CN106984786A - 一种连铸结晶器的水流控制方法 - Google Patents

一种连铸结晶器的水流控制方法 Download PDF

Info

Publication number
CN106984786A
CN106984786A CN201710252979.5A CN201710252979A CN106984786A CN 106984786 A CN106984786 A CN 106984786A CN 201710252979 A CN201710252979 A CN 201710252979A CN 106984786 A CN106984786 A CN 106984786A
Authority
CN
China
Prior art keywords
continuous cast
cast mold
water
leptoprosopy
carrying capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710252979.5A
Other languages
English (en)
Inventor
冯松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pangang Group Xichang Steel and Vanadium Co Ltd
Original Assignee
Pangang Group Xichang Steel and Vanadium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pangang Group Xichang Steel and Vanadium Co Ltd filed Critical Pangang Group Xichang Steel and Vanadium Co Ltd
Priority to CN201710252979.5A priority Critical patent/CN106984786A/zh
Publication of CN106984786A publication Critical patent/CN106984786A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring

Abstract

本发明公开了一种连铸结晶器的水流控制方法,随着连铸机拉速的提升,所述连铸结晶器的宽面水流量在设计流量范围内逐步增加,所述连铸结晶器的窄面水流量也在设计流量范围内也逐步增加。随着连铸机拉速的增大,无论是连铸结晶器的宽面,还是连铸结晶器的窄面,其所吸收的钢水的热量都将大大增加,这是就需要迅速补充足够的冷却水来将宽面和窄面上的热量带走,以便使铸锭的宽面和窄面能够快速均匀的冷却,而本发明中所公开的方法,正是从该需求出发,在连铸机拉速增大时,增大连铸结晶器宽面水流量和窄面水流量,从而相应提升连铸结晶器的冷却能力,显著降低钢坯纵裂率,提升钢坯铸造质量,降低生产成本。

Description

一种连铸结晶器的水流控制方法
技术领域
本发明涉及冶金技术领域,更具体地说,涉及一种连铸结晶器的水流控制方法。
背景技术
连铸结晶器是连续铸钢中的铸坯成型设备,是连续铸机的核心设备之一,其基本功能是利用冷却水通过水冷铜板间接带走钢水中的热量,使钢水在结晶器内连续的形成具有一定厚度和一定强度的坯壳。
纵裂纹是连铸坯常见的表面缺陷之一,出现该类缺陷的坯料必须下线修磨,影响生产节奏,而且严重的纵裂纹会使整块板坯报废,甚至在连铸生产过程中引起纵裂漏钢事故。
目前的连铸结晶器中结晶器宽面和结晶器窄面上的水流量是不发生变化的,在铸机开始时宽面水流量和窄面水流量就被设置为一个固定值,然而随着连铸机拉辊速度由低向高的提升,结晶器宽面和窄面需要的冷却能力会发生显著的变化,始终保持恒定的流量将会使宽面和窄面的冷却能力与铸锭所需要的散热能力不匹配,这会导致钢坯纵裂率提高,钢坯报废率提升。
因此,如何能够有效降低钢坯的纵裂率,提升钢坯的铸造质量,降低生产成本是目前本领域技术人员亟需解决的技术问题。
发明内容
有鉴于此,本发明在于提供一种连铸结晶器的水流控制方法,以便能够有效降低钢坯的纵裂率,提升钢坯的铸造质量,降低生产成本。
为实现上述目的,本发明提供如下技术方案:
一种连铸结晶器的水流控制方法,随着连铸机拉速的提升,所述连铸结晶器的宽面水流量在设计流量范围内逐步增加,所述连铸结晶器的窄面水流量也在设计流量范围内也逐步增加。
优选地,所述连铸结晶器的宽面热流密度为q1,窄面热流密度为q2,其中,0.85≤q1/q2≤0.95。
优选地,所述连铸机为1650mm连铸机,所述连铸结晶器的宽面水流量的设计流量为Q1,其中,3100L/min≤Q1≤4200L/min。
优选地,所述连铸结晶器的窄面水流量的设计流量为Q2,其中,450L/min≤Q2≤480L/min。
优选地,所述连铸机的正常运行拉速为V,其中,0.3m/min≤V≤1.8m/min。
由以上技术方案中可以看出,本发明中所公开的连铸结晶器的水流控制方法中,随着连铸机拉速的提升,连铸结晶器的宽面水流量在设计流量范围内逐渐增加,连铸结晶器的窄面水流量也在设计流量范围内逐步增加。
本领域技术人员可以理解的是,随着连铸机拉速的增大,无论是连铸结晶器的宽面,还是连铸结晶器的窄面,其所吸收的钢水的热量都将大大增加,这是就需要迅速补充足够的冷却水来将宽面和窄面上的热量带走,以便使铸锭的宽面和窄面能够快速均匀的冷却,而本发明中所公开的方法,正是从该需求出发,在连铸机拉速增大时,增大连铸结晶器宽面水流量和窄面水流量,从而相应提升连铸结晶器的冷却能力,显著降低钢坯纵裂率,提升钢坯铸造质量,降低生产成本。
具体实施方式
本发明的核心在于提供一种连铸结晶器的水流控制方法,以便能够有效降低钢坯的纵裂率,提升钢坯的铸造质量,降低生产成本。
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明所公开的连铸结晶器的水流控制方法,核心在于,随着连铸机拉速的提升,连铸结晶器的宽面水流量在设计流量范围内逐步增加,连铸结晶器的窄面水流量也在设计流量范围内逐步增加。
随着连铸机拉速的增大,无论是连铸结晶器的宽面,还是连铸结晶器的窄面,其所吸收的钢水的热量都将大大增加,这是就需要迅速补充足够的冷却水来将宽面和窄面上的热量带走,以便使铸锭的宽面和窄面能够快速均匀的冷却,而上述实施例中所公开的方法,正是从该需求出发,在连铸机拉速增大时,增大连铸结晶器宽面水流量和窄面水流量,从而相应提升连铸结晶器的冷却能力,显著降低钢坯纵裂率,提升钢坯铸造质量,降低生产成本。
更进一步的,在此基础上,申请人经过长期实验发现,当连铸结晶器的宽面热流密度和窄面热流密度比值在一定范围内时,钢坯的纵裂率会显著下降,若结晶器的宽面热流密度为q1,窄面热流密度为q2,当0.85≤q1/q2≤0.95时能够显著提高钢坯的质量。
本领域技术人员能够理解的是,针对不同型号的连铸机而言,其宽面水流的设计流量会不相同,窄面水流的设计流量也会不同,但是只要保证其宽面热流密度和窄面热流密度在上述范围内,即可显著提高钢坯的铸造质量。
本发明实施例中以1650mm连铸机为例,其结晶器的宽面水流量的设计流量为Q1,窄面水流量的设计流量为Q2,其中,3100L/min≤Q1≤4200L/min,450L/min≤Q2≤480L/min,该连铸机在正常运行时的拉速为V,0.3m/min≤V≤1.8m/min。
本领域技术人员可以理解的是,随着速度的增加,宽面水流量以及窄面水流量可以连续增加,也可呈阶梯式跳跃增加,通过实际生产验证,申请人还将连铸机拉速分成了不同的几个阶段,在任意一个速度阶段内,均对应一种宽面水流量和窄面水流量,如下表所示:
表1 1650mm连铸机优化前宽窄面水流量
表2 1650mm连铸机优化后宽窄面水流量
需要进行说明的是,当速度≤0.3m/min时,是连铸机从启动开始逐步到达正常运行速度的过程,上述表格中,任意一个速度阶段中,最小的端点值均包含在前一个速度阶段中。
在相同拉速(0.9m/min),相同的断面(1500mm×230mm)下,经过实际测量,优化后的进回水温差提高了0.7℃~1.3℃,这表明钢水与冷却水在连铸结晶器的宽面和窄面处进行了更为充分的换热。
漏钢预报热电偶检测的温度,反映的是不同位置的铜板温度,在相同拉速(0.9m/min),相同的断面(1500mm×230mm)下,通过对比优化前后同一位置热电偶检测温度后发现,优化后各排检测平均温度降低了4.67~19.56℃,也就是同一位置铜板温度降低了4.67~19.56℃,这同样表明钢水与冷却水在连铸结晶器的宽面和窄面处进行了更为充分的换热。
实际统计发现,自优化后,1650mm连铸机的铸坯边纵裂率由0.65%下降至0.5%,由于钢厂每年的铸坯都在几百万吨,根据因纵裂原因报废的比率,可以计算出仅此一项每年就可为钢厂节约成本近百万元。
经过优化后的连铸结晶器,减少了因为纵裂造成的生产线停滞,提高了连铸机的生产效率,同时还降低了铸坯手工清理员的劳动强度。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (5)

1.一种连铸结晶器的水流控制方法,其特征在于,随着连铸机拉速的提升,所述连铸结晶器的宽面水流量在设计流量范围内逐步增加,所述连铸结晶器的窄面水流量也在设计流量范围内也逐步增加。
2.如权利要求1所述的水流控制方法,其特征在于,所述连铸结晶器的宽面热流密度为q1,窄面热流密度为q2,其中,0.85≤q1/q2≤0.95。
3.如权利要求1所述的连铸结晶器的水流控制方法,其特征在于,所述连铸机为1650mm连铸机,所述连铸结晶器的宽面水流量的设计流量为Q1,其中,3100L/min≤Q1≤4200L/min。
4.如权利要求3所述的连铸结晶器的水流控制方法,其特征在于,所述连铸结晶器的窄面水流量的设计流量为Q2,其中,450L/min≤Q2≤480L/min。
5.如权利要求4所述的连铸结晶器的水流控制方法,其特征在于,所述连铸机的正常运行拉速为V,其中,0.3m/min≤V≤1.8m/min。
CN201710252979.5A 2017-04-18 2017-04-18 一种连铸结晶器的水流控制方法 Pending CN106984786A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710252979.5A CN106984786A (zh) 2017-04-18 2017-04-18 一种连铸结晶器的水流控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710252979.5A CN106984786A (zh) 2017-04-18 2017-04-18 一种连铸结晶器的水流控制方法

Publications (1)

Publication Number Publication Date
CN106984786A true CN106984786A (zh) 2017-07-28

Family

ID=59415280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710252979.5A Pending CN106984786A (zh) 2017-04-18 2017-04-18 一种连铸结晶器的水流控制方法

Country Status (1)

Country Link
CN (1) CN106984786A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110961592A (zh) * 2019-12-16 2020-04-07 唐山钢铁集团有限责任公司 一种高拉速薄板坯连铸控制漏钢的方法
CN113128030A (zh) * 2021-03-31 2021-07-16 北京首钢股份有限公司 一种结晶器卷渣故障判定方法和装置
CN114523081A (zh) * 2022-02-09 2022-05-24 天铁热轧板有限公司 一种控制连铸普碳钢板坯三角区裂纹的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237268A (ja) * 2006-03-10 2007-09-20 Jfe Steel Kk 鋼の高速鋳造方法
CN101876024A (zh) * 2009-04-30 2010-11-03 宝山钢铁股份有限公司 一种供管坯高铬含n双相不锈钢连铸小方坯的生产方法
CN102441648A (zh) * 2010-10-08 2012-05-09 攀钢集团钢铁钒钛股份有限公司 连铸汽车大梁用钢板坯的方法
JP5217785B2 (ja) * 2008-08-26 2013-06-19 Jfeスチール株式会社 鋼の連続鋳造方法
CN104057053A (zh) * 2013-06-14 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 一种低合金钢宽厚板坯的连铸方法
CN105414512A (zh) * 2015-11-26 2016-03-23 首钢京唐钢铁联合有限责任公司 一种倒角结晶器铸坯角部横裂纹的控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237268A (ja) * 2006-03-10 2007-09-20 Jfe Steel Kk 鋼の高速鋳造方法
JP5217785B2 (ja) * 2008-08-26 2013-06-19 Jfeスチール株式会社 鋼の連続鋳造方法
CN101876024A (zh) * 2009-04-30 2010-11-03 宝山钢铁股份有限公司 一种供管坯高铬含n双相不锈钢连铸小方坯的生产方法
CN102441648A (zh) * 2010-10-08 2012-05-09 攀钢集团钢铁钒钛股份有限公司 连铸汽车大梁用钢板坯的方法
CN104057053A (zh) * 2013-06-14 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 一种低合金钢宽厚板坯的连铸方法
CN105414512A (zh) * 2015-11-26 2016-03-23 首钢京唐钢铁联合有限责任公司 一种倒角结晶器铸坯角部横裂纹的控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
曾智: "高拉速条件下板坯连铸结晶器冷却研究", 《第十八届(2014年)全国炼钢学术会议论文集》 *
杨军: "《铸坯成型理论》", 31 March 2015, 冶金工业出版社 *
胡贤军: "结晶器冷却水量控制", 《重型机械》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110961592A (zh) * 2019-12-16 2020-04-07 唐山钢铁集团有限责任公司 一种高拉速薄板坯连铸控制漏钢的方法
CN110961592B (zh) * 2019-12-16 2021-08-13 唐山钢铁集团有限责任公司 一种高拉速薄板坯连铸控制漏钢的方法
CN113128030A (zh) * 2021-03-31 2021-07-16 北京首钢股份有限公司 一种结晶器卷渣故障判定方法和装置
CN113128030B (zh) * 2021-03-31 2024-02-27 北京首钢股份有限公司 一种结晶器卷渣故障判定方法和装置
CN114523081A (zh) * 2022-02-09 2022-05-24 天铁热轧板有限公司 一种控制连铸普碳钢板坯三角区裂纹的方法
CN114523081B (zh) * 2022-02-09 2024-03-22 天铁热轧板有限公司 一种控制连铸普碳钢板坯三角区裂纹的方法

Similar Documents

Publication Publication Date Title
CN103060622B (zh) 用连续铸轧法生产汽车散热片用铝-锰-锌-钪铝合金箔
US11913105B2 (en) High-efficiency and short-process method for preparing a high-strength and high-conductivity copper alloy
CN101642774B (zh) GCr15轴承钢大方坯连铸动态轻压下工艺
CN102615491B (zh) 铜材的加工方法
CN106984786A (zh) 一种连铸结晶器的水流控制方法
CN103484736A (zh) 一种超高强6000系铝合金及其制备方法
CN101648212A (zh) 预应力钢swrh82b大方坯连铸动态轻压下工艺
CN106566946A (zh) 稀土铜合金玻璃模具及其制备方法
CN203091693U (zh) 一种带纵向凹槽的组合结晶器铜板
CN108359836A (zh) 一种基于亚快速凝固的Cu-Cr-Zr合金薄带的制备方法
CN105821265A (zh) 一种大截面厚壁合金型材及其生产工艺
CN111347031B (zh) 一种薄带连铸用坝堰式过渡包
CN102380518A (zh) 一种生产无氧变压器铜带新的生产工艺
CN104451413A (zh) 一种硬线钢盘条
CN201264078Y (zh) 块状凸起湍流式高效冷却连铸结晶器
CN104232918A (zh) 电渣熔铸高效散热结晶器
CN1736624A (zh) 高碳钢盘条生产工艺技术
CN201906802U (zh) 一种分段式水平连续铸锭装置
CN103741018A (zh) 一种轻型汽车大梁用热轧h型钢的生产方法
CN203109189U (zh) 板坯连铸浇注方坯的新型结晶器
CN104889412B (zh) 旋筒式风冷浇铸机
JP5113413B2 (ja) アルミニウム鋳塊の鋳造方法
CN110846533A (zh) 一种基于亚快速凝固的Cu-Ni-Si合金薄带的制备方法
CN201020516Y (zh) 真空细等轴晶铸锭
CN201120460Y (zh) 双引式连续铸造装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170728