CN107005095A - 用于无线充电的低发射线圈拓扑 - Google Patents

用于无线充电的低发射线圈拓扑 Download PDF

Info

Publication number
CN107005095A
CN107005095A CN201580063884.8A CN201580063884A CN107005095A CN 107005095 A CN107005095 A CN 107005095A CN 201580063884 A CN201580063884 A CN 201580063884A CN 107005095 A CN107005095 A CN 107005095A
Authority
CN
China
Prior art keywords
capacitor
coil
capacitance
wireless charging
spiral winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580063884.8A
Other languages
English (en)
Other versions
CN107005095B (zh
Inventor
杨松楠
E·B·库珀
E·叶尔霍夫里
J·科拉蒂科勒纳拉扬
S·任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN107005095A publication Critical patent/CN107005095A/zh
Application granted granted Critical
Publication of CN107005095B publication Critical patent/CN107005095B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/025

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本公开总体上涉及一种用于减少或基本上消除无线充电站之上的电场的方法和装置。在一个实施例中,通过一长度的导电引线形成无线充电站,导电引线绕着一个或多个轴线形成具有多个匝的多匝螺旋线圈。选择多个分立式电容器并且将其定位在相应多个匝中的每一匝处。多个分立式电容器可以是串联的。多个电容器中的每一个电容器的电容值可以被选择为显著减少充电站的表面之上的电场。

Description

用于无线充电的低发射线圈拓扑
技术领域
本公开涉及一种用于无线充电站的方法、装置和系统。具体地说,所公开的实施例提供针对较低电场发射而改进的充电站。
背景技术
无线充电或感应式充电使用磁场在两个设备之间传送能量。可以在充电站处实现无线充电。能量通过感应式耦合从一个设备发送到另一设备。感应式耦合用于对电池进行充电或运行接收设备。
无线电感充电器使用电感线圈从充电基站内生成磁场。便携式设备中的第二电感线圈从磁场接收功率,并且将功率转换回到电流,以对便携式设备的电池进行充电。靠近的两个电感线圈形成电变压器。当感应式充电系统使用谐振感应式耦合时,可以在发射机线圈与接收机线圈之间实现较大距离。谐振感应式耦合是电能量在两个线圈之间的近场无线传输,这两个线圈被调谐为在相同频率下谐振。
虽然无线充电线圈生成磁场以用于功率传送,但是它还生成电场作为副产物,这样导致对正充电的设备(例如,触摸板、触摸屏等)的传感器的电磁辐射、电震和电磁干扰(EMI)增加。需要改进的无线充电线圈以减少所生成的电场、电磁干扰以及无线电干扰,同时提高安全性。
附图说明
将参照以下示例性和非限定性说明讨论本公开的这些和其它实施例,其中,对相同要素相似地进行编号,并且其中:
图1(A)示出传统的多匝无线充电线圈;
图1(B)示出图1(A)的无线充电线圈的等效电路图;以及
图1(C)示出图1(B)的电路中在寄生分路电容器的情况下的电流流动;
图2示出在输入处具有一个调谐电容器的所调谐的传统多匝线圈;
图3是图2的传统线圈的等效电路模型;
图4是图3的电路的简化表示;
图5(A)示出图4的电路的所仿真的输入阻抗;
图5(B)示出图4的线圈的不同点处的电压分布;
图6示出根据本公开一个实施例的示例性线圈设计;
图7是图6所示的本公开一个实施例的等效电路模型的简化表示;
图8(A)示出图7的等效电路中的节点V1~V5当中的所仿真的电压分布;
图8(B)示出传统线圈配置(图2)与具有内联电容(图6)的本公开的线圈布局中的电流之间的线圈电流比较;
图9(A)示出在线圈输入处具有一个电容器的传统线圈;
图9(B)示出根据本公开一个实施例的具有添加到每个匝的电容器的E场设计;
图10(A)示出对图9(A)和图9(B)的线圈的E场所测得的近场的比较;
图10(B)示出对图9(A)和图9(B)的线圈的H场所测得的近场的比较;
图11(A)示出当损耗介电体接近时传统线圈与所公开的线圈设计之间的所测得的电阻偏移比较;
图11(B)示出当损耗介电体接近时传统线圈与所公开的线圈设计之间的所测得的电抗偏移比较;
图12示出发射机电路的所测得的电磁干扰(EMI)曲线,其中,传统线圈(a)水平、(b)垂直,其中,所提出的线圈解决方案(c)水平、(d)垂直;
图13(A)示出被配置为提供基本上均匀的H场的图9(A)的传统线圈构造;
图13(B)是示出图13(a)中的线圈的截面的电场的三个分量的图线;
图13(C)是图13(B)的图线的三维(3D)绘图;
图13(D)是图13(A)侧视图,其示出图13(A)的线圈的表面上的(不同高度所表示的)电流变化;
图14(A)示出具有根据本公开一个实施例的调谐电容器(例如图9(B))以及内联电容器的电容值的示例性线圈设计;
图14(B)示出流过图14(A)的线圈的电流的侧视图;
图14(C)是通过线圈的电(Ez)场的三维说明;
图14(D)示出用于示例性实现方式的E场切割,其中,z=6mm,x=0;以及
图15示出显示根据本公开一个实施例的优化算法的示例性框图。
具体实施方式
传统的基于A4WP的无线充电系统操作在大约6.78MHz处。这些充电系统的功率发送单元(PTU)线圈通常需要多匝螺旋,以提供功率接收单元(PRU)所需的磁场均匀性以及耦合。PTU线圈设计方面的显著挑战,尤其是对于大有源区域而言,在于:因线圈处所累积的自电容较高而导致线圈将呈现高得多的损耗。
图1(A)示出传统多匝无线充电线圈。图1(B)示出用于图1(A)的充电线圈的简化等效电路图。当电流穿越通过线圈时,图1(A)的线圈电路累积自电容C。在图1(B)中,自电容表示线圈的大量匝之间的电容的组合;L表示多匝线圈的总电感;R表示线圈的辐射和欧姆电阻的组合。在引入自电容C之后,可以分别通过公式(1)和(2)描述图1(B)所示的该并联LC电路的等效电阻和电抗:
当线圈LC组合具有远低于操作频率ω的谐振频率时,往并联LC电路看进去的等效电阻和电感可以简化如下:
如公式(3)和(4)所示,小的分路电容充当用于线圈电感和电阻二者的乘法器。添加小的并联电容器允许用于电流在与电感器L中的电流相反的方向上跟随的次级路径。因此,当组合的电路由(例如,在多数A4WP无线充电系统中的)恒定电流源驱动时,考虑到等效电阻和电感的增加,流过L和R的电流(Ι+ΔΙ)比输入电流(I)更高。在图1(c)中表示这种关系。
除了可以用于功率传送的所意图的磁场(H场)之外,所建立的自电容还在PTU线圈附近的区域中引入强电场(E场)(近场)。PTU线圈上的强(且不想要的)E场耦合到PRU设备,并且对传感器(例如,触摸传感器、触摸屏等)产生干扰。当用户触摸PRU设备时,强E场也可能产生电震。PTU线圈上的不想要的E场还生成显著辐射,其阻碍PTU系统的电磁兼容性(EMC)管制批准。增强的E场使得将PTU线圈调谐得对于外来物体的接近是高度易受影响的,由此使得PTU系统不稳定。典型外来物体包括介电体物质(例如,台面表面或人体)。传统无线充电线圈设计受限于自电容建立。自电容建立限制了位置灵活性以及功率传送距离。
所公开的实施例提供用于消除传统PTU线圈共有的自电容现象的方法和系统。在示例性实施例中,一个或多个电容性调谐组件有策略地放置得沿着多匝充电线圈设计,以减少线圈的大量匝之间的自电容的影响。
在一个实施例中,电容性调谐组件单独地使每个线圈匝谐振,以避免AC电压在线圈的相邻匝之间累积。电容性调谐组件在保持近场H场无损的同时使E场生成最小化。所公开的实施例还减少EMI和RF干扰(RFI)发射,使对用户的电震的风险最小化,并且减缓对PRU触摸传感器的干扰。
在另一实施例中,本公开提供一种用于低发射、鲁棒的线圈设计的过程,以优化线圈。优化使得贯穿线圈的电流分布平坦性成为可能,由此使E场生成最小化。
在又一实施例中,在螺旋线圈的长度的中心处添加电容器,与将一个或多个电容器添加到线圈的每匝相比,提供了减少E场的最大效果。因此,添加单个电容器仅破坏螺旋线圈处的一个位置。
图2示出在输入处具有一个调谐电容器(Cs)的传统多匝PTU线圈。在图2中,线圈的各个点处的电压表示为V1、V2、V3、V4和V5。寄生电容形成在每一对相邻线圈引线之间,并且表示为虚线电容器C12、C23、C34和C45。这些电容器是寄生电容,并且可以固有地存在于传统线圈设计中。在一个实施例中,本公开添加串联电容(以及电容性元件),以减缓寄生电容的影响。可以根据线圈添加电容性元件。
在图3示出用于图2的线圈的等效电路模型,其中,每个单独匝由电感器Ln和电阻器Rn来表示,每个匝的等效电路于是串联,以表示整个线圈。各相继匝之间的电容(Cmn)被添加到模型,在各匝之间的分路中。各线圈匝之间的互电感由图3的等效电路中的Mmn来表示。
可以通过省略不相邻匝之间的小得多的互电容来简化图3的等效电路模型。也可以假设所有互电感(Mmn)完全由每个匝的电感Ln来表示。图3中的完整电路模型可以被简化为图4中所描述的近似模型电路。
各相邻匝之间的寄生电容(Cn(n+1))放大每匝的电感和电阻。因此,所组合的电阻和电感远比每匝的简单电感和电阻之和更高。例如,假设在6.78MHz的A4WP频率处,L1=L2=L3=L4=L5=3μH,C12=C23=C34=C45=10pF,R1=R2=R3=R4=R5=0.1Ohm。
图5(A)示出图4的电路的所仿真的输入阻抗。在此,因寄生电容而导致等效电感510和电阻512值都远比每匝的值之和更高。
当图4的电路由恒定电流AC源驱动时(例如,在I0=1A时),每匝的较高等效电阻和电感在线圈的相邻匝上的相同位置之间生成高电压差(在图3中由V1-V5指示)。每个匝的所仿真的电压示出在该传统螺旋线圈的匝上逐渐建立电压幅值,如图5(b)所示,其中,各相邻匝之间的电压差示出大约160V差。施加到各匝之间的寄生电容(例如,C12-C45)的高交变电压产生显著近场电场,其使得线圈易受待充电设备和/或外来物体导致的失谐的影响。它还对远场辐射有显著贡献,在PRU设备上产生电震,或者对触摸传感器和其它类似设备产生干扰。在图5(A)和图5(B)中,线条520(V1)、522(V2)、524(V3)、526(V4)和528(V5)中的每一个示出线圈上的对应点的频率与电压之间的关系。
在本公开一个实施例中,通过沿着多匝线圈在有策略地指定的位置处放置电容性调谐组件,基本上消除了高损耗和大电场。电容性调谐组件(可互换地称为元件)减少了线圈的很多匝之间的自电容的影响。在本公开一个实施例中,每个线圈匝单独地谐振,由此防止各相邻线圈匝之间所建立的电压。这样进而在保持近场H场无损的同时使电场生成最小化。所公开的实施例还减少了RFI发射。
图6示意性示出根据本公开一个实施例的示例性线圈设计。具体地,图6示出具有沿着每匝添加的电容性调谐元件的新颖线圈设计。在一个实施例中,调谐元件可以沿着线圈的截面线分布,如所示那样。调谐元件也可以分布遍及线圈的不同位置(未示出)。在图6中,电容性元件602、604、606、608和610位于每一对相邻线圈匝之间。通过谨慎选择所添加的内联(inline)电容器(Cs1-Cs5)的值,各相邻匝之间的电压差(例如V1-V2)可以被最小化。因此,即使各相邻匝之间的寄生电容(C12、C23……C45)可能仍然存在,也没有电流将流过寄生电容,因为并没有电压施加在寄生电容上。因此,线圈呈现最小电感和电阻。
图7是用于图6的电路等效电路模型的简化表示。在图7中,所添加的内联电容器(602、604、606、608和610)被建模为与表示每匝的电感(L1-L5)和电阻(R1-R5)串联添加的调谐电容(Cs1-Cs5)。对于普通线圈尺寸,可以通过EM仿真来优化串联调谐电容(Csn),如以下将更详细地讨论的那样。为了简化,以下假设每匝上的电感、电阻和寄生电容相等(L1=L2=L3=L4=L5=3μH;C12=C23=C34=C45=10pF;R1=R2=R3=R4=R5=0.1Ohm),使每匝上的线圈谐振所需的串联电容是相同的(Cs1=Cs2=Cs3=Cs4=Cs5=~180pF)。在图7中,Cs1-Cs5表示内联或串联电容性元件,并且在每个电容器上具有基本上相等的电压。
在一个实施例中,所添加的串联电容抵销(或解谐)每匝上的等效电感,使得沿着每个匝在基本相同的位置(例如,图6所示的V1、V2……V5点)之间,电抗为零。这使得在线圈由恒定电流AC源驱动时沿着每匝的基本相同的位置之间的电压最小。该条件将也迫使通过寄生电容流回的电流(ΔΙ6-ΔΙ9)几乎为零,并且每个线圈匝将具有基本上相同的如源710所驱动的恒定电流(I0)。各线圈匝之间的零电压条件也保证了近场电场得以最小化。等效的整个线圈电感和电阻是每匝的线圈电感和电阻(在该示例中为15μH和0.5Ohm)之和,其显著小于传统线圈配置(图5A所示的结果)。
图8(A)示出图7的等效电路中的节点V1~V5当中的所仿真的电压分布。可见,在6.78MHz的设计频率下正确选择的串联调谐电容(见图7)的情况下,线圈的每匝上的基本相同的点上的AC电压几乎为零。零电压在近场中在线圈上产生最小E场。
图8(B)示出传统线圈配置(图2)与具有内联电容的所提议的解决方案(图6)之间的线圈电流比较。在图8(B)中,线条822是在大约1Amp的电路偏置;线条824关于图6的新颖电路示出电流作为频率的函数的改变;线条826示出关于传统线圈的相同关系,并且线条828示出线条824与826之间的差。线条828表示在传统线圈设计上流动的附加电流,其进而产生更高的损耗和更低的功率传送效率。
在图8(B)中可见,所公开的实施例能够通过选择正确的调谐电容器(Cs)来保持流过线圈的每匝电流基本相同(I6~I10=I0)。这相对于传统线圈设计有显著改进,传统线圈设计受因寄生电容的累积而产生的每个线圈匝处的较高电流(I1~I5-ΔΙ1~ΔΙ5=I0)所困扰。
在以上示例中,为了简化,每匝等效电感、电阻和互电容/电感被假设是相等的。实践中,并且在任意形状的线圈的情况下,可以通过EM仿真来计算这些值。
准备比较性原型,以示出所公开的实施例优于传统设计的效能。图9(A)示出传统线圈,并且图9(B)示出根据本公开一个实施例的具有添加到每个线圈匝的电容器的低E场设计。图9(A)和图9(B)的线圈具有相同尺寸,并且被制造为在线圈的输入处具有一个调谐电容器的线圈(图9(A)),而另一线圈包括添加到线圈的每匝的调谐电容器(图9(B))。在远离线圈表面12mm处关于均匀H场分布而优化了图9(A)和图9(B)的线圈设计。优化导致线圈的每匝的半径的不均匀分布。基于EM仿真和优化的低E场线圈合成过程用于确定将要沿着每匝添加的电容值。
近场测量-图9(A)和图9(B)所示的线圈在连接到6.78MHz的相同恒定电流RF源的同时进行测试。使用具有从10-20mm的间距范围的探测探针测量近场E场和H场二者。图10(A)和图10(B)中示出结果。具体地,图10(A)示出传统线圈的所测得的近场E场(线条1010)与所公开的设计的所测得的近场E场(线条1012)的比较。图10(B)示出传统线圈(线条1016)与所公开的设计(线条1014)的所测得的H场的比较。
如图10(A)和图10(B)所示,所测得的结果示出,在提供相同的近场H场的同时,图9(B)的所提议的低发射鲁棒线圈在近场E场方面提供10倍减少。这在线圈鲁棒性方面是显著的改进,使得线圈不容易受包括人体或正充电设备在内的附近物体影响(即,失谐)。
为了示出改进的线圈鲁棒性,执行一系列实验,其中,通过按不同接近度将手放置在线圈上来模拟人对线圈的接近度。如图11(A)和图11(B)所示,记录了所测得的真实电阻和电抗偏移。图11(A)示出当损耗介电体物体接近时传统线圈与所公开的线圈设计之间的所测得的电阻偏移比较。图11(B)示出当损耗介电体物体接近时传统线圈与所公开的线圈设计之间的所测得的电抗偏移比较。如图11(A)和图11(B)所示,响应于人手的接近,传统线圈动态地展现电阻(线条1112)和电抗(线条1122)的更大变化(100x+)。这是因为存在强近场E场。当高介电常数的物质(例如,人手)处于E场附近时,E场容易被扰动。在手10mm或更靠近的情况下的线圈阻抗(线条1112)的显著改变使得线圈不可用。
与之对比,所提议的线圈结构(图11(B))示出几乎没有线圈阻抗(线条1114、1124)的改变,这使得所公开的实施例基本上对于具有高介电常数的外来物体免疫。这是因为图9(B)的示例性实施例所生成的低近电场。
EMI估计结果-在相同开关模式功率放大器连接到图9(A)和图9(B)所示的两个线圈原型的情况下执行扩展性EMI测试。功率放大器电路具有丰富的谐波和宽带噪声成分,并且基本上表现为恒定电流源。图12(A)-图12(D)示出两个示例性线圈设计的所测得的发射之间的比较结果。
具体地说,图12(A)-图12(D)示出发射机电路的所测得的EMI曲线,其中,传统线圈(图12(A))水平、(图12(B))垂直,其中,所提议的线圈解决方案(图12(C))水平、(图12(D))垂直。可见,传统线圈设计的发射曲线(即,图12(A)和图12(B)的图线)示出与本文所公开的低发射线圈结构设计(即,图12(C)和图12(D)的图线)相比显著更高(10+dB)的噪声(噪声本底和6.78Mhz的谐波)。
在特定实施例中,本公开提供一种用于确定无线充电线圈的电容性组件的优化设计位置的方法和装置。对于位于x-y平面中的示例性线圈(如图13(a)所示),H场将主要处于z方向上。X和Y的尺寸以米为单位。方向上的E场很小,因为其基本上与线圈引线相切。在z方向和ρ方向上注意到高E场。如所讨论的那样,高E场产生高发射,并且使线圈鲁棒性降级。高E场也可能在待充电设备(DUC)上产生电震,并且对DUC的触摸传感器产生干扰。
具有低的累积寄生电容或没有累积寄生电容的线圈具有低电流变化。这进而限制了E场幅度并且使线圈更鲁棒。在本公开一个实施例中,术语鲁棒用于表示基本上保持不受周围状况影响的能力。周围状况可以包括例如物理对象(例如,人手)的影响。调谐一个或多个线圈匝消除了线圈内部所建立的电抗(电感)。调谐显著地减少了线圈的长度上的电场以及不想要的发射。
图13(a)示出如图9(a)中的设计为提供均匀H场的传统线圈构造。使用矩量法(MoM)工具仿真线圈,以求出通过其匝的电流分布并且估计E场。大约1Amp的恒定AC电流被提供给线圈。图13(b)示出在x=0、z=6mm处的电场切割,ρ方向和z方向上的E场都非常强。换言之,图13(b)示出图13(a)的线圈的截面处的E场的三个分量。
三维Ez场示出于图13(c)中,最大值约为9000V/m。电流分布绘制于图13(d)中,其中,对于所仿真的结构,电流变化大约是8%。因此,图13(d)示出图13(a)的侧视图处的电流分布,示出图13(a)的线圈的表面上的电流变化(由不同高度来表示)。
针对根据本文所公开的原理所设计的线圈重复了图13(a)-图13(d)的测量。如图14(A)所示,修改后的线圈对于每匝具有与图13(A)所示的设计基本上相同的尺寸。沿着每个线圈匝串联添加具有(图14(A)的表中所示的)各种电容值的电容器。使用基于遗传算法的优化来导出电容器值。图14(D)示出在每匝处添加电容器之后(如图6和图9(B)所示)的E场。ρ方向E场和z方向E场的值减少为先前所讨论的传统构造的值的1/12。同时,沿着整个线圈的电流变化仅为0.3%,如图14(B)所示。图14(C)示出所提议的线圈结构上的所仿真的3DEz场,其中,E场与传统线圈(没有优化的内联电容器)相比低得多。在对线圈的馈电点、各匝之间的过渡连接以及内联电容器所处的位置附近观测到高的场。
作为优化过程的示例,对于该示例选择关于H场的z分量均匀性优化了的线圈(假设线圈环路上的电流均匀相等)。沿着线圈的一个径向切割选择电容器位置(如图9(B)所示)。通过优化过程来导出电容器的最优值。最优值被配置为:沿着线圈减少E场并且提供基本上均匀的电流。
在示例性实现方式中,优化过程基于E场分量(Ez和Eρ),目标在于使得这些分量的组合的平均值最小化。矩量法规则用于预测线圈引线中的电流,并且计算近电场的三个分量(Ez、Eρ)。MoM用于求解电磁问题,其中,引线上的未知电流由具有未知系数/幅度的已知的N个函数(基函数)来表示。然后针对边界条件测试该问题,以定义N个方程的线性系统。通过数值方式求解方程组,以求出基函数系数。系统可以描述为公式(5):
L(f)=g (5)
在公式(5)中,L是线性系统(在该示例中为积分算子),f是未知电流函数,g是激励源。
对于优化,使用薄引线近似,其中,电流在引线的中心处是细丝 是沿着承载电流的引线的位置矢量,电流在与引线相切的方向上是矢量。线性算子是积分方程:
公式(6)的右手边是线性算子,左边是激励源。G是格林函数 是倒三角,偏微分算子。使用N个加权基函数fn来近似电流,它们在任何地方与引线相切。对电流所应用的线性算子等效于对基函数求和的应用。
通过N个测试函数fm(r)来测试积分方程,测试函数与基函数相同。在边界条件(即,相切场除了在源分段处之外等于零的引线表面)处测试积分方程:
Nan<fm,L(fn)>=<fm,g>Zmn=<fm,L(fn)>,bm=<fm,g>
该运算形成N x N线性方程组Zmnan=bm,对其进行求解以求出an并且因此求出电流。通过磁矢量势A求出磁场和电场
优化过程开始于电容器的初始值(即,初始群体)。关于一个切割,MoM用于计算zo=6mm、xo=0的观测点处的电场分量,以加速优化时间。优化算法尝试最小化的代价函数是Eρ和Ez值的均值。采用遗传算法以控制优化:它改变电容器的值并且存储对应代价函数。在一个实施例中,当代价函数值并无改进时,优化停止。
在示例性实施例中,包括具有六个电容器的线圈,一个电容器用于一个环路。电容器值C={C1,C2,……,C6}是优化变量。优化问题可以定义为:
argcmin(mean(Eφ,Ez)at(xo,yo,zo)) (13)
xo=0,-12cm<yo<12cm,zo=6mm (14)
在以上公式中,xo、yo和zo是电场得以最小化的观测点。
图15示出根据本公开一个实施例的示出优化算法的示例性流程图或算法。算法开始于步骤1510,其中,选择任意初始群体。在一个实施例中,电容器的初始值可以被选择为等于整个螺旋线圈的串联调谐电容乘以意图添加的内联电容的数量。
在步骤1520,算法通过凭借MoM求解线圈结构并且沿着观测点对E场的幅值求和,来计算所选择的群体的代价函数。
在步骤1530,算法在保持跟踪代价函数的同时保持改变优化变量(即,电容器值)。过程继续,直到优化通过求出产生最小代价函数的电容器值而到达结束。在步骤1530和1550中示出这些步骤。当代价函数的减少不再显著时,在步骤1540到达结束。
提供以下描述,以示出本公开的示例性和非限定性实施例。示例1涉及一种发射机充电站,包括:一长度的导电引线,用于绕着一个或多个轴线形成具有一个或多个匝的多匝螺旋线圈;多个分立式电容器,用于相应多个匝中的每一匝;以及其中,所述多个电容器中的至少两个电容器被配置为:具有基本上相同的谐振频率。
示例2涉及如示例1所述的发射机充电站,其中,所述多个电容器中沿着所述多匝螺旋线圈的第一部分的第一电容器被配置为:具有与所述多个电容器中沿着所述多匝螺旋线圈的第二部分的第二电容器基本上相同的谐振频率。所述线圈的所述第一部分或所述第二部分可以定义所述多匝螺旋线圈的线圈的匝,或者其可以定义该长度的导电引线的第一部分和第二部分。
示例3涉及如示例1所述的发射机充电站,其中,所述多个电容器中的至少两个电容器沿着所述螺旋线圈的截面的平面线性对准。
示例4涉及如示例1所述的发射机充电站,其中,所述多个电容器中的至少一个电容器具有与其余电容器不同的电容值。
示例5涉及如示例1所述的发射机充电站,其中,所述多个电容器中的每一个电容器具有基本上相同的电容值。
示例6涉及如示例1所述的发射机充电站,其中,所述多个电容器的电容值被选择为使所述螺旋线圈的表面之上的近场电场最小化。
示例7涉及如示例1所述的发射机充电站,其中,所述多个电容器是串联的。
示例8涉及如示例1所述的发射机充电站,其中,所述多个电容器中的至少两个电容器连同它们的所述多匝螺旋线圈的相应部分一起被配置为:具有基本上相同的谐振频率。
示例9涉及一种用于减少充电站的近场电场发射的方法,所述方法包括:提供一长度的导电引线,以绕着一个或多个轴线形成具有m匝的多匝螺旋线圈;定位n个分立式电容器,以用于相应多个匝中的每一匝;以及根据所述多匝螺旋线圈中的匝数(m)和与所述多个电容器关联的代价函数,为n个分立式电容器中的每一个电容器选择电容值。
示例10涉及如示例9所述的方法,其中,m和n是整数,并且其中,m是等于n、大于n或小于n之一。
示例11.如示例9所述的方法,还包括:确定所述充电站之上的观测点处的所述多个电容器中的至少一个电容器的代价函数。
示例12涉及如示例9所述的方法,还包括:选择沿着所述导电引线的第一部分的所述分立式电容器中的第一分立式电容器被配置为:具有与所述分立式电容器中的第二分立式电容器以及所述导电引线的第二部分基本上相同的谐振频率。
示例13涉及如示例9所述的方法,其中,所述多个电容器中的至少一个电容器具有与其它电容器不同的电容值。
示例14涉及如示例9所述的方法,其中,所述多个电容器中的每一个电容器具有基本上相同的电容值。
示例15涉及如示例8所述的方法,还包括:沿着所述螺旋线圈的截面的平面对准所述多个电容器中的至少两个电容器。
示例16涉及如示例9所述的方法,其中,所述多个电容器的总电容性值被选择为使所述螺旋线圈的表面之上的近场电场最小化。
示例17涉及一种无线充电站,包括:一长度的导电引线,用于绕着一个或多个轴线形成具有多个匝的多匝螺旋线圈;以及多个调谐元件,以对应于所述多个线圈匝中的每一匝的方式沿着所述导电引线的长度定位,以使所述多匝螺旋线圈谐振。
示例18涉及如示例17所述的无线充电站,还包括:第一电极和第二电极,用于将电流传递到该长度的导电引线。
示例19涉及如示例17所述的无线充电站,其中,所述调谐元件中的至少一个调谐元件包括电容性元件。
示例20涉及如示例17所述的无线充电站,其中,每个调谐元件定义电容性元件,并且其中,每个调谐元件单独地使每个线圈匝谐振。
示例21涉及如示例17所述的无线充电站,其中,所述多个调谐元件中的第一调谐元件和所述多匝螺旋线圈的第一部分被配置为:具有与所述多个调谐元件中的第二调谐元件和所述多匝螺旋线圈的所述第二部分基本上相同的谐振频率。
示例22涉及如示例17所述的无线充电站,其中,所述多个调谐元件中的至少两个串联,并且沿着所述螺旋线圈的截面的平面线性地对准。
示例23涉及如示例17所述的无线充电站,其中,所述调谐元件中的至少一个调谐元件具有与另一调谐元件不同的电容值。
示例24涉及如示例17所述的无线充电站,其中,所述多个调谐元件中的每一个调谐元件具有基本上相同的电容值。
示例25涉及如示例24所述的无线充电站,其中,所述多个调谐元件的电容值被选择为使所述无线充电站的表面之上的近场电场最小化。
虽然已经结合在此所示的示例性实施例示出了本公开的原理,但本公开的原理不限于此并且包括其任何修改、变形或置换。

Claims (25)

1.一种发射机充电站,包括:
一长度的导电引线,用于绕着一个或多个轴线形成具有一个或多个匝的多匝螺旋线圈;
多个分立式电容器,用于相应多个匝中的每一匝;和
其中,所述多个电容器中的至少两个电容器被配置为:具有基本上相同的谐振频率。
2.如权利要求1所述的发射机充电站,其中,所述多个电容器中沿着所述多匝螺旋线圈的第一部分的第一电容器被配置为:具有与所述多个电容器中沿着所述多匝螺旋线圈的第二部分的第二电容器基本上相同的谐振频率。
3.如权利要求1所述的发射机充电站,其中,所述多个电容器中的至少两个电容器沿着所述螺旋线圈的截面的平面线性对准。
4.如权利要求1所述的发射机充电站,其中,所述多个电容器中的至少一个电容器具有与其余电容器不同的电容值。
5.如权利要求1所述的发射机充电站,其中,所述多个电容器中的每一个电容器具有基本上相同的电容值。
6.如权利要求1所述的发射机充电站,其中,所述多个电容器的电容值被选择为使所述螺旋线圈的表面之上的近场电场最小化。
7.如权利要求1所述的发射机充电站,其中,所述多个电容器是串联的。
8.如权利要求1所述的发射机充电站,其中,所述多个电容器中的至少两个电容器连同它们的所述多匝螺旋线圈的相应部分一起被配置为:具有基本上相同的谐振频率。
9.一种用于减少充电站的近场电场发射的方法,所述方法包括:
提供一长度的导电引线,以绕着一个或多个轴线形成具有m匝的多匝螺旋线圈;
为相应多个匝中的每一匝定位n个分立式电容器;以及
根据所述多匝螺旋线圈中的匝数(m)和与所述多个电容器关联的代价函数,为n个分立式电容器中的每一个电容器选择电容值。
10.如权利要求9所述的方法,其中,m和n是整数,并且其中,m是等于n、大于n或小于n之一。
11.如权利要求9所述的方法,还包括:确定所述充电站之上的观测点处的所述多个电容器中的至少一个电容器的代价函数。
12.如权利要求9所述的方法,还包括:选择所述分立式电容器中沿着所述导电引线的第一部分的第一分立式电容器被配置为:具有与所述分立式电容器中的第二分立式电容器以及所述导电引线的第二部分基本上相同的谐振频率。
13.如权利要求9所述的方法,其中,所述多个电容器中的至少一个电容器具有与其它电容器不同的电容值。
14.如权利要求9所述的方法,其中,所述多个电容器具有基本上相同的电容值。
15.如权利要求8所述的方法,还包括:沿着所述螺旋线圈的截面的平面对准所述多个电容器中的至少两个电容器。
16.如权利要求9所述的方法,其中,所述多个电容器的总电容值被选择为使所述螺旋线圈的表面之上的近场电场最小化。
17.一种无线充电站,包括:
一长度的导电引线,用于绕着一个或多个轴线形成具有多个匝的多匝螺旋线圈;和
多个调谐元件,以对应于所述多个线圈匝中的每一匝的方式沿着该长度的导电引线定位,以使所述多匝螺旋线圈谐振。
18.如权利要求17所述的无线充电站,还包括:第一电极和第二电极,用于将电流传递到该长度的导电引线。
19.如权利要求17所述的无线充电站,其中,所述调谐元件中的至少一个调谐元件包括电容性元件。
20.如权利要求17所述的无线充电站,其中,每个调谐元件定义电容性元件,并且其中,每个调谐元件单独地使每个线圈匝谐振。
21.如权利要求17所述的无线充电站,其中,所述多个调谐元件中的第一调谐元件和所述多匝螺旋线圈的第一部分被配置为:具有与所述多个调谐元件中的第二调谐元件和所述多匝螺旋线圈的所述第二部分基本上相同的谐振频率。
22.如权利要求17所述的无线充电站,其中,所述多个调谐元件中的至少两个调谐元件是串联的,并且沿着所述螺旋线圈的截面的平面线性对准。
23.如权利要求17所述的无线充电站,其中,所述调谐元件中的至少一个调谐元件具有与另一调谐元件不同的电容值。
24.如权利要求17所述的无线充电站,其中,所述多个调谐元件中的每一个调谐元件具有基本上相同的电容值。
25.如权利要求24所述的无线充电站,其中,所述多个调谐元件的电容值被选择为使所述无线充电站的表面之上的近场电场最小化。
CN201580063884.8A 2014-12-23 2015-11-20 用于无线充电的低发射线圈拓扑 Active CN107005095B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462096264P 2014-12-23 2014-12-23
US62/096,264 2014-12-23
US14/672,082 US20160181853A1 (en) 2014-12-23 2015-03-27 Low emission coil topology for wireless charging
US14/672,082 2015-03-27
PCT/US2015/061836 WO2016105736A1 (en) 2014-12-23 2015-11-20 Low emission coil topology for wireless charging

Publications (2)

Publication Number Publication Date
CN107005095A true CN107005095A (zh) 2017-08-01
CN107005095B CN107005095B (zh) 2021-07-13

Family

ID=56130580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580063884.8A Active CN107005095B (zh) 2014-12-23 2015-11-20 用于无线充电的低发射线圈拓扑

Country Status (7)

Country Link
US (1) US20160181853A1 (zh)
JP (1) JP6772140B2 (zh)
KR (1) KR102506114B1 (zh)
CN (1) CN107005095B (zh)
BR (1) BR102015029331A2 (zh)
TW (1) TWI590558B (zh)
WO (1) WO2016105736A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108616170A (zh) * 2018-07-17 2018-10-02 宁波微鹅电子科技有限公司 电能发射电路、电路模块及应用其的无线充电装置
CN112655058A (zh) * 2018-09-12 2021-04-13 宁波吉利汽车研究开发有限公司 用于无线电力传输系统的装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10044232B2 (en) 2014-04-04 2018-08-07 Apple Inc. Inductive power transfer using acoustic or haptic devices
US10135303B2 (en) 2014-05-19 2018-11-20 Apple Inc. Operating a wireless power transfer system at multiple frequencies
GB2530730A (en) * 2014-09-29 2016-04-06 Bombardier Transp Gmbh Method of and control system for operating a circuit arrangement
WO2017053861A1 (en) 2015-09-24 2017-03-30 Apple Inc. Configurable wireless transmitter device
US10790699B2 (en) 2015-09-24 2020-09-29 Apple Inc. Configurable wireless transmitter device
US10477741B1 (en) 2015-09-29 2019-11-12 Apple Inc. Communication enabled EMF shield enclosures
US10651685B1 (en) 2015-09-30 2020-05-12 Apple Inc. Selective activation of a wireless transmitter device
US10714960B2 (en) * 2015-12-22 2020-07-14 Intel Corporation Uniform wireless charging device
US10734840B2 (en) 2016-08-26 2020-08-04 Apple Inc. Shared power converter for a wireless transmitter device
US10594160B2 (en) 2017-01-11 2020-03-17 Apple Inc. Noise mitigation in wireless power systems
CN106849376A (zh) * 2017-01-12 2017-06-13 苏州横空电子科技有限公司 一种用于无线充电的低电场发射端线圈
US11585840B2 (en) * 2020-09-03 2023-02-21 Raytheon Company Tuning of narrowband near-field probes
CN112784327A (zh) * 2021-01-26 2021-05-11 北华航天工业学院 一种应用于电磁勘探系统中的感应线圈的设计方法
KR20230023972A (ko) * 2021-08-11 2023-02-20 삼성전자주식회사 링형 공진기 및 링형 공진기를 포함하는 무선 전력 송신 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100052811A1 (en) * 2008-08-20 2010-03-04 Smith Joshua R Flat, asymmetric, and e-field confined wireless power transfer apparatus and method thereof
CN102656771A (zh) * 2009-12-14 2012-09-05 三星电子株式会社 无线电力传输设备
US20130024059A1 (en) * 2011-07-21 2013-01-24 Ut-Battelle, Llc Wireless power transfer electric vehicle supply equipment installation and validation tool
CN103329397A (zh) * 2010-09-14 2013-09-25 无线电力公司 无线能量传递系统
US20130307347A1 (en) * 2012-05-04 2013-11-21 Marco Antonio Davila Multiple Resonant Cells for Wireless Power Mats
US20140285016A1 (en) * 2011-10-03 2014-09-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives System for transferring energy by electromagnetic coupling
WO2014186535A1 (en) * 2013-05-15 2014-11-20 The Regents Of The University Of Michigan Wireless power transmission for battery charging

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8466660B2 (en) * 2009-11-06 2013-06-18 Toyota Motor Engg. & Mfg. North America, Inc. Wireless energy transfer antennas and energy charging systems
KR101167382B1 (ko) * 2010-02-08 2012-07-19 숭실대학교산학협력단 무선 에너지 전송 구조체
JP5146488B2 (ja) * 2010-05-26 2013-02-20 トヨタ自動車株式会社 給電システムおよび車両
JP5764032B2 (ja) * 2011-03-03 2015-08-12 株式会社アドバンテスト ワイヤレス給電装置、受電装置および給電システム
KR101813011B1 (ko) * 2011-05-27 2017-12-28 삼성전자주식회사 무선 전력 및 데이터 전송 시스템
JP6164853B2 (ja) * 2013-01-28 2017-07-19 株式会社テクノバ 走行中非接触給電システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100052811A1 (en) * 2008-08-20 2010-03-04 Smith Joshua R Flat, asymmetric, and e-field confined wireless power transfer apparatus and method thereof
CN102656771A (zh) * 2009-12-14 2012-09-05 三星电子株式会社 无线电力传输设备
CN103329397A (zh) * 2010-09-14 2013-09-25 无线电力公司 无线能量传递系统
US20130024059A1 (en) * 2011-07-21 2013-01-24 Ut-Battelle, Llc Wireless power transfer electric vehicle supply equipment installation and validation tool
US20140285016A1 (en) * 2011-10-03 2014-09-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives System for transferring energy by electromagnetic coupling
US20130307347A1 (en) * 2012-05-04 2013-11-21 Marco Antonio Davila Multiple Resonant Cells for Wireless Power Mats
WO2014186535A1 (en) * 2013-05-15 2014-11-20 The Regents Of The University Of Michigan Wireless power transmission for battery charging

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108616170A (zh) * 2018-07-17 2018-10-02 宁波微鹅电子科技有限公司 电能发射电路、电路模块及应用其的无线充电装置
CN112655058A (zh) * 2018-09-12 2021-04-13 宁波吉利汽车研究开发有限公司 用于无线电力传输系统的装置
CN112655058B (zh) * 2018-09-12 2024-03-26 宁波吉利汽车研究开发有限公司 用于无线电力传输系统的装置

Also Published As

Publication number Publication date
JP2018501763A (ja) 2018-01-18
WO2016105736A1 (en) 2016-06-30
US20160181853A1 (en) 2016-06-23
BR102015029331A2 (pt) 2016-07-12
CN107005095B (zh) 2021-07-13
KR20170100489A (ko) 2017-09-04
TW201624879A (zh) 2016-07-01
KR102506114B1 (ko) 2023-03-03
JP6772140B2 (ja) 2020-10-21
TWI590558B (zh) 2017-07-01

Similar Documents

Publication Publication Date Title
CN107005095A (zh) 用于无线充电的低发射线圈拓扑
US8796886B2 (en) Automatically tuning a transmitter to a resonance frequency of a receiver
Kim et al. Free-positioning wireless power transfer to multiple devices using a planar transmitting coil and switchable impedance matching networks
US10383990B2 (en) Variable capacitor for resonant power transfer systems
Wagih et al. Dual-receiver wearable 6.78 MHz resonant inductive wireless power transfer glove using embroidered textile coils
US8446045B2 (en) Flat, asymmetric, and E-field confined wireless power transfer apparatus and method thereof
CN102201704B (zh) 非接触功率传递系统和方法
US20150207331A1 (en) Resonant power transfer system and method of estimating system state
WO2016089528A1 (en) Tiled wireless charging coil solution for extended active area
CN103339824A (zh) 包括具有基本均匀磁场的源谐振器的无线电力传输的设备和方法
CN103069687A (zh) 使用多个频带发送谐振功率的无线电力发送器以及方法
Dionigi et al. Network methods for analysis and design of resonant wireless power transfer systems
US10819151B2 (en) Wireless power transmission
CN107040016A (zh) 减小充电设备中的磁场变化
US10291067B2 (en) Computer modeling for resonant power transfer systems
Shi et al. Design of a novel receiving structure for wireless power transfer with the enhancement of magnetic coupling
Xu et al. Multi-coil high efficiency wireless power transfer system against misalignment
US20160126744A1 (en) Wireless power transfer using stacked resonators
CN104521100A (zh) 无线电力传输装置、供电装置以及受电装置
Li et al. Maximizing transfer distance for WPT via coupled magnetic resonances by coupling coils design and optimization
CN107852015B (zh) 用于无线电力发射机线圈配置的设备和方法
Lin et al. Omni-directional wireless power transfer systems using discrete magnetic field vector control
Jolani et al. A novel planar wireless power transfer system with strong coupled magnetic resonances
Shi et al. Effects of coil locations on wireless power transfer via magnetic resonance coupling
Gwon et al. Enhancement of wireless power transmission efficiency and flexibility via an optimized three-dimensional coupled magnetic resonance system with double transmitter coil

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant