CN106971241A - 基于模糊神经网络预测污水水质数据的方法 - Google Patents

基于模糊神经网络预测污水水质数据的方法 Download PDF

Info

Publication number
CN106971241A
CN106971241A CN201710159923.5A CN201710159923A CN106971241A CN 106971241 A CN106971241 A CN 106971241A CN 201710159923 A CN201710159923 A CN 201710159923A CN 106971241 A CN106971241 A CN 106971241A
Authority
CN
China
Prior art keywords
training
sample
neutral net
fuzzy
water quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710159923.5A
Other languages
English (en)
Other versions
CN106971241B (zh
Inventor
琚春华
陈冠宇
鲍福光
王学成
汪磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Gongshang University
Original Assignee
Zhejiang Gongshang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Gongshang University filed Critical Zhejiang Gongshang University
Priority to CN201710159923.5A priority Critical patent/CN106971241B/zh
Publication of CN106971241A publication Critical patent/CN106971241A/zh
Application granted granted Critical
Publication of CN106971241B publication Critical patent/CN106971241B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/152Water filtration

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Activated Sludge Processes (AREA)

Abstract

本发明为一种基于模糊神经网络预测污水水质数据的方法,包括以下步骤:收集训练和测试与系统所需要的样本;对所有训练样本进行聚类;对每条模糊规则对应的神经网络NNm进行训练,m代表模糊规则的个数,训练稳定后,将归一化后的关键水质指标作为预测样本输入模糊神经网络中进行对干粉投药量的预测。本发明的有益效果在于:企业就可以根据预测的水质数据,做到基于预测模型的泵站流量控制,以及确定污水处理时投放微生物、药剂的量和时间点,克服了传统的污水处理时凭经验判断泵站流量和添加药剂的人工操作,为污水的智能处理提供了强大的助力,具有良好的实际应用价值。

Description

基于模糊神经网络预测污水水质数据的方法
技术领域
本发明涉及智能污水处理领域,具体涉及一种基于模糊神经网络的智能污水处理方法,融入了环境情景等因素。特别适用于污水处理厂根据水质变化确定干粉投药量。
技术背景
水是生命之源,它是人们赖以生存和发展的不可或缺的重要资源。但水资源是非常有限的,目前全世界的淡水资源仅占总水量的2.5%,而这些淡水资源中,近70%以两极冰盖和高山冰川的形式存在,难以被人们利用。我国水资源形势也不容乐观,人均水资源只有世界人均水平的四分之一,是世界人均水资源贫水国家之一。我国一方面严重缺水,另一方面因为生产工艺落后,水资源治理不善,乱排放污水,使得有限的水资源受到严重污染,这使得水资源环境雪上加霜。
在目前大多数的污水处理厂中,其智能控制系统仅具备数据采集与简单控制的功能,缺乏全局控制、系统优化与调整反馈模块;实际运行队伍中又相对缺乏高水平专业技术人员,生产中多以运行人员的经验为主导,海量监测数据未得到有效挖掘与应用,污水处理工艺调整时缺乏必要的科学量化依据。上述原因,导致现有污水处理厂智能控制系统能发挥的作用比较有限,仅作为“监控系统”,无法达到智能处理的要求。
水资源环境的数据存在以下的特征:1)在水资源系统中,污染物之间存在错综复杂的、难以确定的相关关系,进行综合评价时具有模糊性。2)根据水质的特点和环境指标来确定水质状况时,人为的因素较大,存在模糊性。3)水质变化是一个动态的过程,时常会忽略其的连续性,因而也存在模糊性。
针对水质数据的复杂性及模糊性,结合环境情景等因素,构建模糊神经网络(Fuzzy Neural Network,即FNN)的数学模型可以达到较优的智能控制效果及性能。人工神经网络(Artificial Neural Network,即ANN)是模仿人脑中的神经元网络,具备自学习能力和联系存储能力,人工干涉较少,精度较高,但缺点是它不能处理模糊信息,不能应用已有的知识经验。而模糊系统相对于神经网络而言,模糊系统的规则靠专家提供或设计,难以自动获取,但它对专家知识利用较好,推理过程容易理解。将这两者结合起来,起到了很多的互补效果,不仅具有自学习、联系、识别、自适应等功能,还能针对水质数据进行模糊信息处理。
发明内容
本发明的目的在于克服现有技术的不足之处,提出一种预测及评价污水处理厂生化水质特点并可以达到智能控制投药量的方法。
一种基于模糊神经网络预测污水水质数据的方法,包括以下步骤:
收集训练和测试与系统所需要的样本:提取和水区运行情况相关的多种水质指标,选择多种关键水质指标,同时选取出水后的状况,将选择出的多种关键水质指标进行归一化处理,将归一化后的多种关键水质指标以及出水后的状况作为样本,样本包括多个输入和一个输出并记做(xi,yi);
对所有训练样本进行聚类:根据出水后的状况,将所述样本聚类为m组样本,根据这m组聚类好的样本得到m条模糊规则,每个组对应一条模糊规则,每条模糊规则对应一条神经网络NNm,m代表模糊规则的个数;
原始训练样本集中的某个样本,被聚类到第i组,则所述训练样本的输出部分表示为神经网络NNmf,表达式表示为式中j=1,…,m,神经网络NNmf的训练样本包括若干个输入和m个输出,对神经网络NNmf进行训练;
对每条模糊规则对应的神经网络NNm采用与训练神经网络NNmf相同方式进行训练,m代表模糊规则的个数;
神经网络NNmf和神经网络NNm训练稳定后,将归一化后的关键水质指标作为预测样本输入模糊神经网络中进行对干粉投药量的预测,通过神经网络的联想、分类和识别能力,则可获得水质状况及所需干粉投药量。
作为一种可实施方式,所述对神经网络NNmf进行训练的具体过程为:
将所述训练样本中选取的关键水质指标进行归一化处理;
给出训练误差的允许值ε、β、μ0及权值和阈值所组成的向量x(k),当k=0时,x(0)为初始化权值和阈值组成的向量,k表示迭代次数;
当k=0,μ=μ0,得到网络输出及误差指标函数E(x(k));k表示迭代次数,μ表示比例系数,I表示单位矩阵;
计算雅可比矩阵J(x),计算公式如下:
根据雅可比矩阵J(x)得到公式Δx=-[JT(x)J(x)+μI]-1J(x)e(x),求得Δx,Δx是第k次迭代和第(k+1)次迭代的权重和阈值所组成的向量,JT(x)是J(x)矩阵的转置,μ表示比例系数,x表示水质指标;
若E(x(k))<ε,则停止训练;
当迭代次数为k+1时,以x(k+1)为权值和阈值组成的矩阵来计算E(x(k+1)),若E(x(k +1))<E(x(k)),则更新权值和阈值组成的矩阵x(k),更新方法为:令x(k)=x(k+1),令μ=μ/β,回到计算网络输出及误差指标函数E(x(k))步骤,继续进行训练;若E(x(k+1))≥E(x(k)),则不更新权值和阈值组成的矩阵,令μ=μ*β,进入计算Δx步骤,继续进行训练。
作为一种可实施方式,根据公式
求得Im的数值,nc是测试评价用的样本数,是m组内的样本数,是m组内对应xj的输出样本,xj表示输入,Im表示矩阵,μm表示隶属度,当Im的值在网络NNmf的训练中等于小于Δx时即可停止训练。
本发明的创新点:1)在污水处理中,污水厂并没有关注及深入挖掘诸如季节、天气、气温等环境因素对污水水质指标数据的定性和定量影响,在污水的处理环节中并没有融入环境情景因素;2)针对水质数据模糊的特性,应用模糊神经网络对关键水质指标进行模糊信息处理,系统达到了较优的效果,对水质监测及预测有着重要意义。
本发明的有益效果在于:企业就可以根据预测的水质数据,做到基于预测模型的泵站流量控制,以及确定污水处理时投放微生物、药剂的量和时间点,克服了传统的污水处理时凭经验判断泵站流量和添加药剂的人工操作,为污水的智能处理提供了强大的助力,具有良好的实际应用价值。
附图说明
图1是本发明方法的具体实现流程图。
具体实施方式
下面结合附图说明和具体实施方式对本发明做进一步详细说明。
示例性发明
一种基于模糊神经网络预测污水水质数据的方法,如图1所示,包括以下步骤:
S1、收集训练和测试与系统所需要的样本:提取和水区运行情况相关的多种水质指标,选择多种关键水质指标,同时选取出水后的状况,将选择出的多种关键水质指标进行归一化处理,将归一化后的多种关键水质指标以及出水后的状况作为样本,样本包括多个输入和一个输出并记做(xi,yi);
S2、对所有训练样本进行聚类:根据出水后的状况,将所述样本聚类为m组样本,根据这m组聚类好的样本得到m条模糊规则,每个组对应一条模糊规则,每条模糊规则对应一条神经网络NNm,m代表模糊规则的个数;
S3、原始训练样本集中的某个样本,被聚类到第i组,则所述训练样本的输出部分表示为神经网络NNmf,表达式表示为式中j=1,…,m,神经网络NNmf的训练样本包括若干个输入和m个输出,对神经网络NNmf进行训练;
S4、对每条模糊规则对应的神经网络NNm采用与训练神经网络NNmf相同方式进行训练,m代表模糊规则的个数;
S5、神经网络NNmf和神经网络NNm训练稳定后,将归一化后的关键水质指标作为预测样本输入模糊神经网络中进行对干粉投药量的预测,通过神经网络的联想、分类和识别能力,则可获得水质状况及所需干粉投药量。
所述对神经网络NNmf进行训练的具体过程为:
将所述训练样本中选取的关键水质指标进行归一化处理;
给出训练误差的允许值ε、β、μ0及权值和阈值所组成的向量x(k),当k=0时,x(0)为初始化权值和阈值组成的向量,k表示迭代次数;
当k=0,μ=μ0,得到网络输出及误差指标函数E(x(k));k表示迭代次数,μ表示比例系数;
计算雅可比矩阵J(x),计算公式如下:
根据雅可比矩阵J(x)得到公式Δx=-[JT(x)J(x)+μI]-1J(x)e(x),求得Δx,Δx是第k次迭代和第(k+1)次迭代的权重和阈值所组成的向量,JT(x)是J(x)矩阵的转置,μ表示比例系数,I表示单位矩阵,x表示水质指标;
若E(x(k))<ε,则停止训练;
当迭代次数为k+1时,以x(k+1)为权值和阈值组成的矩阵来计算E(x(k+1)),若E(x(k +1))<E(x(k)),则更新权值和阈值组成的矩阵x(k),更新方法为:令x(k)=x(k+1),令μ=μ/β,回到计算网络输出及误差指标函数E(x(k))步骤,继续进行训练;若E(x(k+1))≥E(x(k)),则不更新权值和阈值组成的矩阵,令μ=μ*β,进入计算Δx步骤,继续进行训练。
根据公式
求得Im的数值,nC是测试评价用的样本数,是m组内的样本数,是m组内对应xj的输出样本,xj表示输入,Im表示矩阵,μm表示隶属度,当Im的值在网络NNmf的训练中等于小于Δx时即可停止训练。
经过实验证明,当m=4时,效果最好,下面以样本模型聚类为4组为例:
本发明提出的基于模糊神经网络预测污水水质数据的方法,包括以下步骤:
收集训练和测试样本:提取与水区运行情况相关的多种水质指标,并选择关键的属性参数,将归一化后的多种关键水质指标与已知的出水后状况作为原始训练集,样本由多个输入、一个输出构成,而后将收集的输入和输出样本(xi,yi)适当分成两个部分,一部分用来训练网络,另一部分用来测试和评价系统的性能;
对所有训练样本进行聚类:根据生化出水状况,将样本模型聚类为4组,即“浑浊”I组,“较浑浊”II组、“较清澈”III组和“清澈”IV组,这样就可以得到4条模糊规则,其中每个组对应于一条模糊规则;
神经网络NNm的训练样本由多个输入、4个输出构成,定义如下:如果原始训练样本集中的某个样本,被聚类到第i组,则该样本的输出部分为
用L-M优化算法训练用于计算模糊规则隶属度的神经网络NNmf,L-M优化算法训练神经网络NNmf的步骤为:
给出训练误差的允许值ε、β、μ0及权值和阈值所组成的向量x(k),当k=0时,x(0)为初始化权值和阈值组成的向量,k表示迭代次数;
当k=0,μ=μ0,得到网络输出及误差指标函数E(x(k));k表示迭代次数,μ表示比例系数,
计算雅可比矩阵J(x),计算公式如下:
根据雅可比矩阵J(x)得到公式Δx=-[JT(x)J(x)+μI]-1J(x)e(x),求得Δx;Δx是第k次迭代和第(k+1)次迭代的权重和阈值所组成的向量,JT(x)是J(x)矩阵的转置;
若E(x(k))<ε,则停止训练;
当迭代次数为k+1时,以x(k+1)为权值和阈值组成的矩阵来计算E(x(k+1)),若E(x(k +1))<E(x(k)),则更新权值和阈值组成的矩阵x(k),更新方法为:令x(k)=x(k+1),令μ=μ/β,回到计算网络输出及误差指标函数E(x(k))步骤,继续进行训练;若E(x(k+1))≥E(x(k)),则不更新权值和阈值组成的矩阵,令μ=μ*β,进入计算Δx步骤,继续进行训练。
用L-M算法依次训练其余4个神经网络NN1~NN4,训练样本为聚类后的四组样本,即每一个神经网络用与该模糊规则对应的分组样本进行训练。
此神经网络采用标准的4层模糊神经网络与之相对应,每层实现其一个功能,分别是:输入层、模糊化层、推理层及清晰层;输入层为网络输入变量误差x1=E,误差变化x2=CE;模糊化层节点的激活函数代表模糊变量的隶属函数,该层的权值wij表示隶属函数的形状,wc=c表示隶属函数的位置,该层的输出代表模糊化的结果;推理层将上一层模的糊化得到的结果两两相乘,代表模糊规则的规则强度。清晰化层根据重心法的去模糊化公式,把规则强度加权求和,输出即为模糊神经网络的输出量。
在神经网络系统中,第一个神经元的激活函数选用高斯径向基函数,其定义为σ>0,由于高斯函数是局部化函数,当u→∞时,f(u→0。
第二个神经元的激活函数选用Log-Migmoid函数,其定义为f(u)=1/(1+exp(-αu)),其中α是Log-Migmoid函数的倾斜参数,改变参数α就可以改变倾斜强度,Log-Migmoid函数的图形是M形的,它是严格的递增函数,可以将神经元的输入范围(-∞,+∞)映射到(0.1);另外Log-Migmoid函数是可微函数适合于训练模糊神经网络,这样训练后的网络用于Log-Migmoid函数的特性可以对其他输入恰当地给出对每条规则的适用度。
在用L-M优化算法训练用于计算模糊规则隶属度的神经网络NNm的过程中,为了防止神经网络NNm的过学习,引入下面的准则函数:
式中,nC是测试评价用的样本数,是M组内的样本数,是M组内对应xj的输出样本,Im表示矩阵,当Im的值在网络NNm的训练中取得最小值时即可停止训练。
整个系统稳定后,即NN1~NN4都训练稳定后,进行干粉投药量预测时,只需将归一化后的多种关键水质指标作为预测样本输入该系统。通过神经网络的联想、分类和识别能力,即可获得水质状况及所需干粉投药量,即样本先输入到求隶属度网络,求出该样本相对于4条模糊规则的4个隶属度u1,u2,u3和u4,再将该样本依次输入其余4个对应模糊规则的网络,分别求出各网络相应的输出g1,g2,g3和g4,在此,g1,g2,g3和g4表示NN1~NN4经过训练后得到的干粉投药量,利用系统输出公式得到最终输出结果,uj表示隶属度。

Claims (3)

1.一种基于模糊神经网络预测污水水质数据的方法,其特征在于包括以下步骤:
收集训练和测试与系统所需要的样本:提取和水区运行情况相关的多种水质指标,选择多种关键水质指标,同时选取出水后的状况,将选择出的多种关键水质指标进行归一化处理,将归一化后的多种关键水质指标以及出水后的状况作为样本,样本包括多个输入和一个输出并记做(xi,yi);
对所有训练样本进行聚类:根据出水后的状况,将所述样本聚类为m组样本,根据这m组聚类好的样本得到m条模糊规则,每个组对应一条模糊规则,每条模糊规则对应一条神经网络NNm,m代表模糊规则的个数;
原始训练样本集中的某个样本,被聚类到第i组,则所述训练样本的输出部分表示为神经网络NNmf,表达式表示为式中j=1,…,m,神经网络NNmf的训练样本包括若干个输入和m个输出,对神经网络NNmf进行训练;
对每条模糊规则对应的神经网络NNm采用与训练神经网络NNmf相同方式进行训练,m代表模糊规则的个数;
神经网络NNmf和神经网络NNm训练稳定后,将归一化后的关键水质指标作为预测样本输入模糊神经网络中进行对干粉投药量的预测,通过神经网络的联想、分类和识别能力,则可获得水质状况及所需干粉投药量。
2.根据权利要求1所述的基于模糊神经网络预测污水水质数据的方法,其特征在于,所述对神经网络NNmf进行训练的具体过程为:
将所述训练样本中选取的关键水质指标进行归一化处理;
给出训练误差的允许值ε、β、μ0及权值和阈值所组成的向量x(k),当k=0时,x(0)为初始化权值和阈值组成的向量,k表示迭代次数;
当k=0,μ=μ0,得到网络输出及误差指标函数E(x(k));k表示迭代次数,μ表示比例系数;
计算雅可比矩阵J(x),计算公式如下:
根据雅可比矩阵J(x)得到公式Δx=-[JT(x)J(x)+μI]-1J(x)e(x),求得Δx,Δx是第k次迭代和第(k+1)次迭代的权重和阈值所组成的向量,JT(x)是J(x)矩阵的转置,μ表示比例系数,I表示单位矩阵,x表示水质指标;
若E(x(k))<ε,则停止训练;
当迭代次数为k+1时,以x(k+1)为权值和阈值组成的矩阵来计算E(x(k+1)),若E(x(k+1))<E(x(k)),则更新权值和阈值组成的矩阵x(k),更新方法为:令x(k)=x(k+1),令μ=μ/β,回到计算网络输出及误差指标函数E(x(k))步骤,继续进行训练;若E(x(k+1))≥E(x(k)),则不更新权值和阈值组成的矩阵,令μ=μ*β,进入计算Δx步骤,继续进行训练。
3.根据权利要求2所述的基于模糊神经网络预测污水水质数据的方法,其特征在于,根据公式
I m = n C n t m + n C &Sigma; i = 1 n t m { y i - g m ( x i ) } 2 + n t m n t m + n C &Sigma; j = 1 n C { y j m - &mu; m ( x j ) g m ( x j ) } 2
求得Im的数值,nC是测试评价用的样本数,是m组内的样本数,是m组内对应xj的输出样本,xj表示输入,Im表示矩阵,μm表示隶属度,当Im的值在网络NNmf的训练中等于小于Δx时即可停止训练。
CN201710159923.5A 2017-03-17 2017-03-17 基于模糊神经网络预测污水水质数据的方法 Active CN106971241B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710159923.5A CN106971241B (zh) 2017-03-17 2017-03-17 基于模糊神经网络预测污水水质数据的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710159923.5A CN106971241B (zh) 2017-03-17 2017-03-17 基于模糊神经网络预测污水水质数据的方法

Publications (2)

Publication Number Publication Date
CN106971241A true CN106971241A (zh) 2017-07-21
CN106971241B CN106971241B (zh) 2020-11-13

Family

ID=59328969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710159923.5A Active CN106971241B (zh) 2017-03-17 2017-03-17 基于模糊神经网络预测污水水质数据的方法

Country Status (1)

Country Link
CN (1) CN106971241B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108052793A (zh) * 2017-12-26 2018-05-18 杭州电子科技大学 一种基于模糊加权elm的移动污染源排放浓度预测方法
CN109165794A (zh) * 2018-09-30 2019-01-08 中冶华天工程技术有限公司 多模式多特征聚合回归的污水处理目标参数预测方法
CN109741007A (zh) * 2018-12-12 2019-05-10 北京航空航天大学 一种航空驾驶舱工作负荷试验的被试人员筛选方法
CN110981021A (zh) * 2019-12-23 2020-04-10 中新国际联合研究院 一种基于模糊bp神经网络的废水高级氧化处理智能加药系统及方法
CN116153437A (zh) * 2023-04-19 2023-05-23 乐百氏(广东)饮用水有限公司 一种饮用水源的水质安全评价与水质预测方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646863A (en) * 1994-03-22 1997-07-08 Morton; Stephen G. Method and apparatus for detecting and classifying contaminants in water
CN105574326A (zh) * 2015-12-12 2016-05-11 北京工业大学 一种基于自组织模糊神经网络的出水氨氮浓度软测量方法
CN105701280A (zh) * 2016-01-05 2016-06-22 浙江大学城市学院 南美白对虾围塘养殖水质预测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646863A (en) * 1994-03-22 1997-07-08 Morton; Stephen G. Method and apparatus for detecting and classifying contaminants in water
CN105574326A (zh) * 2015-12-12 2016-05-11 北京工业大学 一种基于自组织模糊神经网络的出水氨氮浓度软测量方法
CN105701280A (zh) * 2016-01-05 2016-06-22 浙江大学城市学院 南美白对虾围塘养殖水质预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张俊: "《神经网络在水处理加药控制中的应用研究》", 《计算机测量与控制》 *
高凯: "《基于模糊神经网络的城市地下水水质评价研究》", 《西安文理学院学报(自然科学版)》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108052793A (zh) * 2017-12-26 2018-05-18 杭州电子科技大学 一种基于模糊加权elm的移动污染源排放浓度预测方法
CN108052793B (zh) * 2017-12-26 2023-10-31 杭州电子科技大学 一种基于模糊加权elm的移动污染源排放浓度预测方法
CN109165794A (zh) * 2018-09-30 2019-01-08 中冶华天工程技术有限公司 多模式多特征聚合回归的污水处理目标参数预测方法
CN109741007A (zh) * 2018-12-12 2019-05-10 北京航空航天大学 一种航空驾驶舱工作负荷试验的被试人员筛选方法
CN110981021A (zh) * 2019-12-23 2020-04-10 中新国际联合研究院 一种基于模糊bp神经网络的废水高级氧化处理智能加药系统及方法
CN110981021B (zh) * 2019-12-23 2022-08-05 中新国际联合研究院 一种基于模糊bp神经网络的废水高级氧化处理智能加药系统及方法
CN116153437A (zh) * 2023-04-19 2023-05-23 乐百氏(广东)饮用水有限公司 一种饮用水源的水质安全评价与水质预测方法及系统

Also Published As

Publication number Publication date
CN106971241B (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
CN106971241A (zh) 基于模糊神经网络预测污水水质数据的方法
Clarke Models in archaeology
Kisi et al. Modeling groundwater fluctuations by three different evolutionary neural network techniques using hydroclimatic data
Clarke Models and paradigms in contemporary archaeology
Fdez-Riverola et al. CBR based system for forecasting red tides
CN106446942A (zh) 基于增量学习的农作物病害识别方法
Chu et al. Application of Artificial Neural Network in Environmental‎ Water Quality Assessment
CN106529818B (zh) 基于模糊小波神经网络的水质评价预测方法
CN108135003A (zh) 干扰类型识别模型的构建方法和系统
Nourani et al. Application of the Artificial Neural Network to monitor the quality of treated water
CN105892287A (zh) 基于模糊判决的农作物灌溉策略及决策系统
Mayilvaganan et al. ANN and Fuzzy Logic Models for the Prediction of groundwater level of a watershed
Areerachakul et al. Classification and regression trees and MLP neural network to classify water quality of canals in Bangkok, Thailand
CN113033081A (zh) 一种基于som-bpnn模型的径流模拟方法及系统
Kisi et al. Comparison of ANN and ANFIS techniques in modeling dissolved oxygen
Wang et al. A new approach of obtaining reservoir operation rules: Artificial immune recognition system
Shamshiry et al. Comparison of artificial neural network (ANN) and multiple regression analysis for predicting the amount of solid waste generation in a tourist and tropical area—Langkawi Island
CN109408896B (zh) 一种污水厌氧处理产气量多元智能实时监控方法
Hakimi-Asiabar et al. Multi-objective genetic local search algorithm using Kohonen’s neural map
CN105160422B (zh) 基于自组织级联神经网络的污水处理出水总磷预测方法
CN102855404B (zh) 湖库水华应急治理决策方案的筛选方法
CN113191689B (zh) 一种耦合主成分分析与bp神经网络的土地适宜评价方法
Simsek et al. ESTIMATION OF NUTRIENT CONCENTRATIONS IN RUNOFF FROM BEEF CATTLE FEEDLOT USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS.
Sorayya et al. A self organizing map (SOM) guided rule based system for freshwater tropical algal analysis and prediction
CN112862173B (zh) 基于自组织深度置信回声状态网的湖库蓝藻水华预测方法

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant