CN106995377B - 仿生催化不对称氢化合成手性含氟炔丙胺衍生物的方法 - Google Patents

仿生催化不对称氢化合成手性含氟炔丙胺衍生物的方法 Download PDF

Info

Publication number
CN106995377B
CN106995377B CN201610050611.6A CN201610050611A CN106995377B CN 106995377 B CN106995377 B CN 106995377B CN 201610050611 A CN201610050611 A CN 201610050611A CN 106995377 B CN106995377 B CN 106995377B
Authority
CN
China
Prior art keywords
chiral
fluorine
substituent group
kinds
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610050611.6A
Other languages
English (en)
Other versions
CN106995377A (zh
Inventor
周永贵
陈木旺
吴波
陈章培
孙蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201610050611.6A priority Critical patent/CN106995377B/zh
Publication of CN106995377A publication Critical patent/CN106995377A/zh
Application granted granted Critical
Publication of CN106995377B publication Critical patent/CN106995377B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/52Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of imines or imino-ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0257Phosphorus acids or phosphorus acid esters
    • B01J31/0258Phosphoric acid mono-, di- or triesters ((RO)(R'O)2P=O), i.e. R= C, R'= C, H
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

仿生催化不对称氢化合成手性含氟炔丙胺衍生物的方法,其用到的催化体系是钌和手性磷酸。反应能在下列条件内进行,温度:25‑100℃;溶剂:1,2‑二氯乙烷;压力:13‑80个大气压;底物和催化剂的比例是100/l;催化剂为(4‑异丙基甲苯)碘化钌二聚体和手性磷酸。通过含氟的炔基取代的亚胺的选择性氢化能得到相应的手性含氟丙胺衍生物的方法,其对映体过量可达到98%。本发明操作简便实用,原料易得,对映选择性高,产率好,且反应具有绿色原子经济性,对环境友好等优点。

Description

仿生催化不对称氢化合成手性含氟炔丙胺衍生物的方法
技术领域
本发明涉及一种应用仿生催化体系高度化学选择性和对映选择性氢化含氟取代的炔基亚胺合成手性含氟手性炔丙胺衍生物的方法。
背景技术
手性炔丙胺是合成许多天然产物,药物和复杂化学分子的重要合成子,通常具有广谱的生理活性和药理活性。这类化合物具有多种潜在的药物活性,如:抗艾滋、镇静、安眠、消炎和利尿等特性。大量研究表明将氟原子或含氟基团选择性地引入有机分子能显著地改变原有分子的生理活性和增加其亲脂性。因此对该类化合物的合成和生物活性研究引起了有机化学家和药学界的广泛重视。下面式1的就具有抗艾滋病的含氟炔丙胺的结构单元:
鉴于含氟炔丙胺及其衍生物在药物和合成化学领域中的重要性,化学家们已经发展了一些方法来合成该类化合物。但是仅有的几例都是通过炔烃对三氟甲基亚胺的加成来合成三氟甲基炔丙胺。然而通过选择性不对称氢化C=N可以绿色、高效、且原子经济性较好地合成手性炔丙胺化合物炔没有报道。2004年,studer小组和后来的卿小组分别实现通过手性叔丁基亚磺酰基底物诱导,炔基对亚胺的加成来合成含氟手性炔丙胺(文献1:a)M.Crucianelli,F.De Angelis,F.Lazzaro,L.Malpezzi,A.Volonterio,M,Zanda,J.Fluor.Chem.2004,125,573;b)H.Xiao,Y.Huang,F.-L.Qing,Tetrahedron:Asymmetry2010,21,2949.)。之后张和马等科学家又分别实现了以锌或铑催化炔基对含氟亚胺的加成来合成含氟手性炔丙胺(文献6:a)G.Huang,J.Yang,X.Zhang,Chem.Commun.2011,47,5587;b)F.-G,Zhang,H.Ma,J.Nie,Y.Zheng,Q.Gao,J.-A.Ma,Adv.Synth.Catal.2012,354,1422;c)F.-G.Zhang.;H.Ma,Y.Zheng,J.-A.Ma,Tetrahedron2012,68,7663;d)K.Morisaki,M.Sawa,J.Nomaguchi,H.Morimoto,Y.Takeuchi,K.Mashima,T.Ohshima,Chem.Eur.J.2013,19,8417;e)G.Huang,Z.Yin,X.Zhang,Chem.Eur.J.2013,19,11992.)。
从上述例子中,通过加成反应来合成含氟手性炔丙胺取得了一些不错的结果,但是他们一般条件都较苛刻如需要-78℃,或当量的催化剂等等。因此,发展一种高产率、高立体选择性的方法合成含氟手性炔丙胺化合物仍然是目前研究的难点和热点。
发明内容
本发明的目的是提供一种仿生催化不对称选择性氢化合成手性含氟炔丙胺衍生物的方法,本发明操作简便实用,原料易得,对映选择性高,产率好,且反应具有绿色原子经济性,环境友好等优点。
为实现上述目的,本发明的技术方案如下:
仿生催化不对称选择性氢化合成手性含氟炔丙胺衍生物的方法,其催化体系为(4-异丙基甲苯)碘化钌二聚体和手性磷酸,反应式和条件如下:
式中:
温度:25-100℃;
溶剂:二氯甲烷、甲苯、四氢呋喃、乙酸乙酯、1,4-二氧六环、1,2-二氯乙烷中的一种或二种以上;
氢气压力:13-80个大气压;
时间:20-48小时;
催化剂:(4-异丙基甲苯)碘化钌二聚体和手性磷酸;
所述R1为苯基或含取代基的苯基或为萘基,取代基为-CF3、Me、MeO、Ph以及Cl中的一种取代基或二种取代基或三种取代基或四种取代基,取代基个数为1-5个;萘基为1或2-位萘基;
所述R2为C1-C20的烷基、C2-C20烯基、C2-C20炔基以及苯基或含取代基的苯基或萘基,苯基上的取代基为-CF3、Me、MeO、Ph以及F中的一种取代基或二种取代基或三种取代基或四种取代基,取代基个数为1-5个;萘基为1或2-位萘基;
所述Rf为F、CF2H、C1-C6全氟取代的烷基中的一种;
所述磷酸是八氢联萘酚骨架或联萘酚骨架的手性磷酸,Ar为1-位萘基、苯或含有取代基的苯环,苯环上的取代基为F、Cl、CF3、Me、MeO中的一种取代基或二种取代基,取代基的个数为1-5个;
所述菲啶(Phenanthridine)及其衍生物是简单菲啶,8位是甲基、甲氧基或三氟甲基取代的菲啶中的一种或二种以上。
如上所述将(4-异丙基甲苯)碘化钌二聚体和手性磷酸,菲啶和底物1加入溶剂,在室温搅拌2-5分钟;然后充入氢气13-80个大气压,在25-100℃下搅拌反应20-48h后,柱层析得目标产物。
所述催化剂为手性磷酸,是由手性BINOL或H8-BINOL,将3,3’位碘化后和相应的取代苯硼酸ArB(OH)2经过Suzuki偶联制备,反应中手性磷酸催化剂的使用量和含氟的炔基取代的亚胺的摩尔比0.005:1~0.02:1。
所述菲啶及其衍生物反应所需的仿生氢源,反应中使用量和含氟的炔基取代的亚胺的摩尔比为0.1:1。
以(4-异丙基甲苯)碘化钌二聚体计,所述配合物摩尔量为氢化底物摩尔量的0.01%到0.05%。
所述溶剂用量为每0.25毫摩尔氢化底物用2到4毫升。
所述反应式为对含氟的炔基取代亚胺通过仿生催化不对称选择性氢化得到相应的手性含氟炔丙胺衍生物,钌金属前体为(4-异丙基甲苯)碘化钌二聚体,仿生氢源为8-甲基菲啶(10mol%),手性磷酸为(R)-CPA的Ar为9-蒽基,溶剂为1,2-氯乙烷,温度为室温,氢气压力为1000psi,所述结果最佳,对映体过量可达到98%。
(4-异丙基甲苯)碘化钌二聚体的制备过程或相关制备文献(该金属可以通过商业购买获得),也可参考文献(M.A.Bennett,A.K.Smith,J.Chem.Soc.,Dalton Trans.,1974,233-241.)。
本发明具有以下优点:
1.反应活性、化学选择性和对映选择性高,反应完全,生成产物专一,分离方便,能获得高的对映体过量纯品。
2.能得到各种类型的手性含氟炔丙胺衍生物。
3.催化剂制备方便,反应操作简便实用。
4.氢化反应条件温和,反应在室温就能进行。
5、比较传统合成方法,此方法采用少量的手性催化剂就可得到大量手性含氟炔丙胺衍生物,实现手性增值,而且还可以通过改变手性磷酸的构型而获得不同构型的手性含氟炔丙胺衍生物,同时底物范围较广泛。
具体实施方式
下面通过实施例详述本发明;但本发明并不限于下述的实施例。
实施例1:条件的优化
往安培瓶中加入称量好的(4-异丙基甲苯)碘化钌二聚体(0.001毫摩尔,1.0毫克)和手性磷酸(0.0004毫摩尔),8-甲基菲啶(0.02毫摩尔,3.8毫克),氟代炔基亚胺(0.2毫摩尔),1,2-二氯乙烷2.0毫升,搅拌2-5分钟。然后将安培瓶放入一个不锈钢的高压釜中,通入氢气1000psi,室温下反应20-48小时。慢慢释放氢气,用旋转蒸发仪除去溶剂后直接柱层析(淋洗剂石油醚和乙酸乙酯的体积比为30:1)分离得到纯的产物,反应式及配体如下:
产率为分离收率,产物的对映体过量用手性液相色谱测定,见表1。
表1.溶剂和手性磷酸的筛选
[a]反应条件:1a(0.1mmol),CPA 3(2mol%),溶剂(2.0mL),菲啶(10mol%),[Ru(p-cymene)I2]2(0.5mol%),H2(500psi),RT,48h.[b]Reaction conversion determinedby 1H NMR spectroscopy.[c].Ee was determined by chiral HPLC analysis.[d]H2(1000psi).[e]8甲基菲啶.
实施例2:仿生催化不对称选择性氢化合成手性含氟炔丙胺衍生物
往安培瓶中加入称量好的(4-异丙基甲苯)碘化钌二聚体(0.001毫摩尔,1.0毫克)和手性磷酸((R)-3f,0.0004毫摩尔),8-甲基菲啶(0.02毫摩尔,3.8毫克),氟代炔基亚胺(0.2毫摩尔),1,2-二氯乙烷2.0毫升,搅拌2-5分钟。然后将安培瓶放入一个不锈钢的高压釜中,通入氢气1000psi,室温下反应20-48小时。慢慢释放氢气,用旋转蒸发仪除去溶剂后直接柱层析(淋洗剂石油醚和乙酸乙酯的体积比为30:1)分离得到纯的产物,反应式如下:
(R)-4-Methoxy-N-(1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)aniline(2a):95%yield,pale yellow oil,Rf=0.60(petroleum ether/ethyl acetate=30/1),95%ee,[α]20 D=-231.18(c 1.16,CHCl3);1H NMR(400MHz,CDCl3)1H NMR(400 MHz,CDCl3)δ7.43-7.41(m,2H),7.33-7.29(m,3H),6.84-6.77(m,4H),4.75(q,J=5.8 Hz,1H),3.76(s,4H);13CNMR(100 MHz,CDCl3)δ154.2,138.9,132.0,129.1,128.4,123.8(q,J=280.0 Hz),121.5,117.0,114.9,86.3,80.9,55.7,52.2(q,J=34.0Hz);19F NMR(376 MHz,CDCl3)δ-75.7;Enantiomeric excess was determined by HPLC for the corresponding benzamide(AD-H,elute:Hexanes/i-PrOH=95/5,detector:254 nm,flow rate:0.8 mL/min),30℃,t1=11.2 min,t2=12.0 min(maj).
(R)-4-Methoxy-N-(1,1,1-trifluoro-4-p-tolylbut-3-yn-2-yl)anilin e(2b):90%yield,pale yellow solid,mp=56-58℃,Rf=0.33(petroleum ether/ethylacetate=30/1),95%ee,[α]20 D=-249.00(c 1.02,CHCl3);1H NMR(400 MHz,CDCl3)δ7.31(d,J=8.1 Hz,2H),7.10(d,J=7.9Hz,2H),6.83-6.76(m,4H),4.73(q,J=6.3 Hz,1H),3.75(s,3H),3.73(brs,1H);13C NMR(100 MHz,CDCl3)δ154.2,139.4,139.0,131.9,129.1,123.8(q,J=280 Hz),118.4,116.9,114.9,86.5,80.2(d,J=2.0 Hz),55.7,52.2(d,J=34.0 Hz),21.5;19F NMR(376 MHz,CDCl3)δ-75.7;Enantiomeric excess was determinedby HPLC for the corresponding benzamide(As-H,elute:Hexanes/i-PrOH=95/5,detector:254 nm,flow rate:0.8 mL/min),30℃,t1=8.8 min,t2=10.0 min(maj).
(R)-4-Methoxy-N-(1,1,1-trifluoro-4-(4-methoxyphenyl)but-3-yn-2-yl)aniline(2c):96%yield,pale yellow oil,Rf=0.15(petroleum ether/ethyl acetate=30/1),95%ee,[α]20 D=-239.63(c 1.20,CHCl3);1H NMR(400 MHz,CDCl3)δ7.35(d,J=8.9 Hz,2H),6.83-6.75(m,6H),4.73(q,J=6.2 Hz,1H),3.79(s,3H),3.75(s,4H);13C NMR(100 MHz,CDCl3)δ160.2,154.1,139.0,133.5,123.9(q,J=280.0 Hz),116.9,114.9,113.5,86.3,79.5(d,J=2.0 Hz),55.7,52.4,52.2(q,J=34.0Hz),;19F NMR(376 MHz,CDCl3)δ-75.7;Enantiomeric excess was determined by HPLC for the correspondingbenzamide(AD-H,elute:Hexanes/i-PrOH=95/5,detector:254 nm,flow rate:0.8 mL/min),30℃,t1=19.6 min,t2=20.8 min(maj).
(R)-4-Methoxy-N-(1,1,1-trifluoro-4-(4-fluorophenyl)but-3-yn-2-yl)aniline(2d):98%yield,pale yellow oil,Rf=0.37(petroleum ether/ethyl acetate=30/1),95%ee,[α]20 D=-204.91(c 1.26,CHCl3);1H NMR(400 MHz,CDCl3)δ7.42-7.38(m,2H),7.00(t,J=8.7 Hz,2H),6.80(dd,J=24.3,9.0 Hz,4H),4.74(q,J=6.2 Hz,1H),3.76(s,3H),3.73(brs,1H);13C NMR(100 MHz,CDCl3)δ1630(d,J=249.0 Hz),154.2,138.8,134.0(d,J=8.0 Hz),123.7(q,J=280.0 Hz),117.5(d,J=3.0 Hz),116.9,115.8,115.6,114.9,85.2,80.7,55.6,52.2(q,J=34.0 Hz);19F NMR(376 MHz,CDCl3)δ-75.7,-109.4;Enantiomeric excess was determined by HPLC for the corresponding benzamide(AS-H,elute:Hexanes/i-PrOH=95/5,detector:254 nm,flow rate:0.8 mL/min),30℃,t1=11.5 min,t2=17.7 min(maj);HRMS(ESI)m/z Calculated for C17H14F4NO[M+H]+324.1006,found 324.1011.
(R)-4-Methoxy-N-(1,1,1-trifluoro-4-(2-fluorophenyl)but-3-yn-2-yl)aniline(2e):91%yield,pale yellow oil,Rf=0.56(petroleum ether/ethyl acetate=30/1),94%ee,[α]20 D=-230.49(c 1.18,CHCl3);1H NMR(400 MHz,CDCl3)δ7.40-7.38(m,1H),7.36-7.26(m,1H),7.11-7.01(m,2H),6.87-6.76(m,4H),4.78(q,6.2 Hz,1H),3.79(brs,1H),3.75(s,3H);13C NMR(100 MHz,CDCl3)δ163.1(d,J=251.0 Hz),154.3,138.8,133.8(d,J=1.0 Hz),130.9(d,J=8.0 Hz),124.5(d,J=280.0 Hz),124.0(d,J=4.0Hz),117.1,115.6(d,J=21.0 Hz),114.9,110.1(d,J=16.0 Hz),86.0(t,J=3.0 Hz),79.9,55.6,52.3(q,J=34.0 Hz);19F NMR(376 MHz,CDCl3)δ-75.6,-109.4;Enantiomericexcess was determined by HPLC for the corresponding benzamide(As-H,elute:Hexanes/i-PrOH=95/5,detector:254 nm,flow rate:0.8 mL/min),30℃,t1=11.1 min,t2=14.2 min(maj);HRMS(ESI)m/z Calculated for C17H14F4NO[M+H]+324.1006,found324.1007.
(R)-N-(4-Cyclohexenyl-1,1,1-trifluorobut-3-yn-2-yl)-4-methoxya niline(2f):98%yield,pale yellow oil,Rf=0.52(petroleum ether/ethyl acetate=30/1),94%ee,[α]20 D=-200.40(c 1.22,CHCl3);1H NMR(400 MHz,CDCl3)δ6.85-6.77(m,2H),6.77-6.67(m,2H),6.22-6.02(m,1H),4.70-4.52(m,1H),3.75(s,3H),3.66(d,J=9.4 Hz,1H),2.08(dd,J=6.1,4.3 Hz,4H),1.67-1.48(m,4H);13C NMR(100 MHz,CDCl3)δ154.0,139.1,137.1,123.8(d,J=280.0 Hz),119.4,116.7,114.8,88.1,78.1(d,J=2.2 Hz),55.6,52.0(d,J=34.0 Hz),28.8,25.6,22.1,21.3;19F NMR(376 MHz,CDCl3)δ-75.9;Enantiomeric excess was determined by HPLC for the corresponding benzamide(OD-H,elute:Hexanes/i-PrOH=95/5,detector:254 nm,flow rate:0.8 mL/min),30℃,t1=7.0 min(maj),t2=7.8 min.
(R)-4-Methoxy-N-(1,1,1-trifluorooct-3-yn-2-yl)aniline(2g):98%yield,pale yellow oil,Rf=0.57(petroleum ether/ethyl acetate=30/1),95%ee,[α]20 D=-131.87(c 1.12,CHCl3);1H NMR(400 MHz,CDCl3)δ6.73(d,J=9.0 Hz,2H),6.64(d,J=8.9Hz,2H),4.42(q,J=6.3 Hz,1H),3.68(s,3H),3.53(d,J=8.8 Hz,1H),2.14-2.09(m,2H),1.44-1.24(m,4H),0.81(t,J=7.3 Hz,3H);13C NMR(100 MHz,CDCl3)δ154.0,139.1,123.9(q,J=280.0 Hz),116.7,114.8,87.4,72.1(d,J=2.0Hz),55.6,51.6(q,J=34.0 Hz),30.3,21.8,18.3,13.5;19F NMR(376MHz,CDCl3)δ-76.2;Enantiomeric excess wasdetermined by HPLC for the corresponding benzamide(AD-H,elute:Hexanes/i-PrOH=95/5,detector:254 nm,flow rate:0.8 mL/min),30℃,t1=6.7 min(maj),t2=8.5min.
(R)-4-Methoxy-N-(1,1,1-trifluoro-6-phenylhexa-3,5-diyn-2-yl)a niline(2h):95%yield,pale yellow oil,Rf=0.59(petroleum ether/ethyl acetate=30/1),94%ee,[α]20 D=-334.82(c 1.24,CHCl3);1H NMR(400 MHz,CDCl3)1H NMR(400 MHz,CDCl3)δ7.52-7.44(m,2H),7.41-7.27(m,3H),6.87-6.81(m,2H),6.75(d,J=8.9 Hz,2H),4.67(q,J=6.1 Hz,1H),3.76(s,3H),3.71(d,J=10.0 Hz,1H);13C NMR(100 MHz,CDCl3)δ154.5,138.3,132.7,129.8,128.5,123.3(q,J=280.0 Hz),120.8,117.1,114.9,79.1,74.0(d,J=1.8 Hz),72.7,71.0,55.6,52.4(q,J=34.0 Hz);19F NMR(376 MHz,CDCl3)δ-75.2;Enantiomeric excess was determined by HPLC for the corresponding benzamide(AD-H,elute:Hexanes/i-PrOH=95/5,detector:254 nm,flow rate:0.8 mL/min),30℃,t1=14.2 min(maj),t2=17.4 min;HRMS(ESI)m/z Calculated for C19H15F3NO[M+H]+330.1100,found 330.1106.
(R)-4-Methyl-N-(1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)aniline(2i):90%yield,pale yellow oil,Rf=0.15(petroleum ether/ethyl acetate=30/1),93%ee,[α]20 D=-210.11(c 0.82,CHCl3);1H NMR(400MHz,CDCl3)δ7.35(dd,J=7.9,1.6 Hz,2H),7.30-7.18(m,3H),6.98(d,J=8.1 Hz,2H),6.63(d,J=8.3 Hz,2H),4.77(q,J=6.1Hz,1H),3.81(s,1H),2.19(s,3H);13C NMR(100 MHz,CDCl3)δ142.7,132.0,123.0,129.7,129.1,128.4,123.8(q,J=280.0 Hz),121.5,114.9,86.1,80.8(d,J=2.6 Hz),51.2(q,J=34.0 Hz),20.5;19F NMR(376 MHz,CDCl3)δ-75.7;Enantiomeric excess wasdetermined by HPLC for the corresponding benzamide(AD-H,elute:Hexanes/i-PrOH=95/5,detector:254 nm,flow rate:0.8 mL/min),30℃,t1=7.6 min,t2=8.5 min(maj).
(R)-4-Chloro-N-(1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)aniline(2j):93%yield,pale yellow oil,Rf=0.65(petroleum ether/ethyl acetate=30/1),93%ee,[α]20 D=-233.58(c 1.14,CHCl3);1H NMR(400MHz,CDCl3)δ7.46-7.40(m,2H),7.38-7.27(m,3H),7.22-7.16(m,2H),6.77-6.64(m,2H),4.87-4.81(m,1H),4.03(d,J=8.9 Hz,1H);13C NMR(100 MHz,CDCl3)δ143.6,132.0,129.4,128.4,127.8,125.1,123.6(q,J=280.0Hz),121.2,115.8,86.5,80.0(t,J=3.0 Hz),50.7(q,J=34.0 Hz);19F NMR(376 MHz,CDCl3)δ-75.6;Enantiomeric excess was determined by HPLC for the correspondingbenzamide(AD-H,elute:Hexanes/i-PrOH=95/5,detector:254 nm,flow rate:0.8 mL/min),30℃,t1=10.1 min,t2=11.6 min(maj);HRMS(ESI)m/z Calculated forC16H12F3NCl[M+H]+310.0605,found 310.0604.
(R)-N-(1,1,1-Trifluoro-4-phenylbut-3-yn-2-yl)-4-(trifluoromet hyl)aniline(2k):95%yield,pale yellow oil,Rf=0.61(petroleum ether/ethyl acetate=30/1),95%ee,[α]20 D=-174.60(c 1.30,CHCl3);1H NMR(400 MHz,CDCl3)δ7.58-7.41(m,4H),7.41-7.27(m,3H),6.80(d,J=8.6 Hz,2H),5.01-4.94(m,1H),4.36(d,J=9.2 Hz,1H);13C NMR(100 MHz,CDCl3)δ147.5,132.0,129.4,128.5,126.9(q,J=5.0 Hz),123.5(q,J=280.0 Hz),123.2(t,J=269.0 Hz),122.5(q,J=33.0Hz),121.0,113.5,86.7,79.5(d,J=3.0 Hz),49.8(q,J=34.0 Hz);19F NMR(376 MHz,CDCl3)δ–61.5,-75.6;Enantiomericexcess was determined by HPLC for the corresponding benzamide(AD-H,elute:Hexanes/i-PrOH=95/5,detector:254 nm,flow rate:0.8 mL/min),30℃,t1=10.1 min,t2=11.1 min(maj);HRMS(ESI)m/z Calculated for C17H12F6N[M+H]+344.0868,found344.0879.
(R)-3-Methoxy-N-(1,1,1-trifluoro-4-phenylbut-3-yn-2-yl)anilin e(2l):92%yield,pale yellow oil,Rf=0.56(petroleum ether/ethyl acetate=30/1),92%ee,[α]20 D=-188.83(c 1.12,CHCl3);1H NMR(400MHz,CDCl3)δ7.43(dd,J=7.6,1.3 Hz,2H),7.38-7.24(m,3H),7.15(t,J=8.1 Hz,1H),6.44-6.32(m,3H),4.89(q,J=6.1 Hz,1H),4.06(d,J=9.2 Hz,1H),3.77(s,3H);13C NMR(100 MHz,CDCl3)δ160.9,146.4,132.0,130.3,129.2,128.4,123.8(q,J=280.0 Hz),121.4,107.1,105.3,100.8,86.2,80.5(d,J=2.2 Hz),55.2,50.5(d,J=34.0 Hz);19F NMR(376 MHz,CDCl3)δ-75.7;Enantiomericexcess was determined by HPLC for the corresponding benzamide(AD-H,elute:Hexanes/i-PrOH=95/5,detector:254 nm,flow rate:0.8 mL/min),30℃,t1=12.1 min,t2=16.6 min(maj).
(R)-N-(1,1,1-Trifluoro-4-phenylbut-3-yn-2-yl)aniline(2m):96%yield,pale yellow oil,Rf=0.43(petroleum ether/ethyl acetate=30/1),94%ee,[α]20 D=-188.85(c 1.06,CHCl3);1H NMR(400 MHz,CDCl3)δ7.49-7.40(m,2H),7.39-7.21(m,5H),6.95-6.84(m,1H),6.82-6.72(m,2H),4.91(s,1H),4.02(s,1H);13C NMR(100 MHz,CDCl3)δ145.0,132.0,129.5,129.2,128.4,124.3(d,J=280.0 Hz),121.4,120.2,114.5,86.2,80.5(d,J=3.0 Hz),50.6(q,J=34.0 Hz);19F NMR(376 MHz,CDCl3)δ-75.7;Enantiomericexcess was determined by HPLC for the corresponding benzamide(AD-H,elute:Hexanes/i-PrOH=95/5,detector:254 nm,flow rate:0.8 mL/min),30℃,t1=8.0 min,t2=9.5 min(maj).
(R)-4-Methoxy-N-(2,2,3,3,3-pentafluoro-4-phenylbut-3-yn-2-yl)aniline(2n):99%yield,pale yellow oil,Rf=0.38(petroleum ether/ethyl acetate=30/1),98%ee,[α]20 D=-227.45(c 1.42,CHCl3);1H NMR(400 MHz,CDCl3)δ7.49-7.26(m,5H),6.91-6.72(m,4H),4.84(dd,J=12.2,10.9 Hz,1H),3.76(s,3H),3.64(s,1H);13C NMR(100MHz,CDCl3)δ154.4,138.7,131.9,129.1,128.4,121.5,117.3,116.2(q,J=285.0 Hz),114.9,113.1,87.1,80.4(d,J=4.0 Hz),55.6,50.9(t,J=26.0 Hz);19F NMR(376 MHz,CDCl3)δ-80.7(s,3F);-120.2(d,1F),-123.4(d,1F);Enantiomeric excess wasdetermined by HPLC for the corresponding benzamide(OD-H,elute:Hexanes/i-PrOH=95/5,detector:254 nm,flow rate:0.8 mL/min),30℃,t1=7.3 min,t2=9.8min(maj);HRMS(ESI)m/z Calculated for C18H15F5NO[M+H]+356.1068,found356.1069.
(R)-4-Methoxy-N-(2,2,3,3,4,4,4-heptafluoro-4-phenylbut-3-yn-2-yl)aniline(2o):97%yield,pale yellow oil,Rf=0.32(petroleum ether/ethyl acetate=30/1),97%ee,[α]20 D=-190.32(c 1.50,CHCl3);1H NMR(400 MHz,CDCl3)δ7.50–7.25(m,5H),6.91–6.68(m,4H),4.91(s,1H),3.76(s,3H),3.66(s,1H);13C NMR(100 MHz,CDCl3)δ154.4,138.7,131.9,129.1,128.4,123.9(q,J=269.0 Hz)121.5,117.3,114.9,114.5,111.9,87.1,80.4(d,J=4.0 Hz),55.6,51.1(t,J=26.0 Hz);19F NMR(376 MHz,CDCl3)δ-80.8(t,3F);-116.9-117.7.(m,1F),-119.3-120.1(m,1F),-123.8-125.5(m,2F);Enantiomeric excess was determined by HPLC for the corresponding benzamide(OD-H,elute:Hexanes/i-PrOH=95/5,detector:254 nm,flow rate:0.8 mL/min),30℃,t1=6.7 min,t2=9.0 min(maj);HRMS(ESI)m/z Calculated for C19H15F7NO[M+H]+406.1036,found 406.1038.
产率为分离收率,产物的对映体过量用手性液相色谱测定,见表2。
表2.仿生催化不对称选择性氢化合成手性含氟炔丙胺衍生物2
本发明对氟代炔基亚胺的不对称氢化得到相应的手性含氟炔丙胺衍生物,其对映体过量可达到98%。本发明操作简便实用,对映选择性高,产率好,且反应具有原子经济性,对环境友好等优点。

Claims (7)

1.仿生催化不对称氢化合成手性含氟炔丙胺衍生物的方法,其催化体系为(4-异丙基甲苯)碘化钌二聚体和手性磷酸,反应式和条件如下:
式中:
温度:25-100℃;
溶剂:二氯甲烷、甲苯、四氢呋喃、1,2-二氯乙烷中的一种或二种以上;
氢气压力:13-80个大气压;
时间:20-48小时;
催化剂:(4-异丙基甲苯)碘化钌二聚体和手性磷酸;
所述R1为苯基或含取代基的苯基或为萘基,苯基上的取代基为-CF3、Me、MeO、Ph以及Cl中的一种取代基或二种取代基或三种取代基或四种取代基,取代基的个数为1-5个;或R1为1或2-位萘基;所述R2为C1-C20的烷基、C2-C20烯基、C2-C20炔基以及苯基或含取代基的苯基或萘基,苯基上的取代基为-CF3、Me、MeO、Ph以及F中的一种取代基或二种取代基或三种取代基或四种取代基,取代基的个数为1-5个;萘基为1或2-位萘基;
所述Rf为F、CF2H、C1-C6全氟取代的烷基中的一种;
所述磷酸是八氢联萘酚骨架或联萘酚骨架的手性磷酸,Ar为苯基、9-蒽基或9-菲基;
所述菲啶(Phenanthridine)及其衍生物是简单菲啶,8位的R基团是甲基、甲氧基或三氟甲基取代的菲啶中的一种或二种以上。
2.如权利要求1所述的方法,其特征在于:将(4-异丙基甲苯)碘化钌二聚体和手性磷酸,菲啶和底物1加入溶剂中在室温搅拌2-5分钟;然后充入氢气13-80个大气压,在25-100℃下搅拌反应20-48h后,柱层析得目标产物。
3.如权利要求1或2所述的方法,其特征在于:所述手性磷酸,是由手性BINOL或H8-BINOL,将3,3’位碘化后和相应的取代苯硼酸ArB(OH)2经过Suzuki偶联制备,反应中手性磷酸催化剂的使用量和含氟的炔基取代的亚胺的摩尔比0.005:1~0.02:1。
4.如权利要求1或2所述的方法,其特征在于:所述菲啶及其衍生物是反应所需的仿生氢源,反应中使用量和含氟的炔基取代的亚胺的摩尔比为0.1:1。
5.如权利要求1或2所述的方法,其特征在于:以(4-异丙基甲苯)碘化钌二聚体计,所述(4-异丙基甲苯)碘化钌二聚体摩尔量为氢化底物摩尔量的0.01%到0.05%。
6.如权利要求1或2所述的方法,其特征在于:所述溶剂用量为每0.25毫摩尔氢化底物1用2到4毫升。
7.如权利要求1所述的方法,其特征在于:所述反应式为对含氟的炔基取代亚胺通过仿生催化不对称选择性氢化得到相应的手性含氟炔丙胺衍生物,钌金属前体为(4-异丙基甲苯)碘化钌二聚体,仿生氢源为8-甲基菲啶10mol%,手性磷酸为(R)-CPA的Ar为9-蒽基,溶剂为1,2-氯乙烷,温度为室温,氢气压力为1000psi,所述结果最佳,对映体过量达到98%。
CN201610050611.6A 2016-01-25 2016-01-25 仿生催化不对称氢化合成手性含氟炔丙胺衍生物的方法 Active CN106995377B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610050611.6A CN106995377B (zh) 2016-01-25 2016-01-25 仿生催化不对称氢化合成手性含氟炔丙胺衍生物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610050611.6A CN106995377B (zh) 2016-01-25 2016-01-25 仿生催化不对称氢化合成手性含氟炔丙胺衍生物的方法

Publications (2)

Publication Number Publication Date
CN106995377A CN106995377A (zh) 2017-08-01
CN106995377B true CN106995377B (zh) 2018-09-04

Family

ID=59428772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610050611.6A Active CN106995377B (zh) 2016-01-25 2016-01-25 仿生催化不对称氢化合成手性含氟炔丙胺衍生物的方法

Country Status (1)

Country Link
CN (1) CN106995377B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263320A (en) * 1979-06-04 1981-04-21 The Dow Chemical Company Hypoglycemic phenylpropynylamino benzoic acids
CN102336621B (zh) * 2010-07-28 2014-05-14 中国科学院大连化学物理研究所 一种钯催化不对称氢化合成手性氟代胺的方法
CN103570484A (zh) * 2012-08-07 2014-02-12 中国科学院大连化学物理研究所 一种高位阻手性芳香胺化合物的不对称氢化合成方法

Also Published As

Publication number Publication date
CN106995377A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
Fu et al. Enantioselective copper-catalyzed alkynylation of benzylic C–H bonds via radical relay
Zhao et al. Cascade copper-catalyzed 1, 2, 3-trifunctionalization of terminal allenes
Zhu et al. Iridium-catalyzed asymmetric hydrogenation of unsaturated carboxylic acids
Borrajo-Calleja et al. Palladium-catalyzed enantioselective intermolecular carboetherification of dihydrofurans
Liu et al. Metal-catalyzed [6+ 3] cycloaddition of tropone with azomethine ylides: a practical access to piperidine-fused bicyclic heterocycles
Ohkuma et al. Asymmetric hydrogenation of amino ketones using chiral RuCl2 (diphophine)(1, 2-diamine) complexes
Korenaga et al. Highly enantioselective and efficient synthesis of flavanones including pinostrobin through the rhodium-catalyzed asymmetric 1, 4-addition
Harmata et al. Congeners of Troeger's base as chiral ligands
Paul et al. A cyclometalated ruthenium-NHC precatalyst for the asymmetric hydrogenation of (hetero) arenes and its activation pathway
Chen et al. Organocatalytic asymmetric reduction of fluorinated alkynyl ketimines
CN105859622B (zh) 钯催化不对称氢化合成手性氟代吡唑啉酮类衍生物的方法
Guduguntla et al. Chiral diarylmethanes via copper-catalyzed asymmetric allylic arylation with organolithium compounds
Shevchenko et al. Catalytic asymmetric α-amination of α-branched ketones via enol catalysis
Yu et al. Pd-catalyzed allylic alkylation of gem-alkyl, aryl-disubstituted allyl reagents with ketones: diastereoselective construction of vicinal tertiary and quaternary carbon centers
CN102050688A (zh) 一种酮衍生的n-烷基亚胺的不对称催化氢化方法
Qian et al. Catalytic asymmetric vinylogous and bisvinylogous propargylic substitution
Kumar et al. Enantioselective cross dehydrogenative coupling reaction catalyzed by Rose Bengal incorporated-Cu (I)-dimeric chiral complexes
Wujkowska et al. Highly enantioselective addition of arylzinc reagents to aldehydes promoted by chiral aziridine alcohols
You et al. Enantioselective addition of diethylzinc to aldehydes catalyzed by titanium (IV) complexes of N-sulfonylated amino alcohols with two stereogenic centers
Zhang et al. Palladium (0)-Catalyzed Intermolecular Asymmetric Allylic Dearomatization of Substituted β-Naphthols with Morita–Baylis–Hillman (MBH) Adducts
Zhang et al. Josiphos-type binaphane ligands for the asymmetric Ir-catalyzed hydrogenation of acyclic aromatic N-aryl imines
CN111484459B (zh) 一种钯催化不对称氢化合成手性3-三氟甲基-3,4-二氢喹喔啉酮的方法
Zhang et al. Iridium-catalyzed asymmetric hydrogenation of simple ketones with tridentate PNN ligands bearing unsymmetrical vicinal diamines
CN106995377B (zh) 仿生催化不对称氢化合成手性含氟炔丙胺衍生物的方法
JP2009227673A (ja) キラルジヒドロベンゾフラン類化合物の製造方法及びそれに使用する触媒

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant