CN107011505A - 一种聚乳酸多孔微球的制备方法 - Google Patents

一种聚乳酸多孔微球的制备方法 Download PDF

Info

Publication number
CN107011505A
CN107011505A CN201710125660.6A CN201710125660A CN107011505A CN 107011505 A CN107011505 A CN 107011505A CN 201710125660 A CN201710125660 A CN 201710125660A CN 107011505 A CN107011505 A CN 107011505A
Authority
CN
China
Prior art keywords
polylactic acid
lactide
porous
preparation
lactides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710125660.6A
Other languages
English (en)
Other versions
CN107011505B (zh
Inventor
邓建平
杨博文
雍学勇
黄骅隽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201710125660.6A priority Critical patent/CN107011505B/zh
Publication of CN107011505A publication Critical patent/CN107011505A/zh
Application granted granted Critical
Publication of CN107011505B publication Critical patent/CN107011505B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/286Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Organic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Preparation (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

一种聚乳酸多孔微球的制备方法属于高分子材料领域,本发明提供一种基于沉淀聚合制备可控孔径聚乳酸微球材料的制备方法,以L‑丙交酯为原料,以1,8‑二氮杂二环十一碳‑7‑烯(DBU)作为催化剂,乙二醇作为引发剂,乙酸乙酯为溶剂通过沉淀聚合制备聚乳酸多孔微球,并通过加入D‑丙交酯来达到调控微球尺寸及孔隙的目的,本发明所得微球制备过程操作简便,后处理简单,微球粒径分布均匀,形貌多孔,比表面积大,微球尺寸及形貌可控,材料结晶度可调,是一种理想的多孔生物材料,可用于生物医药载体、组织工程材料等领域。

Description

一种聚乳酸多孔微球的制备方法
技术领域
本发明属于高分子材料领域,涉及一种新型聚乳酸多孔微球的制备方法。
背景技术
随着科学技术的发展,人们对于生物材料的需求日益增多。其中,聚乳酸已经成为最重要的合成高分子生物材料之一。由于其生物亲和性、生物可降解性、无毒性及优异的机械性能,聚乳酸材料被广泛应用于包装材料、药物载体以及组织工程材料。这些材料已经被批准用于人体当中,极大地促进了聚乳酸材料的发展。
对于现有的聚乳酸微球载药材料或是组织工程材料,制备方法大多是先通过丙交酯聚合成一定分子量的聚乳酸,再通过乳化、冻干、洗涤等步骤获得一定形貌的聚乳酸材料。这些聚乳酸材料存在制备工艺流程长、产品质量不均一、后处理复杂等缺点。对于组织工程材料,还有孔结构控制困难的问题。这些缺点严重制约了聚乳酸材料的发展及应用。
本发明基于以上背景及问题,利用丙交酯在1,8-二氮杂二环十一碳-7-烯(DBU)的催化下合成聚乳酸,并通过沉淀聚合的方式直接制备聚乳酸多孔材料,实现了从原料直接制备材料,简化了工艺流程。这种聚乳酸多孔微球的制备方法具有简便易行,后处理简单,所获微球的尺寸、表面多孔结构、材料结晶度可控等特点。其具有多孔结构,可广泛应用于生物医药材料领域。
发明内容
针对聚乳酸多孔材料的应用前景,本发明的目的是提供一种工艺流程简单、粒径及形貌可控的聚乳酸多孔微球的制备方法。
本发明的技术方案:通过沉淀聚合制备聚乳酸多孔微球,以DBU为催化剂,乙二醇为引发剂,丙交酯在乙酸乙酯为溶剂下发生聚合,同时利用聚乳酸在乙酸乙酯中的相分离过程,形成微米级微球并形成狭缝空隙,其中,通过调整L-丙交酯与D-丙交酯的比例,达到调整微球粒径及形貌的目的;
一种聚乳酸多孔微球的制备方法,其特征在于,包括如下步骤:
(1)将一定量的丙交酯单体加入到试管中,抽排试管中的空气并通入氮气,在氮气保护下加入乙酸乙酯作为溶剂,超声溶解丙交酯,待完全溶解后加入含引发剂及催化剂的乙酸乙酯溶液,丙交酯与引发剂与催化剂的摩尔比为70:1:1;丙交酯的质量分数为20%~30%;
(2)将上述含混合溶液的试管置于0~30度冰浴锅中,反应1~4小时后取出,所得产物经过过滤分离后用乙醇清洗,并于45度真空干燥箱中干燥至恒重,最终得到聚乳酸多孔微球。
进一步,所述的丙交酯是L-丙交酯、D-丙交酯或二者按一定比例组成的混合物,混合物中L-丙交酯或D-丙交酯质量分数不低于85%。
进一步,引发剂采用乙二醇、聚乙二醇,催化剂采用1,8-二氮杂双环十一碳-7-烯、N-甲基-1,5,7-三氮杂双环[4.4.0]癸-5-烯、4-N,N-二甲氨基吡啶。
所制备的聚乳酸多孔微球的粒径、表面多孔结构、表面积及材料结晶度是通过调节两种丙交酯质量比来控制;随着D-丙交酯含量的增加,材料结晶度随之减小,微球粒径逐渐减小,比表面积增大。
本发明的有益效果:
本发明所得微球制备过程操作简便,后处理简单,微球粒径分布均匀,形貌多孔,且粒径及形貌在一定范围内可控,是一种理想的聚乳酸多孔材料,可用于生物医药载体、组织工程材料等领域。
附图说明
图1:实例1中聚乳酸多孔微球的扫描电镜图像
图2:丙交酯比例对微球尺寸及表面空隙结构的影响。
图3:实施例1~6的差示扫描热分析曲线。
图4:实施例1~6的X射线衍射图像。
具体实施方式
图1为实例1中聚乳酸多孔微球的扫描电镜照片,如图所示,微球具有良好的球形,且粒径分布较为均一,表面富有狭缝状的孔隙结构。
图2为实例1、3、6中制备微球整体及表面放大的扫描电镜照片,如图所示,不同丙交酯比例的微球均具有规整的球形以及表面狭缝孔隙结构。并且通过调整丙交酯比例(L-丙交酯与D-丙交酯的质量比从40:0到35:5),微球的粒径从115微米到20微米变化,微球表面的孔隙结构随着D-丙交酯含量的增加而逐渐减小。
图3为实例1~6中微球A的差示扫描热分析曲线,所得微球的结晶度在19%~55%之间,随着原料D-丙交酯含量的增加,由于破坏了聚左旋乳酸的结晶结构,微球的熔点及结晶度都随之减小。
图4为实例1~6中微球的X射线衍射图像,所得到聚乳酸多孔微球的结晶结构均为典型的α晶型,衍射角分别在12.3、14.9、16.8、19.1、22.3度,与之相对应的衍射晶面分别是(004)和(103)、(010)、(200)和(110)、(014)和(203),以及(015)。
下面给出本发明的具体实施例:
实例1:取0.4g L-丙交酯于试管中,反复抽排空气通入氮气三次,保证试管中为氮气气氛,加入0.6mL预先除水的乙酸乙酯溶剂,超声溶解,取0.0105g DBU催化剂及0.006g乙二醇溶解于0.4mL乙酸乙酯中,并在氮气保护下注入上述试管中,进一步超声至体系均一,将试管置于0度冰浴锅中反应2小时。所得产物经过滤分离后用乙醇清洗三次,并于℃45℃真空干燥箱中干燥至恒重,最终得到聚乳酸多孔微球;
所得微球其粒径在115微米,结晶度为54.4%,粒径均一,表面多孔,扫描电镜图像如图1所示。
实例2:取0.39g L-丙交酯和0.01g D-丙交酯于试管中,反复抽排空气通入氮气三次,保证试管中为氮气气氛,加入0.6mL预先除水的乙酸乙酯溶剂,超声溶解,取0.0105gDBU催化剂及0.006g乙二醇溶解于0.4mL乙酸乙酯中,并在氮气保护下注入上述试管中,进一步超声至体系均一,将试管置于0度冰浴锅中反应2小时。所得产物经过滤分离后用乙醇清洗三次,并于45℃真空干燥箱中干燥至恒重,最终得到聚乳酸多孔微球;
所得微球其粒径在89微米,结晶度为49.1%,粒径均一,表面多孔。
实例3:取0.38g L-丙交酯和0.02g D-丙交酯于试管中,反复抽排空气通入氮气三次,保证试管中为氮气气氛,加入0.6mL预先除水的乙酸乙酯溶剂,超声溶解,取0.0105gDBU催化剂及0.006g乙二醇溶解于0.4mL乙酸乙酯中,并在氮气保护下注入上述试管中,进一步超声至体系均一,将试管置于0度冰浴锅中反应2小时。所得产物经过滤分离后用乙醇清洗三次,并于45℃真空干燥箱中干燥至恒重,最终得到聚乳酸多孔微球;
所得微球其粒径在70微米,结晶度为40.4%,粒径均一,表面多孔,扫描电镜图像如图2-b所示。
实例4:取0.37g L-丙交酯和0.03g D-丙交酯于试管中,反复抽排空气通入氮气三次,保证试管中为氮气气氛,加入0.6mL预先除水的乙酸乙酯溶剂,超声溶解,取0.0105gDBU催化剂及0.006g乙二醇溶解于0.4mL乙酸乙酯中,并在氮气保护下注入上述试管中,进一步超声至体系均一,将试管置于0度冰浴锅中反应2小时。所得产物经过滤分离后用乙醇清洗三次,并于45℃真空干燥箱中干燥至恒重,最终得到聚乳酸多孔微球;
所得微球其粒径在43微米,结晶度为35.5%,粒径均一,表面多孔。
实例5:取0.36g L-丙交酯和0.04g D-丙交酯于试管中,反复抽排空气通入氮气三次,保证试管中为氮气气氛,加入0.6mL预先除水的乙酸乙酯溶剂,超声溶解,取0.0105gDBU催化剂及0.006g乙二醇溶解于0.4mL乙酸乙酯中,并在氮气保护下注入上述试管中,进一步超声至体系均一,将试管置于0度冰浴锅中反应2小时。所得产物经过滤分离后用乙醇清洗三次,并于45℃真空干燥箱中干燥至恒重,最终得到聚乳酸多孔微球;
所得微球其粒径在32微米,结晶度为23.4%,粒径均一,表面多孔。
实例6:取0.35g L-丙交酯和0.05g D-丙交酯于试管中,反复抽排空气通入氮气三次,保证试管中为氮气气氛,加入0.6mL预先除水的乙酸乙酯溶剂,超声溶解,取0.0105gDBU催化剂及0.006g乙二醇溶解于0.4mL乙酸乙酯中,并在氮气保护下注入上述试管中,进一步超声至体系均一,将试管置于0度冰浴锅中反应2小时。所得产物经过滤分离后用乙醇清洗三次,并于45℃真空干燥箱中干燥至恒重,最终得到聚乳酸多孔微球;
所得微球其粒径在20微米,结晶度为19.1%,粒径均一,表面多孔,扫描电镜图像如图2-c所示。

Claims (4)

1.一种聚乳酸多孔微球的制备方法,其特征在于,包括如下步骤:
(1)将一定量的丙交酯单体加入到试管中,抽排试管中的空气并通入氮气,在氮气保护下加入乙酸乙酯作为溶剂,超声溶解丙交酯,待完全溶解后加入含引发剂及催化剂的乙酸乙酯溶液,丙交酯与引发剂与催化剂的摩尔比为70:1:1;丙交酯的质量分数为20%~30%;
(2)将上述含混合溶液的试管置于0~30度冰浴锅中,反应1~4小时后取出,所得产物经过过滤分离后用乙醇清洗,并于45度真空干燥箱中干燥至恒重,最终得到聚乳酸多孔微球。
2.根据权利要求1所述制备方法,其特征是:所述的丙交酯是L-丙交酯、D-丙交酯或二者按一定比例组成的混合物,混合物中L-丙交酯或D-丙交酯质量分数不低于85%。
3.根据权利要求1所述制备方法,其特征是:引发剂采用乙二醇、聚乙二醇,催化剂采用1,8-二氮杂双环十一碳-7-烯、N-甲基-1,5,7-三氮杂双环[4.4.0]癸-5-烯、4-N,N-二甲氨基吡啶。
4.应用如权利要求1-3任意一项所述方法,其特征是:所制备的聚乳酸多孔微球的粒径、表面多孔结构、表面积及材料结晶度是通过调节两种丙交酯质量比来控制;随着D-丙交酯含量的增加,材料结晶度随之减小,微球粒径逐渐减小,比表面积增大。
CN201710125660.6A 2017-03-05 2017-03-05 一种聚乳酸多孔微球的制备方法 Active CN107011505B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710125660.6A CN107011505B (zh) 2017-03-05 2017-03-05 一种聚乳酸多孔微球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710125660.6A CN107011505B (zh) 2017-03-05 2017-03-05 一种聚乳酸多孔微球的制备方法

Publications (2)

Publication Number Publication Date
CN107011505A true CN107011505A (zh) 2017-08-04
CN107011505B CN107011505B (zh) 2019-05-14

Family

ID=59439798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710125660.6A Active CN107011505B (zh) 2017-03-05 2017-03-05 一种聚乳酸多孔微球的制备方法

Country Status (1)

Country Link
CN (1) CN107011505B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110670381A (zh) * 2019-09-27 2020-01-10 关会堂 一种化纤纺织品无水生物质染料染色的方法
CN113651950A (zh) * 2021-08-23 2021-11-16 上海锦爱投资有限公司 一种可生物降解高分子微球及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1586704A (zh) * 2004-07-15 2005-03-02 浙江大学 一种制备聚乳酸多孔微球的方法
CN1712426A (zh) * 2004-06-24 2005-12-28 同济大学 聚乳酸及其共聚物plga的制备方法
CN1793197A (zh) * 2006-01-05 2006-06-28 同济大学 单体合成可生物降解聚酯类磁性复合微球的制备方法
WO2012131104A2 (en) * 2011-03-31 2012-10-04 Ingell Technologies Holding B.V. Biodegradable compositions suitable for controlled release
US20130197111A1 (en) * 2005-05-19 2013-08-01 Ethicon, Inc Antimicrobial polymer compositions and the use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1712426A (zh) * 2004-06-24 2005-12-28 同济大学 聚乳酸及其共聚物plga的制备方法
CN1586704A (zh) * 2004-07-15 2005-03-02 浙江大学 一种制备聚乳酸多孔微球的方法
US20130197111A1 (en) * 2005-05-19 2013-08-01 Ethicon, Inc Antimicrobial polymer compositions and the use thereof
CN1793197A (zh) * 2006-01-05 2006-06-28 同济大学 单体合成可生物降解聚酯类磁性复合微球的制备方法
WO2012131104A2 (en) * 2011-03-31 2012-10-04 Ingell Technologies Holding B.V. Biodegradable compositions suitable for controlled release

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
石旭东,等: "不同溶剂制备的聚乳酸多孔微球的形成原理", 《高分子学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110670381A (zh) * 2019-09-27 2020-01-10 关会堂 一种化纤纺织品无水生物质染料染色的方法
CN113651950A (zh) * 2021-08-23 2021-11-16 上海锦爱投资有限公司 一种可生物降解高分子微球及其制备方法
WO2023025084A1 (zh) * 2021-08-23 2023-03-02 陈强 一种可生物降解高分子微球及其制备方法
CN113651950B (zh) * 2021-08-23 2023-12-22 陈强 一种可生物降解高分子微球及其制备方法

Also Published As

Publication number Publication date
CN107011505B (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
Ju et al. High-performance porous PLLA-based scaffolds for bone tissue engineering: Preparation, characterization, and in vitro and in vivo evaluation
Ghorbani et al. Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications
Lins et al. Development of bioresorbable hydrophilic–hydrophobic electrospun scaffolds for neural tissue engineering
CN1076028C (zh) 含可生物降解的聚羟基链烷酸的膜和吸附制品
EP1141075B1 (en) Biodegradable pha copolymers
US20090325859A1 (en) Citric acid polymers
CN106700098B (zh) 生物可降解超分子聚乳酸微球的制备方法
AU2177000A (en) Films comprising biodegradable pha copolymers
AU1680995A (en) Biodegradable copolymers and plastic articles comprising biodegradable copolymers of 3-hydroxyhexanoate
JP2007014773A (ja) ゲル放射成形法を用いた組織工学用多孔性高分子支持体の製造方法
AU3119800A (en) Absorbent articles comprising biodegradable pha copolymers
Zhijiang et al. Zein/Poly (3-hydroxybutyrate-co-4-hydroxybutyrate) electrospun blend fiber scaffolds: Preparation, characterization and cytocompatibility
CN107011505A (zh) 一种聚乳酸多孔微球的制备方法
EP3660078A1 (en) Method for preparing biodegradable polymer microparticles, and biodegradable polymer microparticles prepared thereby
Zhao et al. Development of silk fibroin modified poly (l-lactide)–poly (ethylene glycol)–poly (l-lactide) nanoparticles in supercritical CO2
CN111068110A (zh) 一种3d打印可降解复合支架、其制备方法及载物复合支架
Khashi et al. Electrospun poly-lactic acid/chitosan nanofibers loaded with paclitaxel for coating of a prototype polymeric stent
Moeinzadeh et al. Gelation characteristics, physico-mechanical properties and degradation kinetics of micellar hydrogels
CN114634634A (zh) 一种生物功能复合多孔聚酯微球及其制备方法
AU3119700A (en) Plastic articles comprising biodegradable pha copolymers
Bronzeri et al. Amphiphilic and segmented polyurethanes based on poly (ε-caprolactone) diol and poly (2-ethyl-2-oxazoline) diol: Synthesis, properties, and a preliminary performance study of the 3D printing
US20150376363A1 (en) Porous material, producing method thereof, and serial producing apparatus thereof
Liu et al. Effects of the molecular weight of PLGA on degradation and drug release in vitro from an mPEG-PLGA nanocarrier
Wang et al. Mineralization of electrospun PEG/PDLLA scaffolds
Sukhanova et al. Poly-3-hydroxybutyrate/chitosan composite films and nonwoven mats

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant