部108, 508, 609. . . Insulation

510...罩體層510. . . Cover layer

610...成長基板610. . . Growth substrate

410...封裝基板410. . . Package substrate

109R、109R’、209R、309R...紅光轉換元件109R, 109R', 209R, 309R. . . Red light conversion element

109G、109G’、209G、309G...綠光轉換元件109G, 109G', 209G, 309G. . . Green light conversion element

700...照明設備700. . . lighting device

701...發光模組701. . . Light module

703...電源供應器703. . . Power Supplier

704...支撐結構704. . . supporting structure

400G1、400G2...多晶片裝置400G1, 400G2. . . Multi-chip device

411...屏障元件411. . . Barrier element

412...光轉換材料412. . . Light conversion material

BG...藍色群組BG. . . Blue group

C、C1、C2、C3...發光單元C, C1, C2, C3. . . Light unit

GG...綠色群組GG. . . Green group

m...連接結構m. . . Connection structure

RG...紅色群組RG. . . Red group

RGG1、RGG2、RGG3...群組RGG1, RGG2, RGG3. . . Group

本發明之上述其它態樣、特徵及其它優點將可從以下說明結合附圖而加以更清楚了解,其中:The above-described other aspects, features, and other advantages of the present invention will become more apparent from the following description,

第1圖係為繪示根據本發明之實施例之半導體發光裝置之平面示意圖;1 is a plan view showing a semiconductor light emitting device according to an embodiment of the present invention;

第2圖係為沿著第1圖A-A’線段之剖面示意圖;Figure 2 is a schematic cross-sectional view along line A-A' of Figure 1;

第3圖係為繪示第1圖半導體發光裝置中發光單元的連接之等效電路圖;Figure 3 is an equivalent circuit diagram showing the connection of the light-emitting units in the semiconductor light-emitting device of Figure 1;

第4圖係為繪示第1圖半導體發光裝置修改的剖面示意圖;Figure 4 is a schematic cross-sectional view showing the modification of the semiconductor light-emitting device of Figure 1;

第5圖係為繪示第1圖半導體發光裝置的另一種修改中可使用之發光單元的互連結構剖面示意圖;5 is a schematic cross-sectional view showing an interconnection structure of a light-emitting unit that can be used in another modification of the semiconductor light-emitting device of FIG. 1;

第6圖係為繪示可藉由第5圖互連結構獲得之AC驅動裝置之等效電路圖;Figure 6 is an equivalent circuit diagram showing an AC driving device obtainable by the interconnection structure of Figure 5;

第7圖係為繪示根據本發明另一實施例之半導體發光裝置之平面示意圖;7 is a plan view showing a semiconductor light emitting device according to another embodiment of the present invention;

第8圖係為繪示第7圖半導體發光裝置中發光單元之連接的等效電路圖;Figure 8 is an equivalent circuit diagram showing the connection of the light-emitting units in the semiconductor light-emitting device of Figure 7;

第9圖係為繪示第7圖半導體發光裝置的修改之平面示意圖;Figure 9 is a plan view showing a modification of the semiconductor light-emitting device of Figure 7;

第10圖係為繪示根據本發明另一實施例之半導體發光裝置之平面示意圖;FIG. 10 is a plan view showing a semiconductor light emitting device according to another embodiment of the present invention; FIG.

第11圖係為繪示第10圖半導體發光裝置中發光單元的連接之等效電路圖;Figure 11 is an equivalent circuit diagram showing the connection of the light-emitting units in the semiconductor light-emitting device of Figure 10;

第12圖係為繪示根據本發明另一實施例之半導體發光裝置之平面示意圖;Figure 12 is a plan view showing a semiconductor light emitting device according to another embodiment of the present invention;

第13圖係為繪示根據本發明另一實施例之發光裝置之平面示意圖;Figure 13 is a plan view showing a light-emitting device according to another embodiment of the present invention;

第14圖係為繪示根據本發明另一實施例之半導體發光裝置之平面示意圖;Figure 14 is a plan view showing a semiconductor light emitting device according to another embodiment of the present invention;

第15圖係為沿著第14圖B-B’線段之剖面示意圖;Figure 15 is a schematic cross-sectional view along line B-B' of Figure 14;

第16圖係為沿著第15圖D-D’之剖面示意圖;Figure 16 is a schematic cross-sectional view taken along line D-D' of Figure 15;

第17圖至第20圖係為說明根據本發明之實施例之製造第14圖半導體發光裝置之方法剖面圖;17 to 20 are cross-sectional views illustrating a method of fabricating the semiconductor light emitting device of Fig. 14 according to an embodiment of the present invention;

第21圖係為繪示根據本發明另一實施例之半導體發光裝置之平面示意圖;Figure 21 is a plan view showing a semiconductor light emitting device according to another embodiment of the present invention;

第22圖係為沿著第21圖E1-E1’線段之剖面示意圖;Figure 22 is a schematic cross-sectional view along line E1-E1' of Figure 21;

第23圖係為繪示第21圖半導體發光裝置的修改之剖面示意圖;Figure 23 is a cross-sectional view showing a modification of the semiconductor light-emitting device of Figure 21;

第24圖係為繪示第21圖半導體發光裝置的修改之剖面示意圖;Figure 24 is a cross-sectional view showing a modification of the semiconductor light-emitting device of Figure 21;

第25圖至第28圖係為繪示根據本發明之實施例之製造第21圖半導體發光裝置之方法剖面圖;25 to 28 are cross-sectional views showing a method of fabricating the semiconductor light emitting device of Fig. 21 according to an embodiment of the present invention;

第29圖係為繪示根據本發明之實施例之半導體發光裝置之例示性應用之示意組態圖;Figure 29 is a schematic configuration diagram showing an exemplary application of a semiconductor light emitting device according to an embodiment of the present invention;

第30圖係為繪示根據本發明另一實施例之半導體發光裝置之平面示意圖;Figure 30 is a plan view showing a semiconductor light emitting device according to another embodiment of the present invention;

第31圖係為第30圖半導體發光裝置沿著A-A’線段之剖面示意圖;以及Figure 31 is a cross-sectional view of the semiconductor light-emitting device of Figure 30 taken along line A-A';

第32圖至第34圖係為繪示根據本發明另一實施例之製造半導體記憶體裝置之方法剖面圖。32 through 34 are cross-sectional views showing a method of fabricating a semiconductor memory device in accordance with another embodiment of the present invention.

100...半導體發光裝置100. . . Semiconductor light emitting device

101...基板101. . . Substrate

102...第一導電型半導體層102. . . First conductive semiconductor layer

105...透明電極105. . . Transparent electrode

106...互連結構106. . . Interconnect structure

107a...第一墊件107a. . . First pad

107b...第二墊件107b. . . Second pad

109R...紅光轉換元件109R. . . Red light conversion element

109G...綠光轉換元件109G. . . Green light conversion element

C...發光單元C. . . Light unit

Claims (25)

一種半導體發光裝置,包含:基板;複數個發光單元,係排列於該基板上,該等發光單元各包括第一導電型半導體層、第二導電型半導體層以及設置於該第一導電型半導體層及該第二導電型半導體層之間的主動層以發射藍光;互連結構,係將該發光單元之該第一導電型半導體層及該第二導電型半導體層之至少一者電性連接至另一發光單元之該第一導電型半導體層及該第二導電型半導體層之至少一者;以及光轉換元件,係形成於藉由該複數個發光單元所定義之至少一部份發光區域中,該光轉換元件包括具有紅光轉換材料之紅光轉換元件以及具有綠光轉換材料之綠光轉換元件之至少一者,其中該互連結構包括一第一互連結構與一第二互連結構,且該第一互連結構與該第二互連結構其中至少一者,其具有之長度大於每一該發光單元的寬度,其中,該互連結構具有的長度大於每一該發光單元的寬度,該互連結構是被設置在該基板的除了該發光單元以外的區域。 A semiconductor light-emitting device comprising: a substrate; a plurality of light-emitting units arranged on the substrate, the light-emitting units each comprising a first conductive semiconductor layer, a second conductive semiconductor layer, and a first conductive semiconductor layer The active layer between the second conductive semiconductor layer and the second conductive semiconductor layer And at least one of the first conductive semiconductor layer and the second conductive semiconductor layer of the other light emitting unit; and the light converting element is formed in at least a portion of the light emitting region defined by the plurality of light emitting units The light conversion element includes at least one of a red light conversion element having a red light conversion material and a green light conversion element having a green light conversion material, wherein the interconnection structure includes a first interconnection structure and a second interconnection And at least one of the first interconnect structure and the second interconnect structure having a length greater than a width of each of the light emitting units, wherein the interconnect Configuration having a length greater than a width of each of the light emitting unit, the interconnect is disposed in the region of the substrate except the light emitting unit. 如申請專利範圍第1項所述之半導體發光裝置,其中,該光轉換元件並未形成於一部份之該發光區域中。 The semiconductor light-emitting device of claim 1, wherein the light-converting element is not formed in a portion of the light-emitting region. 如申請專利範圍第1項所述之半導體發光裝置,其中, 該光轉換元件包括磷光體及量子點之至少一者。 The semiconductor light-emitting device of claim 1, wherein The light conversion element includes at least one of a phosphor and a quantum dot. 如申請專利範圍第1項所述之半導體發光裝置,其中,該複數個發光單元之至少一者之該第一導電型半導體層電性連接另一發光單元之該第二導電型半導體層。 The semiconductor light-emitting device of claim 1, wherein the first conductive semiconductor layer of at least one of the plurality of light-emitting units is electrically connected to the second conductive semiconductor layer of the other light-emitting unit. 如申請專利範圍第1項所述之半導體發光裝置,其中,該複數個發光單元之至少一者之該第一導電型半導體層電性連接另一發光單元之該第一導電型半導體層。 The semiconductor light-emitting device of claim 1, wherein the first conductive semiconductor layer of at least one of the plurality of light-emitting units is electrically connected to the first conductive semiconductor layer of the other light-emitting unit. 如申請專利範圍第1項所述之半導體發光裝置,其中,該複數個發光單元之至少一者之該第二導電型半導體層電性連接另一發光單元之該第二導電型半導體層。 The semiconductor light-emitting device of claim 1, wherein the second conductive semiconductor layer of at least one of the plurality of light-emitting units is electrically connected to the second conductive semiconductor layer of the other light-emitting unit. 如申請專利範圍第1項所述之半導體發光裝置,其中,該複數個發光單元之該第一導電型半導體層係一體成形。 The semiconductor light-emitting device of claim 1, wherein the first conductive semiconductor layer of the plurality of light-emitting units is integrally formed. 如申請專利範圍第1項所述之半導體發光裝置,其中,該紅光轉換元件及該綠光轉換元件之一者係形成於該等發光單元每一個的。 The semiconductor light-emitting device of claim 1, wherein the red light-converting element and one of the green light-converting elements are formed in each of the light-emitting units. 如申請專利範圍第1項所述之半導體發光裝置,其中,該紅光轉換元件及該綠光轉換元件之一者係相對複數個發光單元之二或更多個一體形成。 The semiconductor light-emitting device of claim 1, wherein the red light-converting element and the green light-converting element are integrally formed with respect to two or more of the plurality of light-emitting units. 如申請專利範圍第1項所述之半導體發光裝置,其中,該光轉換元件係沿著該等發光單元之表面形成。 The semiconductor light-emitting device of claim 1, wherein the light-converting element is formed along a surface of the light-emitting units. 如申請專利範圍第1項所述之半導體發光裝置,其中,該光轉換元件包括該紅光轉換元件及該綠光轉換元件;該複數個發光單元分割成紅色群組、綠色群組以及 藍色群組,該紅色群組包括該紅光轉換元件形成於其中之一或多個單元,該綠色群組包括該綠光轉換元件形成於其中之一或多個單元,藍色群組包括該紅光轉換元件及該綠光轉換元件未形成於其中之一或多個單元;以及該半導體發光裝置復包含各自連接該紅色群組、該綠色群組以及該藍色群組之三對墊件。 The semiconductor light-emitting device of claim 1, wherein the light conversion element comprises the red light conversion element and the green light conversion element; the plurality of light-emitting units are divided into a red group, a green group, and a blue group including one or more cells in which the red light conversion element is formed, the green group including one or more cells in which the green light conversion element is formed, and the blue group includes The red light conversion element and the green light conversion element are not formed in one or more of the units; and the semiconductor light emitting device includes three pairs of pads each connected to the red group, the green group, and the blue group Pieces. 如申請專利範圍第11項所述之半導體發光裝置,其中,通過該墊件施加至該紅色群組、該綠色群組以及該藍色群組之電流係分別地加以控制。 The semiconductor light-emitting device of claim 11, wherein the current applied to the red group, the green group, and the blue group by the pad is separately controlled. 一種半導體發光裝置,包含:基板;複數個發光單元,係排列於該基板上,該等發光單元各包括第一導電型半導體層、第二導電型半導體層以及設置於該第一導電型半導體層及該第二導電型半導體層之間的主動層以發射藍光;互連結構,係將該發光單元之該第一導電型半導體層及該第二導電型半導體層之至少一者電性連接至另一發光單元之該第一導電型半導體層及該第二導電型半導體層之至少一者;以及光轉換元件,係形成於藉由該複數個發光單元所定義之至少一部份發光區域中,該光轉換元件包括紅光轉換材料以及綠光轉換材料之至少一者,其中,該光轉換元件係分割成具有該紅光轉換材料及該綠光轉換材料之至少一者之不同混合比率的複數 個群組,其中該互連結構包括一第一互連結構與一第二互連結構,且該第一互連結構與該第二互連結構其中至少一者,其具有之長度大於每一該發光單元的寬度,其中,該互連結構具有的長度大於每一該發光單元的寬度,該互連結構是被設置在該基板的除了該發光單元以外的區域。 A semiconductor light-emitting device comprising: a substrate; a plurality of light-emitting units arranged on the substrate, the light-emitting units each comprising a first conductive semiconductor layer, a second conductive semiconductor layer, and a first conductive semiconductor layer The active layer between the second conductive semiconductor layer and the second conductive semiconductor layer And at least one of the first conductive semiconductor layer and the second conductive semiconductor layer of the other light emitting unit; and the light converting element is formed in at least a portion of the light emitting region defined by the plurality of light emitting units The light conversion element includes at least one of a red light conversion material and a green light conversion material, wherein the light conversion element is divided into different mixing ratios of at least one of the red light conversion material and the green light conversion material. plural a group, wherein the interconnect structure comprises a first interconnect structure and a second interconnect structure, and at least one of the first interconnect structure and the second interconnect structure has a length greater than each The width of the light emitting unit, wherein the interconnect structure has a length greater than a width of each of the light emitting units, the interconnect structure being disposed in an area of the substrate other than the light emitting unit. 一種半導體發光裝置,包含:封裝基板;複數個多晶片裝置,係排列於該封裝基板上,該多晶片裝置各包括至少一發光單元,該發光單元包含第一導電型半導體層、第二導電型半導體層以及設置於該第一導電型半導體層及該第二導電型半導體層之間的主動層以發射藍光;互連結構,係將該發光單元之該第一導電型半導體層及該第二導電型半導體層之至少一者電性連接至另一發光單元之該第一導電型半導體層及該第二導電型半導體層之至少一者;以及複數個光轉換元件,係設置於該多晶片裝置之光路徑上,該光轉換元件包括紅光轉換材料及綠光轉換材料之至少一者,其中,該等光轉換元件分割成具有該紅光轉換材料及該綠光轉換材料之至少一者之不同混合比率的複數個群組, 其中該互連結構包括一第一互連結構與一第二互連結構,且該第一互連結構與該第二互連結構其中至少一者,其具有之長度大於每一該發光單元的寬度,其中,該互連結構具有的長度大於每一該發光單元的寬度,該互連結構是被設置在該基板的除了該發光單元以外的區域。 A semiconductor light-emitting device comprising: a package substrate; a plurality of multi-chip devices arranged on the package substrate, the multi-chip devices each comprising at least one light-emitting unit, the light-emitting unit comprising a first conductive type semiconductor layer and a second conductive type a semiconductor layer and an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer to emit blue light; an interconnect structure, the first conductive semiconductor layer and the second of the light emitting unit At least one of the conductive semiconductor layer is electrically connected to at least one of the first conductive semiconductor layer and the second conductive semiconductor layer of another light emitting unit; and a plurality of light converting elements are disposed on the multi-chip In the light path of the device, the light conversion element includes at least one of a red light conversion material and a green light conversion material, wherein the light conversion elements are divided into at least one of the red light conversion material and the green light conversion material a plurality of groups of different mixing ratios, Wherein the interconnect structure includes a first interconnect structure and a second interconnect structure, and at least one of the first interconnect structure and the second interconnect structure has a length greater than each of the light emitting units a width, wherein the interconnect structure has a length greater than a width of each of the light emitting units, the interconnect structure being disposed in an area of the substrate other than the light emitting unit. 如申請專利範圍第13項或第14項所述之半導體發光裝置,其中,該光轉換元件復包括黃光轉換材料,該等光轉換元件分割成具有該紅光轉換材料、該綠光轉換材料及該黃光轉換材料之至少一者之不同混合比率的複數個群組。 The semiconductor light-emitting device of claim 13 or 14, wherein the light-converting element further comprises a yellow light-converting material, the light-converting elements being divided into the red light-converting material and the green light-converting material And a plurality of groups of different mixing ratios of at least one of the yellow light converting materials. 如申請專利範圍第13項或第14項所述之半導體發光裝置,復包含連接至該複數個群組之複數個墊件。 The semiconductor light-emitting device of claim 13 or 14, further comprising a plurality of pads connected to the plurality of groups. 如申請專利範圍第16項所述之半導體發光裝置,其中,通過該複數個墊件施加至該複數個群組之電流係分別地加以控制。 The semiconductor light-emitting device of claim 16, wherein the current applied to the plurality of groups by the plurality of pads is separately controlled. 如申請專利範圍第13項或第14項所述之半導體發光裝置,其中,該光轉換元件包括屏障元件,且該屏障元件內部係填充有該光轉換材料。 The semiconductor light-emitting device of claim 13 or 14, wherein the light-converting element comprises a barrier element, and the barrier element is internally filled with the light-converting material. 如申請專利範圍第18項所述之半導體發光裝置,其中,該屏障元件包括與該光轉換材料相同之材料。 The semiconductor light emitting device of claim 18, wherein the barrier element comprises the same material as the light converting material. 如申請專利範圍第18項所述之半導體發光裝置,其中,該屏障元件係由與填充於該光轉換元件內之其餘部分相同的材料形成。 The semiconductor light-emitting device of claim 18, wherein the barrier element is formed of the same material as the rest of the light-converting element. 一種半導體發光裝置,包含:基板;複數個發光單元,係排列於該基板上,該等發光單元各包括第一導電型半導體層、第二導電型半導體層以及設置於該第一導電型半導體層及該第二導電型半導體層之間的主動層;以及互連結構,係將該發光單元之該第一導電型半導體層及該第二導電型半導體層之至少一者電性連接至另一發光單元之該第一導電型半導體層及該第二導電型半導體層之至少一者;其中,一部分之該等發光單元發射紅光,一部分之該等發光單元發射綠光以及其餘部分發射藍光,其中該互連結構包括一第一互連結構與一第二互連結構,且該第一互連結構與該第二互連結構其中至少一者,其具有之長度大於每一該發光單元的寬度,其中,該互連結構具有的長度大於每一該發光單元的寬度,該互連結構是被設置在該基板的除了該發光單元以外的區域。 A semiconductor light-emitting device comprising: a substrate; a plurality of light-emitting units arranged on the substrate, the light-emitting units each comprising a first conductive semiconductor layer, a second conductive semiconductor layer, and a first conductive semiconductor layer And an active layer between the second conductive semiconductor layer; and the interconnect structure electrically connecting at least one of the first conductive semiconductor layer and the second conductive semiconductor layer of the light emitting unit to another At least one of the first conductive type semiconductor layer and the second conductive type semiconductor layer of the light emitting unit; wherein a part of the light emitting units emit red light, a part of the light emitting units emit green light and the rest emit blue light, Wherein the interconnect structure includes a first interconnect structure and a second interconnect structure, and at least one of the first interconnect structure and the second interconnect structure has a length greater than each of the light emitting units a width, wherein the interconnect structure has a length greater than a width of each of the light emitting units, the interconnect structure being disposed on the substrate other than the light emitting unit Area. 如申請專利範圍第21項所述之半導體發光裝置,復包含基層,係形成於該基板及該第一導電型半導體層之間,且連接該等發光單元之該第一導電型半導體層。 The semiconductor light-emitting device according to claim 21, further comprising a base layer formed between the substrate and the first conductive semiconductor layer and connected to the first conductive semiconductor layer of the light-emitting units. 如申請專利範圍第22項所述之半導體發光裝置,其中,該基層係由第一導電型半導體材料形成。 The semiconductor light-emitting device of claim 22, wherein the base layer is formed of a first conductive type semiconductor material. 如申請專利範圍第22項所述之半導體發光裝置,其中, 該基層係由未摻雜半導體材料形成。 The semiconductor light-emitting device of claim 22, wherein The base layer is formed from an undoped semiconductor material. 如申請專利範圍第21項所述之半導體發光裝置,其中,該等發光單元之該第一導電型半導體層係一體成形。The semiconductor light-emitting device of claim 21, wherein the first conductive semiconductor layer of the light-emitting units is integrally formed.
TW100103015A 2010-02-26 2011-01-27 Semiconductor light emitting device having multi-cell array and method for manufacturing the same TWI523262B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100018259 2010-02-26
KR1020100085707A KR20110098600A (en) 2010-02-26 2010-09-01 Semiconductor light emitting device having a multi-cell array and manufaturing method of the same

Publications (2)

Publication Number Publication Date
TW201242079A TW201242079A (en) 2012-10-16
TWI523262B true TWI523262B (en) 2016-02-21

Family

ID=44952123

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100103015A TWI523262B (en) 2010-02-26 2011-01-27 Semiconductor light emitting device having multi-cell array and method for manufacturing the same

Country Status (2)

Country Link
KR (1) KR20110098600A (en)
TW (1) TWI523262B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102098135B1 (en) * 2013-07-12 2020-04-08 엘지이노텍 주식회사 Light emitting device
US20180309025A1 (en) * 2015-10-29 2018-10-25 Kyocera Corporation Light-emitting device, light receiving and emitting device module, and optical sensor
US10170671B2 (en) * 2016-05-25 2019-01-01 Chen-Fu Chu Methods of filling a flowable material in a gap of an assembly module
US11121172B2 (en) 2017-11-08 2021-09-14 Seoul Viosys Co., Ltd. Light-emitting diode unit for display comprising plurality of pixels and display device having same
KR102600236B1 (en) * 2018-03-15 2023-11-09 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Semiconductor device package and lighting device including the same
KR102628803B1 (en) * 2018-09-03 2024-01-24 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Lighting apparatus
US11881542B2 (en) 2020-12-07 2024-01-23 Lumileds Llc Pixelated wavelength-conversion layer

Also Published As

Publication number Publication date
KR20110098600A (en) 2011-09-01
TW201242079A (en) 2012-10-16

Similar Documents

Publication Publication Date Title
US8637897B2 (en) Semiconductor light emitting device having multi-cell array and method for manufacturing the same
US7994523B2 (en) AC light emitting diode having improved transparent electrode structure
KR101423723B1 (en) Light emitting diode package
TWI523262B (en) Semiconductor light emitting device having multi-cell array and method for manufacturing the same
KR101978968B1 (en) Semiconductor light emitting device and light emitting apparatus
US8901586B2 (en) Light emitting device and method of manufacturing the same
US20150348906A1 (en) Electronic device package
TW201234679A (en) High voltage wire bond free LEDs
US20130020554A1 (en) Semiconductor light emitting device and light emitting apparatus
KR20150082917A (en) Light emitting device and light source driving apparatus
TWI452671B (en) Production Method and Device of Stereo Stacked Light Emitting Diode
JP5845013B2 (en) Light emitting device
KR20120065607A (en) Semiconductor light emitting device and manufacturing method of the same
KR20110132160A (en) Semiconductor light emitting diode and method of manufacturing thereof
KR100670929B1 (en) Flip chip light-emitting device and Method of manufacturing the same
KR101547322B1 (en) Light emitting diode package
KR101688379B1 (en) Light emitting device and manufacturing method of the same
US20220181516A1 (en) Mixed color light emitting device
KR20120028567A (en) Semiconductor light emitting device having a multi-cell array
JP2012009625A (en) Light-emitting element
KR20120063254A (en) Manufacturing method of light emitting device
Kim T kmmmmmS kk 00S LL 0 000 000 GGS
CN110190086A (en) High voltage direct current LED or AC LED and its manufacturing method
KR20110059669A (en) Light emitting diode array and method of manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees