CN107015124B - 一种基于分帧自适应稀疏分解的局放信号干扰抑制方法 - Google Patents

一种基于分帧自适应稀疏分解的局放信号干扰抑制方法 Download PDF

Info

Publication number
CN107015124B
CN107015124B CN201710026185.7A CN201710026185A CN107015124B CN 107015124 B CN107015124 B CN 107015124B CN 201710026185 A CN201710026185 A CN 201710026185A CN 107015124 B CN107015124 B CN 107015124B
Authority
CN
China
Prior art keywords
partial discharge
sample
signal
discharge signal
rank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710026185.7A
Other languages
English (en)
Other versions
CN107015124A (zh
Inventor
孙东
王�锋
李思同
么春玲
张旭
燕迎祥
赵静
匡荣
庄强
刘旭
金琳
付志浩
陈洋
王凡
王玲
马小伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rizhao Power Supply Co of State Grid Shandong Electric Power Co Ltd
Original Assignee
Rizhao Power Supply Co of State Grid Shandong Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rizhao Power Supply Co of State Grid Shandong Electric Power Co Ltd filed Critical Rizhao Power Supply Co of State Grid Shandong Electric Power Co Ltd
Priority to CN201710026185.7A priority Critical patent/CN107015124B/zh
Publication of CN107015124A publication Critical patent/CN107015124A/zh
Application granted granted Critical
Publication of CN107015124B publication Critical patent/CN107015124B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

本发明公开了一种基于分帧自适应稀疏分解的局放信号干扰抑制方法,包括构建局放信号的先验样本集合、构造自适应局放噪声抑制过完备原子库、对染噪局放信号进行噪声抑制步骤。本发明首先构建可局放先验样本信号集合,并以此构造了自适应局放干扰抑制过完备原子库,基于稀疏分解实现了局放信号干扰抑制,在无需设置过多先验参数的基础上,实现局放信号自适应快速干扰抑制。

Description

一种基于分帧自适应稀疏分解的局放信号干扰抑制方法
技术领域
本发明涉及一种局放信号干扰抑制方法,尤其涉及一种基于分帧自适应稀疏分解的局放信号干扰抑制方法,属于电力监测技术领域。
背景技术
统计资料表明,绝缘劣化是电气设备发生故障的主要原因。电气设备设计与制造过程中,一般充分考虑了绝缘性能及裕度,故电气设备发生整体性绝缘故障的概率较小。然而,由于毛刺、气泡等绝缘局部性缺陷的原因,电气设备往往会发生局部放电(简称局放)。随着局放的发展,绝缘的劣化程度进一步加深,最终导致绝缘失效性故障。局部放电是电气设备绝缘发生劣化的重要原因,对电气设备局放信号进行监测和分析可有效提高电气设备绝缘监测水平,对提高电力系统的安全性、稳定性具有重要意义。
然而,由于局放信号较为微弱,且局放测试现场电磁环境复杂,局放信号常常湮没于幅值较大的噪声干扰中,影响监测效果。对局放信号进行干扰抑制是局放监测的一个关键环节之一。
目前局部放电噪声抑制方法主要由硬件法及软件法。硬件法主要包括差动平衡法、极性判定方法、时域开窗法等。硬件法存在着波形极性判定困难,触发门限设置困难及需较多先验知识等缺陷,影响了局放干扰抑制效果。软件法包括自适应滤波法、数学形态学滤波法、经验模态分解法、小波法等。然而,然而,自适应数字滤波器存在着收敛速度与稳态误差之间的矛盾,且对随机扰动过于灵敏,造成现场实际应用不便;数学形态学滤波法受形态学滤波器的影响较大,难以满足局放信号干扰抑制实时性的需求;经验模态分解法受着经验模态分解边界效应及模态混叠等因素的影响,且噪声抑制的阈值确定较为困难;小波方法使用较广,其对局放信号白噪声及周期性窄带噪声的干扰抑制具有良好的效果,但是由于局放信号具有多样性,局放信号小波去噪结果受小波基函数及及阈值确定准则的影响较大,对小波基函数确定不合理,将严重影响去噪效果。
发明内容
本发明要解决的技术问题是提供一种基于分帧自适应稀疏分解的局放信号干扰抑制方法。
为解决上述技术问题,本发明采用的技术方案是:
一种基于分帧自适应稀疏分解的局放信号干扰抑制方法,包括以下步骤:
步骤1:构建局放信号的先验样本集合Y:实测待干扰抑制的局放信号x 的采样频率为fs,采样时间为整工频周期,采样数据点长度为Nx,即
x=(x(1),x(2),…,x(Nx)) (1)
由以下具体步骤组成:
步骤1-1:初次筛选:以实验室条件下局放信号的实验样本及现场高信噪比的局放信号的实测样本作为初次筛选后的样本信号集合;
步骤1-2:二次筛选:选择初次筛选后的样本信号集合中采样频率为实测待干扰抑制局放信号x的采样频率fs的正整数倍的样本信号构建二次筛选后的样本信号集合;
步骤1-3:采样时间截断:对二次筛选后的样本信号集合中的样本信号进行截断处理,使其采样时间为一个工频整周期,处理后得到采样时间截断某样本信号y′n,其采样频率为C为正整数,采样数据点长度
步骤1-4:采样数据规则化处理:采样数据规则化处理后得到局放信号的先验样本集合Y={y1,y2,…yn,…,yM}n=1,2,3…M,其中样本元素yn={yn(1),yn(2),…,yn(Nx)},
步骤2:构造自适应局放噪声抑制过完备原子库:由以下具体步骤组成:
步骤2-1:采用EMD方法对局放信号的先验样本集合中的各样本元素进行经验模态分解,得到第一至第T阶IMF分量n为局放信号的先验样本集合中的各样本元素的序号,t为IMF分量的阶数;各阶IMF 分量满足IMF条件,所述IMF条件为:各阶IMF分量的极值点数目和过零点数目相差不超过1,由其极大值点及极小值点各自确定的包络线平均值为零;
步骤2-2:对各阶IMF分量进行单位化操作,得到各阶IMF单位化分量
其中,为单位化系数;
步骤2-3:对各阶单位化IMF分量进行分帧操作:将各阶单位化IMF 分量平均分成Z帧,各帧的采样长度为整数;各阶单位化IMF分量的第z 帧可表示为:
步骤2-3:构建各阶局放干扰抑制过完备原子库帧分量:由相同阶的单位化IMF分量的同一帧构成,第t阶局放干扰抑制过完备原子库的第z帧分量表示为:
步骤2-4:构建各阶局放干扰抑制过完备原子库:由各阶局放干扰抑制过完备原子库中的各帧分量相互级联得到,t阶局放干扰抑制过完备原子库表示为:
步骤2-5:构建局放干扰抑制过完备原子库:由各阶局放干扰抑制过完备原子库级联构成局放干扰抑制过完备原子库D:
D={D1,D2,D3,D4,D5,D6,D7} (7)
步骤3:对染噪局放信号进行噪声抑制:包括以下具体步骤:
步骤3-1:对染噪局放信号进行分帧操作,各帧染噪局放信号的长度相等且为整数;第z帧染噪局放信号xz为:
步骤3-2:对各帧染噪局放信号xz进行加Blackman窗操作:
xzB=xz·WB (9)
其中xzB为加窗后的第z帧染噪局放信号,WB为Blackman窗:
步骤3-3:采用匹配追踪算法对加窗后的各帧染噪局放信号在D中进行稀疏分解:
xzp=AzBD (11)
其中AzB为xzB在D中进行稀疏分解的稀疏表示系数;
步骤3-3:将各帧子信号稀疏分解结果顺序相连,得到干扰抑制结果xp
xp=(x1p,x2p,…,xzp,…,xZp)。 (12)
所述步骤2-1中采用EMD方法获取各阶IMF函数的方法相同,均包括以下具体步骤:
步骤2-1-1:搜索样本元素yn,n=1,2,…,Nx的各局部极大值点、极小值点,基于三次样条插值方法得到其上、下包络,并计算所述上、下包络的均值mn
步骤2-1-2:提取样本元素yn的细节成分hn=yn-mn
步骤2-1-3:判断样本元素yn的细节成分hn是否满足IMF条件,如果是,转向步骤2-1-5;否则,转向步骤2-1-4;
步骤2-1-4:用样本元素yn的细节成分hn代替样本元素yn,转向步骤2-1-1;
步骤2-1-5:得到n阶IMF分量imfn=hn
步骤2-1-6:计算剩余信号rn=yn-imfn
步骤2-1-7:判断剩余信号rn是否为单调函数;如果是,转向步骤2-1-9;否则,转向步骤2-1-8;
步骤2-1-8:以剩余信号rn代替样本元素yn,转向步骤2-1-6;
步骤2-1-9:对各阶IMF分量进行单位化操作,得到单位化IMF分量:
其中,为第n阶IMF分量对应的单位化系数。
采用上述技术方案所取得的技术效果在于:
本发明在无需设置过多先验参数的基础上,实现局放信号自适应快速干扰抑制。
附图说明
图1是本发明的流程图;
图2是本实施例中局放先验样本信号集合中本信号波形;
图3是本实施例中1阶单位化IMF分量第1帧波形;
图4是本实施例中实测含噪局放信号;
图5是本实施例中含噪局放信号第一帧信号波形;
图6是本实施例中含噪局放信号第一帧信号去噪结果;
图7是本实施例中含噪局放信号去噪结果。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例1:
染噪局放信号x表示为:
x=xp+xn (1)
其中,xp为原始无噪局放信号,xn为噪声干扰信号。
若有一过完备原子库D={dq,q=1,2,…,Q},其中元素dq为张成整个Hilbert空间H=RN的单位矢量,dq称为原子,且有Q>>N。 如果过完备原子库D中各原子dq仅与原始无噪局放信号相关而与噪声干扰信号不相关或者弱相关,那么可采用匹配追踪算法对染噪局放信号x在过完备原子库D中进行分解,实现原始无噪局放信号用过完备原子库D中原子进行稀疏表示。第K次匹配追踪迭代后,重建染噪局放信号x可表示为
其中,K为匹配追踪的迭代次数;RK+1x为第k次迭代后的残差信号;Rkx为第k-1次迭代后的残差信号,特别地,R1x为未进行匹配追踪时的残差信号,即为染噪局放信号;为第k次迭代所选原子,满足所选原子与残差信号的内积绝对值最大的条件,即
随着匹配追踪迭代的进行,残差值将呈指数规律衰减,因此,K次迭代后,残差值将小于某一阈值,此时可认为此时迭代终止。阈值是一个较小的数。最终,去噪局放信号xp表示为染噪局放信号x在过完备原子库D中的稀疏分解:
用矩阵形式对(4)式表示为:
xp=AD (5)
其中,A=[a1,a2,a3,…,aQ]为x染噪局放信号在过完备原子库D中的稀疏表示系数, D=[d1,d2,d3,…,dQ]为过完备原子库。
由上式可知,对染噪局放信号x在过完备原子库D中进行稀疏分解后,仅需少量原子dq可实现对原始无噪局放信号x’的稀疏表示,实现噪声干扰抑制目的。
过完备原子库D中各原子dq仅与原始无噪局放信号x’的特征相关而与噪声干扰信号特征不相关或弱相关。由于局放信号具有多样性,因此很难得到无噪局放信号x’的确切的数值表达式,故直接对过完备原子库D中的原子dq进行确定是较为困难的。为解决这一问题,本发明首先构建可局放先验样本信号集合,并以此构造了自适应局放干扰抑制过完备原子库,基于稀疏分解实现了局放信号干扰抑制,其具体方法为:
(一)构建局放信号的先验样本集合
实测待干扰抑制局放信号x的采样频率为fs,其采样时间为整工频周期,采样数据点长度为Nx,即
x=(x(1),x(2),…,x(Nx)) (6)
首先构建局放信号的先验样本集合Y,其构建原则如下:
(1)初次筛选:以实验室条件下局放信号的实验样本及现场高信噪比的局放信号的实测样本作为初次筛选后的样本信号集合。
(2)二次筛选:对经初次筛选后的待选样本信号的采样频率进行二次筛选,保证经二次筛选后,各样本信号采样频率为实测待干扰抑制局放信号x的采样频率为fs的C倍,C为正整数。
(3)采样时间截断:对经二次筛选后的样本信号进行截断处理,保证采样时间为一个工频整周期。
(4)采样数据点长度规则化:保证各样本信号采样时间为一个整工频周期的基础上,进行采样长度规则化,使得各样本信号采样数据点长度与实测待干扰抑制局放样本信号采样数据点长度相同。对于经初次筛选、二次筛选、采样时间截断某样本信号y′n,其采样频率为(C为正整数),则采样数据点长度仅采样数据点规则化,得到样本信号yn
最终可得到局放先验样本信号集合Y={y1,y2,…yn,…,yM},n=1,2,…,M,并有yn={yn(1),yn(2),…,yn(Nx)}。
(二)构造自适应局放噪声抑制过完备原子库
采用经验模态分解方法,即empirical Mode Decomposition,EMD方法,对局放先验样本信号集合中的各样本信号进行经验模态分解,得到各阶固有模态函数,简记为各阶IMF函数,满足如下条件:各阶IMF函数的极值点数目和过零点数目相差不超过1;由极大值点及极小值点各自确定的包络线平均值为零。
对于样本信号yn,采用EMD方法对其进行分解,得到各阶IMF函数的方法为:
(1)搜索yn局部极大值点、极小值点,并基于三次样条插值方法得到yn上、下包络。计算上下包络的均值mn
(2)提取细节成分hn=yn-mn。以hn代替yn,重复(1),直至hn满足IMF条件,得到该阶IMF分量imf=hn
(3)计算剩余信号,即rn=yn-imfn。以rn代替yn,重复上述过程,直至rn为单调函数。
最终采用EMD理论对样本信号yn进行分解,可得到各阶IMF,并可表示为:
由于局放信号为典型高频振荡信号,因此其主要时频分布集中于较低阶 IMF中,因此对于7阶以后IMF可省略不计。故采用EMD理论对样本信号yn进行分解,可分解得到共7阶IMF分量
对各阶IMF分量进行单位化操作,得到单位化IMF分量,对于t阶IMF 分量,对其单位化操作后,t阶单位化IMF分量可表示为:
其中,为对应的单位化系数。
对各单位化IMF分量进行分帧化操作,且各单位化IMF分量均分成Z帧,各帧采样长度为Nx/Z,并确保Z能被N乘除。对于其第z帧可表示为:
对局放先验样本信号集合中各样本信号重复进行上述过程,并可由相同阶单位分量的同一帧分量构成集合,得到对应阶局放干扰抑制过完备原子库帧分量。对于第t阶局放干扰抑制过完备原子库第z帧分量可表示为:
则t阶局放干扰抑制过完备原子库可由各帧分量相互级联得到,并有:
由各阶局放干扰抑制过完备原子库级联,可构成局放干扰抑制过完备原子库
D={D1,D2,D3,D4,D5,D6,D7} (12)
(三)稀疏分解局放噪声抑制
对染噪局放信号进行分帧操作,且染噪局放信号等分成Z帧,各帧采样长度为Nx/Z,并确保Z能被N乘除。第z帧染噪局放信号xz可表示
对xz进行加Blackman窗操作,得到加窗后的第z帧信号xzB,且xzB可表示为:
xzB=xz·WB (14)
其中WB为Blackman窗,并有
采用匹配追踪算法对xzB在D中进行稀疏分解,最终xzB的去噪结果xzp=AzBD可由D中原子进行表示,且可表示为:
xzp=AzBD
对染噪局放信号其余各帧子信号重复进行上述操作,并顺序将各帧子信号稀疏分解结果相连,最终可得干扰抑制结果xp,并有
xp=(x1p,x2p,…,xzp,…,xZp) (16)
本实施例中,局放先验样本信号集合中的一个样本信号波形如图2所示,其中采样数据点长度为100000。对局放先验样本信号集合中各样本信号进行了 EMD分解,并进行单位化操作,得到了各阶单位化IMF分量。对各阶单位化 IMF均分成20帧,其1阶单位化IMF分量第1帧波形如图3所示。图4为现场实测某含噪局放信号,该局放信号信噪比较低,某些幅值较小脉冲信号已淹没于噪声中难以区分。该样本信号采样点长度依然为100000。对含噪信号进行分帧操作,同样分为20帧,每帧采样点长度为50000,对于第一帧信号,其波形如图5所示。对其进行加窗操作后,并进行稀疏分解,得到去噪结果如图6 所示。对各帧信号进行上述操作,并将各帧去噪结果依次相连,得到含噪局放信号去噪结果,如图7所示。

Claims (2)

1.一种基于分帧自适应稀疏分解的局放信号干扰抑制方法,其特征在于:包括以下步骤:
步骤1:构建局放信号的先验样本集合Y:实测待干扰抑制的局放信号x的采样频率为fs,采样时间为整工频周期,采样数据点长度为Nx,即
x=(x(1),x(2),…,x(Nx)) (1)
由以下具体步骤组成:
步骤1-1:初次筛选:以实验室条件下局放信号的实验样本及现场高信噪比的局放信号的实测样本作为初次筛选后的样本信号集合;
步骤1-2:二次筛选:选择初次筛选后的样本信号集合中采样频率为实测待干扰抑制局放信号x的采样频率fs的正整数倍的样本信号构建二次筛选后的样本信号集合;
步骤1-3:采样时间截断:对二次筛选后的样本信号集合中的样本信号进行截断处理,使其采样时间为一个工频整周期,处理后得到采样时间截断某样本信号y′n,其采样频率为C为正整数,采样数据点长度
步骤1-4:采样数据规则化处理:采样数据规则化处理后得到局放信号的先验样本集合Y={y1,y2,…yn,…,yM}n=1,2,3…M,其中样本元素yn={yn(1),yn(2),…,yn(Nx)},
步骤2:构造自适应局放噪声抑制过完备原子库:由以下具体步骤组成:
步骤2-1:采用EMD方法对局放信号的先验样本集合中的各样本元素进行经验模态分解,得到第一至第T阶IMF分量n为局放信号的先验样本集合中的各样本元素的序号,t为IMF分量的阶数;各阶IMF分量满足IMF条件,所述IMF条件为:各阶IMF分量的极值点数目和过零点数目相差不超过1,由其极大值点及极小值点各自确定的包络线平均值为零;
步骤2-2:对各阶IMF分量进行单位化操作,得到各阶IMF单位化分量
其中,为单位化系数;
步骤2-3:对各阶单位化IMF分量进行分帧操作:将各阶单位化IMF分量平均分成Z帧,各帧的采样长度为整数;各阶单位化IMF分量的第z帧可表示为:
步骤2-3:构建各阶局放干扰抑制过完备原子库帧分量:由相同阶的单位化IMF分量的同一帧构成,第t阶局放干扰抑制过完备原子库的第z帧分量表示为:
步骤2-4:构建各阶局放干扰抑制过完备原子库:由各阶局放干扰抑制过完备原子库中的各帧分量相互级联得到,t阶局放干扰抑制过完备原子库表示为:
步骤2-5:构建局放干扰抑制过完备原子库:由各阶局放干扰抑制过完备原子库级联构成局放干扰抑制过完备原子库D:
D={D1,D2,D3,D4,D5,D6,D7} (7)
步骤3:对染噪局放信号进行噪声抑制:包括以下具体步骤:
步骤3-1:对染噪局放信号进行分帧操作,各帧染噪局放信号的长度相等且为整数;第z帧染噪局放信号xz为:
步骤3-2:对各帧染噪局放信号xz进行加Blackman窗操作:
xzB=xz·WB (9)
其中xzB为加窗后的第z帧染噪局放信号,WB为Blackman窗:
步骤3-3:采用匹配追踪算法对加窗后的各帧染噪局放信号在D中进行稀疏分解:
xzp=AzBD (11)
其中AzB为xzB在D中进行稀疏分解的稀疏表示系数;
步骤3-3:将各帧子信号稀疏分解结果顺序相连,得到干扰抑制结果xp
xp=(x1p,x2p,…,xzp,…,xZp) (12)。
2.根据权利要求1所述的基于分帧自适应稀疏分解的局放信号干扰抑制方法,其特征在于:
所述步骤2-1中采用EMD方法获取各阶IMF函数的方法相同,均包括以下具体步骤:
步骤2-1-1:搜索样本元素yn的各局部极大值点、极小值点,n=1,2,3…Nx,基于三次样条插值方法得到其上、下包络,并计算所述上、下包络的均值mn
步骤2-1-2:提取样本元素yn的细节成分hn=yn-mn
步骤2-1-3:判断样本元素yn的细节成分hn是否满足IMF条件,如果是,转向步骤2-1-5;否则,转向步骤2-1-4;
步骤2-1-4:用样本元素yn的细节成分hn代替样本元素yn,转向步骤2-1-1;
步骤2-1-5:得到n阶IMF分量imfn=hn
步骤2-1-6:计算剩余信号rn=yn-imfn
步骤2-1-7:判断剩余信号rn是否为单调函数;如果是,转向步骤2-1-9;否则,转向步骤2-1-8;
步骤2-1-8:以剩余信号rn代替样本元素yn,转向步骤2-1-6;
步骤2-1-9:对各阶IMF分量进行单位化操作,得到单位化IMF分量:
其中,为第n阶IMF分量对应的单位化系数。
CN201710026185.7A 2017-01-13 2017-01-13 一种基于分帧自适应稀疏分解的局放信号干扰抑制方法 Expired - Fee Related CN107015124B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710026185.7A CN107015124B (zh) 2017-01-13 2017-01-13 一种基于分帧自适应稀疏分解的局放信号干扰抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710026185.7A CN107015124B (zh) 2017-01-13 2017-01-13 一种基于分帧自适应稀疏分解的局放信号干扰抑制方法

Publications (2)

Publication Number Publication Date
CN107015124A CN107015124A (zh) 2017-08-04
CN107015124B true CN107015124B (zh) 2019-08-16

Family

ID=59440618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710026185.7A Expired - Fee Related CN107015124B (zh) 2017-01-13 2017-01-13 一种基于分帧自适应稀疏分解的局放信号干扰抑制方法

Country Status (1)

Country Link
CN (1) CN107015124B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110146929B (zh) * 2019-05-21 2020-11-10 东华理工大学 基于过完备字典与压缩感知重构算法的低频大地电磁数据去噪方法
CN110837028B (zh) * 2019-09-27 2021-08-31 中国船舶重工集团公司第七一九研究所 一种快速识别局部放电模式的方法
CN110740063B (zh) * 2019-10-25 2021-07-06 电子科技大学 基于信号分解和周期特性的网络流量特征指标预测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2400246A (en) * 2003-03-19 2004-10-06 Diagnostic Monitoring Systems Monitoring partial discharge events in gas insulated substations
CN103529364A (zh) * 2013-09-20 2014-01-22 华北电力大学(保定) 基于超声稀疏阵列传感器的油中多局部放电源定位方法
CN103869224A (zh) * 2014-03-03 2014-06-18 国家电网公司 一种基于光纤电流传感器的容性设备局部放电检测方法
CN103995950A (zh) * 2014-01-13 2014-08-20 哈尔滨工程大学 基于空域相关修正阈值的变小波系数局部放电信号消噪方法
CN106291293A (zh) * 2016-10-27 2017-01-04 西南石油大学 一种基于谱峭度与s变换的局放信号自适应去噪方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2400246A (en) * 2003-03-19 2004-10-06 Diagnostic Monitoring Systems Monitoring partial discharge events in gas insulated substations
CN103529364A (zh) * 2013-09-20 2014-01-22 华北电力大学(保定) 基于超声稀疏阵列传感器的油中多局部放电源定位方法
CN103995950A (zh) * 2014-01-13 2014-08-20 哈尔滨工程大学 基于空域相关修正阈值的变小波系数局部放电信号消噪方法
CN103869224A (zh) * 2014-03-03 2014-06-18 国家电网公司 一种基于光纤电流传感器的容性设备局部放电检测方法
CN106291293A (zh) * 2016-10-27 2017-01-04 西南石油大学 一种基于谱峭度与s变换的局放信号自适应去噪方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A sparse representation-based algorithm for the voltage fluctuation detection of a power syste;Dong Sun 等;《Digital Signal Processing》;20161231;259-268
基于共振稀疏分解的局部放电信号窄带干扰抑制新方法;王洪涛 等;《工矿自动化》;20150531;第41卷(第5期);68-73
基于原子库树状结构划分的诱导式信号稀疏分解;刘丹华 等;《系统工程与电子技术》;20090831;第31卷(第8期);1976-1980
局部放电稀疏分解模式识别方法;律方成 等;《中国电机工程学报》;20160520;第36卷(第10期);2836-2845

Also Published As

Publication number Publication date
CN107015124A (zh) 2017-08-04

Similar Documents

Publication Publication Date Title
CN107015124B (zh) 一种基于分帧自适应稀疏分解的局放信号干扰抑制方法
Alarcon-Aquino et al. Anomaly detection in communication networks using wavelets
Lovisolo et al. Efficient coherent adaptive representations of monitored electric signals in power systems using damped sinusoids
CN110224394B (zh) 适用于非平稳功率振荡信号特征提取的傅里叶分解算法
CN110850482A (zh) 一种基于变分模态分解原理的瞬变电磁信噪分离方法
Yusoff et al. Denoising technique for partial discharge signal: A comparison performance between artificial neural network, fast fourier transform and discrete wavelet transform
Blender et al. Extreme event return times in long-term memory processes near 1/f
You et al. Research of an improved wavelet threshold denoising method for transformer partial discharge signal
Lu et al. Partial discharge signal denoising with recursive continuous S-shaped algorithm in cables
Masry Random sampling of deterministic signals: Statistical analysis of Fourier transform estimates
Zygarlicki et al. Prony’s method with reduced sampling-numerical aspects
Tugnait Estimation of linear parametric models using inverse filter criteria and higher order statistics
CN110112757B (zh) 基于sure小波消噪和改进hht的低频振荡分析方法
Fryzlewicz Wavelet techniques for time series and Poisson data
CN115267439A (zh) 基于脉冲电流法的电缆接头局部放电监测方法
CN113341463A (zh) 一种叠前地震资料非平稳盲反褶积方法及相关组件
Kizilkaya et al. Statistical multirate high-resolution signal reconstruction using the EMD-IT based denoising approach
Yu et al. Performance improvement of wavelet noise reduction based on new threshold function
Zhang et al. UHF signal model parameters identification and reconstruction for partial discharge in substation
Peng et al. Analysis of denoising methods of underwater acoustic pulse signal based on wavelet and wavelet packet
Wu et al. Removing white noise in partial discharge signal based on wavelet entropy and improved threshold function
Bide et al. Extraction of partial discharge signal feature with chaos oscillator and adaptive lifting wavelet
Horky et al. Channel Impulse Response Peak Clustering Using Neural Networks
Sun et al. An Adaptive Wavelet Multilevel Soft Threshold Algorithm for Denoising Partial Discharge Signals
Zhang et al. A combined preprocessing method for UHF PD detection based on kurtosis features

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190816

Termination date: 20200113

CF01 Termination of patent right due to non-payment of annual fee