CN106970353B - 一种基于通信基站三维定位的跟踪与轨迹方法 - Google Patents

一种基于通信基站三维定位的跟踪与轨迹方法 Download PDF

Info

Publication number
CN106970353B
CN106970353B CN201710156027.3A CN201710156027A CN106970353B CN 106970353 B CN106970353 B CN 106970353B CN 201710156027 A CN201710156027 A CN 201710156027A CN 106970353 B CN106970353 B CN 106970353B
Authority
CN
China
Prior art keywords
model
base station
positioning
establishing
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710156027.3A
Other languages
English (en)
Other versions
CN106970353A (zh
Inventor
瞿中
陈宇翔
吴戈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201710156027.3A priority Critical patent/CN106970353B/zh
Publication of CN106970353A publication Critical patent/CN106970353A/zh
Application granted granted Critical
Publication of CN106970353B publication Critical patent/CN106970353B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种基于通信基站三维定位的跟踪与轨迹方法,主要解决现有技术中存在的定位结果为估计值,定位结果不准确,不能计算终端运行轨迹的技术问题。采用基于通信基站三维定位的跟踪与轨迹方法包括根据CHAN算法进行三维室内粗定位出基站采集TOA数据,预处理,建立基站加权投票估值模型,建立度量值拆分模型拆分出真实时延模型,噪声时延模型及干扰时延模型;建立机器学习度量微调模型,建立精确多点三维定位模型;建立精确三维定位优化模型;将精确三维定位优化模型用于精确多点三维定位模型,建立改进终端运动轨迹定位模型完成运动终端轨迹定位的技术方案,较好的解决了该问题,可用于室内三维定位的跟踪与轨迹方法中。

Description

一种基于通信基站三维定位的跟踪与轨迹方法
技术领域
本发明涉及室内定位领域,特别涉及到一种基于通信基站三维定位的跟踪与轨迹方法。
背景技术
从传统GPS导航到大众点评、微信等基于地理位置的消费服务社交软件,定位技术发展日益成熟完善。基于通信基站的定位研究问题,在科研和工业界都吸引了极高的关注。一方面,定位为题与统计信号与处理、最优估计理论、优化算法等诸多领域都有联系,诸如数据拟合、最小二乘估计、半正定规划、流形学习等诸多数学工具都能被应用于求解上述问题。另一面,工业界对于如何高精度的在现有的通信设备上完成以上功能也十分关注。随着无线网络通信的快速发展,提供基于地理位置信息的服务已经成为最具市场前景和发展潜力的业务之一。使用基于运营商无线通信基站的方式对手机进行定位,则可以规避传统室内wifi定位。商用基站的覆盖范围、信号质量均优于WiFi。而且,用户也期望自己的手持终端能够随时保持对基站设备的接入。同时,运营商推进定位服务的盈利模式清晰,在基础的数据服务之外,还可以通过为用户提供增值服务而促进运营商的业务发展。基于无线通信基站的定位技术有着广阔的应用前景和巨大的商业价值。
目前,现有的基于通信基站三维定位的跟踪与轨迹方法大多基于室内密集分布的WiFi设备与手机之间的通信方式。其存在定位结果为估计值,未考虑基站距离终端距离不同对结果的干扰,未考虑非视距传播,定位准确度低;不能计算终端运行轨迹的技术问题。因此,提供一种定位结果为实际值,准确度高,能够计算终端运行轨迹的基于通信基站三维定位的跟踪与轨迹方法就很有必要。
发明内容
本发明所要解决的技术问题是现有技术中存在的定位结果为估计值,未考虑基站距终端距离不同所对结果影响也不相同;未考虑传播环境中非视距传播的影响,造成定位结果不准确,不能计算终端运行轨迹的技术问题。提供一种新的基于通信基站三维定位的跟踪与轨迹方法,该方法具有精确度高,能够计算终端运行轨迹的技术特点。
为解决上述技术问题,本发明采用的技术方案如下:
一种基于通信基站三维定位的跟踪与轨迹方法,基于通信基站三维定位的跟踪与轨迹方法包括根据CHAN算法进行三维室内粗定位,得到基站采集TOA数据,预处理TOA数据,根据LS算法消除多路径误差,基于通信基站三维定位的跟踪与轨迹方法还包括:
(1)建立基站加权投票估值模型,建立度量值拆分模型,根据所述度量值拆分模型拆分出真实时延模型,噪声时延模型及干扰时延模型,建立机器学习度量微调模型,建立精确多点三维定位模型;
所述建立基站加权投票估值模型包括:
(ⅰ)根据所述TOA数据,估计各个基站的定位区域;
(ⅱ)计算各个基站定位区域坐标,依据各基站定位区域交叉程度定义定位区域权值;
(ⅲ)保存所定位区域权值,完成建模;
(2)根据步骤(1)所述精确三维定位模型,建立定位精度与参数关系的模型,用于量化分析定位精度与参数关系变化;依据所述定位精度与参数关系模型建立精确三维定位优化模型;将所述精确三维定位优化模型应用于步骤(1)中精确多点三维定位模型,优化所述终端精确坐标,优化过程包括求解完成最优三维定位精度的最小基站数量建立精确三维定位优化模型;
(3)根据步骤(1)中所述精确三维定位模型建立改进终端运动轨迹定位模型,完成运动终端轨迹定位;所述建立改进终端运动轨迹定位模型包括计算得出定位标识图,两个相邻点的干扰系数和噪声分布相似度大于相似度阈值,判断两个点为真正相邻点,于真正相邻点中间的通信间隙进行插值;根据改进终端运动轨迹定位模型进行轨迹定位运算,完成运动轨迹定位;
所述轨迹定位运算步骤如下:
(A).根据步骤(1)中CHAN算法对所有终端轨迹上的坐标进行精确定位,确定最外围端点坐标;
(B).设置终端坐标存储栈,将起始点入栈;
(C).根据步骤(B),设置步骤(B)中外围端点为起始点,计算起始点噪声及干扰场;根据噪声干扰数据定位噪声干扰相似距离相近坐标点,将噪声干扰相似距离相近坐标点入栈,根据栈顶5点判断运动方向,正确时重复步骤(C),不正确时进入步骤(D);
(D).将栈顶终端坐标点出栈执行步骤(E);
(E).所有端点执行完毕结束,进入步骤(3),所有端点未执行完毕则返回步骤(C)。
上述方案中,为优化,进一步地,所述基于通信基站三维定位的跟踪与轨迹方法还包括根据滑动窗口算法对局部异常部分的位点进行还原处理,所述还原处理包括将原时延模型进行拆解以及将基站采集TOA数据模块化为TOA数据段,识别出相应的受干扰TOA数据区段,整体还原为步骤(1)所述的真实时延模型,剔除时延干扰,计算终端精确的运算轨迹。
进一步地,所述方法还包括根据步骤(2)中精确三维定位优化模型对各个终端进行筛选,定位终端,计算终端与基站之间的距离,验证终端定位的准确性;
①.建立基站间连接信任度模型,用于表征基站之间的协同定位度,包括:
任意两基站以它们之间的距离表征基站信任度,基站信彼此任度值为:
Figure GDA0002452826950000041
其中,数据集中范围为200m,ζ为0-1;
②.建立虚拟基站模型,用于量化基站有效测量范围及基站采集TOA数据信任度;所述建立虚拟基站模型过程包括:
基站采集TOA数据可信度及最终定位精度,以基站为圆心,设置一个表征基站可测范围的同心圆,所述基站采集TOA数据的可信程度由圆心指向圆周方向逐渐变小,所述基站采集TOA数据信任度
Figure GDA0002452826950000042
为:
Figure GDA0002452826950000043
其中;
Figure GDA0002452826950000044
为0-1。
③建立基于基站信任度模型及虚拟基站模型的终端定位模型,根据所述基于基站信任度模型及虚拟基站模型的终端定位模型计算终端坐标精确度,根据终端坐标精确度映射信号干扰比值SINR的地域差异,根据信号干扰比值SINR的地域差异使用上位机计算出三维信号干扰比值SINR的地域差异。
进一步地,所述步骤③中建立基于基站信任度模型及虚拟基站模型的终端定位模型包括:
(A)根据步骤①所述基站信任度模型对所有基站进行分类,得出N个基站测量小组;
(B)根据步骤②所述虚拟基站模型计算所有的基站采集TOA数据信任度
Figure GDA0002452826950000054
(C)根据所述基站采集TOA数据信任度
Figure GDA0002452826950000055
为测量数据TOA权值,以基站测量小组为测量基站,使用步骤(1)中所述精确三维定位优化模型对终端进行精确定位;
其中N为正整数。
进一步地,所述步骤(1)中建立真实时延模型包括:
(1a)建立概率密度函数:
Figure GDA0002452826950000051
(1b)根据步骤(a),得到支路附加时延的概率密度分布模型:
Figure GDA0002452826950000052
所述支路信号附加时延τi(i=1,2,…,n)为一组相互独立的指数分布随机变量;
(1c)根据步骤(b)建立τmin的概率密度函数:
Figure GDA0002452826950000053
(1d)计算实际到达时间为表示τ0i中的最小值τ0min
其中,τms均方根延迟扩展,T为τms在d=1km的中值,d为终端到基站的直线距离,ε是0.5到1的指数分量,ξ为均值为零、标准差σξ为4~6bB的对数正态分布随机变量,n为发送所述信号端对应的传播路径数量,τ0为视距波到达接收端的时间,τmax为时延最大的支路信号的到达时间,τmin=min(τ1…τn)。
进一步地,所述步骤(1)中建立干扰时间模型包括:
(1A)在系统误差和错误信道环境中,建立一个基站时信号到达时间
Figure GDA0002452826950000061
(1B)求解任意两个基站i,j到达时间差为:
Figure GDA0002452826950000062
i,j=1,2,…,m.;
(1C)建立类正态分布函数:
Figure GDA0002452826950000063
(1D)根据步骤(C)的类正态分布函数,利用最小二乘法拟合随机指数分布的信道环境误差(τiminjmin),取
Figure GDA0002452826950000064
时,类正态分布密度曲线是指数分布密度曲线在最小二乘意义下的最优拟合,得到信道环境误差(τiminjmin)为
Figure GDA0002452826950000065
(1E)根据TDOA中系统误差μ0和信道环境误差μij,计算出i基站与j基站信号到达时间差为:
Figure GDA0002452826950000066
所述系统误差μ0和信道环境误差μij具有相同的高斯分布μ~N(0,σ2),方差
Figure GDA0002452826950000067
其中,m为基站数量,
Figure GDA0002452826950000068
为理想条件下信号到达两基站的时间差,
Figure GDA0002452826950000069
为由基站i及基站j检测设备引起的系统误差,t0=cd为视线信号传播时间,c是电波空气中的传播速度,d为终端到基站的直线距离,τ0为系统误差,
Figure GDA0002452826950000071
iminjmin)为服从指数分布的信道环境误差;
进一步地,所述步骤(1)中建立噪声时延模型过程包括:根据噪声强度对基站所测区域进行划分,分析判断噪声强度为曾区域分布,根据噪声强度做出等高线图,得出在所测量区域由区域中心向边缘发散分布的噪声强度。
进一步地,所述步骤(1)中建立机器学习度量微调模型包括稀疏表达,用于将真实时延与噪声时延及干扰时延进行剥离,具体过程为:
定义长度为N的任意离散信号
Figure GDA0002452826950000072
使用基于训练的学习方法,根据ψ及S求解
Figure GDA0002452826950000073
其中,X=[x1,x2...,xn]是TOA数据集,S=[s1,s2,...,sn]稀疏表达,ψ为一组基向量{ψi},θ为信号在正交基下展开的系数。
进一步地,所述步骤(1)所述建立精确多点三维定位模型包括:
(a)利用全基站投票加权估值模型计算基站的权值;
(b)利用噪声时延和干扰时延模型移出所测数据噪声时延和干扰时延;
(c)利用机器学习算法模型对所测数据进行进一步的优化微调;
(d)利用最终精确测量数据和TOA定位算法计算终端精确坐标。
如图1所示,终端在运动过程中,具有连续运动的特点,通过对噪声和干扰时延分析,可知终端在运动过程中所处噪声场是渐变的,干扰也是突变的。并且其运动过程是具有一定方向性的。三维室内定位技术在定位单个终端坐标,具有极高精确度。实际应用中经常会需要确定终端的精确的运动轨迹。通过分析采集的TOA数据集,三维定位模型在测量运动轨迹时,存在少许跳变,与终端实际运行轨迹不符,这是由于算法只考虑了定点精确定位,并未考虑终端运动过程中,噪声、干扰方向性的变化,为进一步提高终端运动轨迹的定位精度,以及定位算法的鲁棒性提出改进终端运动轨迹定位模型。本发明建立新的TOA模型,将基站采集TOA数据拆解为真实时延、噪声时延和干扰时延。噪声时延是在同一场景中由大量数据融合的平均误差时延值,其分布大致满足高斯模型;而干扰时延是所有不可控因素造成的较大偏差时延值。进行全基站加权投票,大量基站投票的重叠区域具有很高的权值,最终加权平均后的值就是我们接下来迭代的初始点。根据机器学习的思想对所有的噪声时延和干扰时延进行稀疏表达,将真实时延和前者进行剖离,即处理后的TOA数据在消去误差后的值具有很高的一致性,而被消去的误差值是相对稀疏的。
通过对噪声和干扰时延分析,如果相邻点的干扰系数和噪声分布相似,则这两个点真正相邻,在两点中间的通信间隙进行插值。为了避免发生错误的数据或极不准确数据的干扰,本发明采用滑动窗口算法对局部异常分布的位点进行还原处理,将原时延模型进行拆解,该还原处理使时延模型与真实时延相近。当终端在室内的某些运动造成了连续的带有干扰的数据时,将基站采集TOA数据模块化为TOA数据段,识别出相应的受干扰TOA数据区段,整体还原真实时延模型,剔除时延干扰,计算终端精确的运算轨迹。
通过去掉噪声时延及干扰时延较大的基站,剩下最少的可以满足定位精度的基站。依据加权投票判定的方式,在每一次迭代中对基站的贡献进行排序,能够保证原1/6的基站获得原1.5倍的定位误差代价,能够满足1米内的定位精度。通过基站间的信任度模型,基站间的协同工作是保证连接稳定性的重要环节,在基站离线时,定位各基站的相对位置和距离,建立距离和数据可靠性模型,以一定距离为边界,建立路由表表示个基站间的信任度。构建虚拟基站以辐射状分析个坐标的定位稳定性,实现了终端无需尝试所有连接实现该位置的定位稳定性和平均连接度数。平均连接度数越大,定位精度越高。
本发明的有益效果:
效果一,提高了移动终端跟踪与轨迹方法的准确性;
效果二,提高了移动终端跟踪与轨迹方法的抗干扰能力。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1,CHAN算法原理示意图。
图2,终端运动定位结果示意图。
图3,精确多点三维定位模型建立流程示意图。
图4,基站间连接信任度模型示意图。
图5,平均连接度数与定位精度之间的关系示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1,
一种基于通信基站三维定位的跟踪与轨迹方法,基于通信基站三维定位的跟踪与轨迹方法包括根据CHAN算法进行三维室内粗定位,得到基站采集TOA数据,预处理TOA数据,根据LS算法消除多路径误差,基于通信基站三维定位的跟踪与轨迹方法还包括:
(1)建立基站加权投票估值模型,建立度量值拆分模型,根据所述度量值拆分模型拆分出真实时延模型,噪声时延模型及干扰时延模型,建立机器学习度量微调模型,建立精确多点三维定位模型;
所述建立基站加权投票估值模型包括:
(ⅰ)根据所述TOA数据,估计各个基站的定位区域;
(ⅱ)计算各个基站定位区域坐标,依据各基站定位区域交叉程度定义定位区域权值;
(ⅲ)保存所定位区域权值,完成建模;
(2)根据步骤(1)所述精确三维定位模型,建立定位精度与参数关系的模型,用于量化分析定位精度与参数关系变化;依据所述定位精度与参数关系模型建立精确三维定位优化模型;将所述精确三维定位优化模型应用于步骤(1)中精确多点三维定位模型,优化所述终端精确坐标,优化过程包括求解完成最优三维定位精度的最小基站数量建立精确三维定位优化模型;
(3)根据步骤(1)中所述精确三维定位模型建立改进终端运动轨迹定位模型,完成运动终端轨迹定位;所述建立改进终端运动轨迹定位模型包括计算得出定位标识图,两个相邻点的干扰系数和噪声分布相似度大于相似度阈值,判断两个点为真正相邻点,于真正相邻点中间的通信间隙进行插值;根据改进终端运动轨迹定位模型进行轨迹定位运算,完成运动轨迹定位;
所述轨迹定位运算步骤如下:
(A).根据步骤(1)中CHAN算法对所有终端轨迹上的坐标进行精确定位,确定最外围端点坐标;
(B).设置终端坐标存储栈,将起始点入栈;
(C).根据步骤(B),设置步骤(B)中外围端点为起始点,计算起始点噪声及干扰场;根据噪声干扰数据定位噪声干扰相似距离相近坐标点,将噪声干扰相似距离相近坐标点入栈,根据栈顶5点判断运动方向,正确时重复步骤(C),不正确时进入步骤(D);
(D).将栈顶终端坐标点出栈执行步骤(E);
(E).所有端点执行完毕结束,进入步骤(3),所有端点未执行完毕则返回步骤(C)。
手持终端的运动轨迹是由多个离散定位点经过曲线拟合形成的一条曲线,生成的曲线中有很明显的中断,曲线中断部分是因为单个终端的不同地点场景与多个基站之间的精确定位关系的影响。
其中,TOA算法使用CHAN算法,基于所述基站和终端的通信时间t作为主要参数。每个基站位置为中心,半径为cti,坐标的移动终端的位置是由以基站构造多个交叉的坐标的圆形基础结构的测定。建立目标终端基站的位置为原点建立坐标系,获得以下方程:
Figure GDA0002452826950000111
其中,(x,y)为待定的终端位置的坐标,(xi,yi)是基站i的坐标,ti为终端和基站1之间的信号传播测量时间,c是恒定光速,n为基站的数量。Chan算法用于非线性方程组TOA定位算法的求解,过程是通过二次最小方差LS估计公式的最优解。
首先,在第一LS里假定的x,y,k是三个独立的未知数,求解线性方程组;假定第二LS,与x,y,k是未知的,重建一组方程以获得最终终端的定位估计,得到:
Figure GDA0002452826950000112
其中K=x2+y2
Figure GDA0002452826950000121
Ri=cti;当n>2时,方程中未知数个数小于方程的个数,即为非线性的超定方程组,由于干扰噪声,测量误差等因素,GaZa=h的n个方程相交于一点而无法获得解,但能满足方程解族:
Figure GDA0002452826950000122
假设矩阵三个未知数,彼此独立的,第二个LS是使用三个未知数是内在联系的构成方程,进行第一个LS估计,得到
Figure GDA0002452826950000123
Za′Ga′=h′其中:
ψ=4BQB;
B=diag(R1,R2,...,Rn);
n=diag(n1,n2,...,nn);
Q=E[nnT];
ni为Ri所对应的误差量;
Figure GDA0002452826950000124
进行第二次LS估计
Figure GDA0002452826950000125
Figure GDA0002452826950000126
根据终端的估计位置为
Figure GDA0002452826950000127
的最终解作为一组的TOA定位算法的位置估计。
其中,步骤(1)中建立真实时延模型包括:
(1a)建立概率密度函数:
Figure GDA0002452826950000131
(1b)根据步骤(a),得到支路附加时延的概率密度分布模型:
Figure GDA0002452826950000132
所述支路信号附加时延τi(i=1,2,…,n)为一组相互独立的指数分布随机变量;
(1c)根据步骤(b)建立τmin的概率密度函数:
Figure GDA0002452826950000133
(1d)计算实际到达时间为表示τ0i中的最小值τ0min
其中,τms均方根延迟扩展,T为τms在d=1km的中值,d为终端到基站的直线距离,ε是0.5到1的指数分量,ξ为均值为零、标准差σξ为4~6bB的对数正态分布随机变量,n为发送所述信号端对应的传播路径数量,τ0为视距波到达接收端的时间,τmax为时延最大的支路信号的到达时间,τmin=min(τ1…τn)。
步骤(1)中建立干扰时间模型包括:
(1A)在系统误差和错误信道环境中,建立一个基站时信号到达时间
Figure GDA0002452826950000134
(1B)求解任意两个基站i,j到达时间差为:
Figure GDA0002452826950000135
i,j=1,2,…,m.;
(1C)建立类正态分布函数:
Figure GDA0002452826950000141
(1D)根据步骤(C)的类正态分布函数,利用最小二乘法拟合随机指数分布的信道环境误差(τiminjmin),取
Figure GDA0002452826950000142
时,类正态分布密度曲线是指数分布密度曲线在最小二乘意义下的最优拟合,得到信道环境误差(τiminjmin)为
Figure GDA0002452826950000143
(1E)根据TDOA中系统误差μ0和信道环境误差μij,计算出i基站与j基站信号到达时间差为:
Figure GDA0002452826950000144
所述系统误差μ0和信道环境误差μij具有相同的高斯分布μ~N(0,σ2),方差
Figure GDA0002452826950000145
其中,m为基站数量,
Figure GDA0002452826950000146
为理想条件下信号到达两基站的时间差,
Figure GDA0002452826950000147
为由基站i及基站j检测设备引起的系统误差,t0=cd为视线信号传播时间,c是电波空气中的传播速度,d为终端到基站的直线距离,τ0为系统误差,
Figure GDA0002452826950000148
iminjmin)为服从指数分布的信道环境误差。i基站与j基站信号到达时间差
Figure GDA0002452826950000149
为TDOA定位信号到达时间差误差分布模型。分析误差分布模型,任何两个基站的到达时间差误差服从是随机变量高斯分布,所示高斯分布具有零均值,所述方差是由系统检测设备的精度和移动通信环境所决定。
步骤(1)中建立噪声时延模型过程包括:根据噪声强度对基站所测区域进行划分,分析判断噪声强度为曾区域分布,根据噪声强度做出等高线图,得出在所测量区域由区域中心向边缘发散分布的噪声强度。
步骤(1)中建立机器学习度量微调模型包括稀疏表达,用于将真实时延与噪声时延及干扰时延进行剥离,具体过程为:
定义长度为N的任意离散信号
Figure GDA0002452826950000151
使用基于训练的学习方法,根据ψ及S求解
Figure GDA0002452826950000152
其中,X=[x1,x2...,xn]是TOA数据集,S=[s1,s2,...,sn]稀疏表达,ψ为一组基向量{ψi},θ为信号在正交基下展开的系数。
机器学习使用归纳、综合,包括研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。基于稀疏性的机器学习方法具有减少计算复杂度,提高原方法性能。通过基于稀疏性的机器学习能有效地提高三维定位的精确程度。通过上述TOA测量数据预处理、LS算法消除多路径误差和分离噪声等步骤后,提高了信号定位的准确率。但多个基站定位一个终端时,仍然存在不可避免的误差。如图3,步骤(1)中建立精确多点三维定位模型包括:
(a)利用全基站投票加权估值模型计算基站的权值;
(b)利用噪声时延和干扰时延模型移出所测数据噪声时延和干扰时延;
(c)利用机器学习算法模型对所测数据进行进一步的优化微调;
(d)利用最终精确测量数据和TOA定位算法计算终端精确坐标。
优选的,所述基于通信基站三维定位的跟踪与轨迹方法还包括根据滑动窗口算法对局部异常部分的位点进行还原处理,所述还原处理包括将原时延模型进行拆解以及将基站采集TOA数据模块化为TOA数据段,识别出相应的受干扰TOA数据区段,整体还原为步骤(1)所述的真实时延模型,剔除时延干扰,计算终端精确的运算轨迹。
如图2所述,本实施例提供的通信基站三维定位的跟踪与轨迹方法数据与实际轨迹结果对比,定位成功率在96%以上。在实际无线电信号传播中,基站所测数据仅在特定范围内有效。
实施例2:
本实施例在实施例1的基础上,进一步优化通信基站三维定位的跟踪与轨迹方法,经过建立基站间连接信任度模型和虚拟基站模型,通过所定位的终端坐标精确度来映射信号干扰比值SINR的地域差异。使用matlab仿真得到数据集的三维信号干扰比值SINR的地域差异。通过基站间的信任度模型,基站间的协同工作是保证连接稳定性的重要环节,在基站离线时,定位各基站的相对位置和距离,建立距离和数据可靠性模型,以一定距离为边界,建立路由表表示个基站间的信任度。构建虚拟基站以辐射状分析个坐标的定位稳定性,实现了终端无需尝试所有连接实现该位置的定位稳定性和平均连接度数。平均连接度数越大,定位精度越高。
本实施例在实施例的基础上进一步增加了以下步骤,数据集中所给范围为200m,包括:建立定位精度与参数关系的模型,用于量化分析定位精度与参数关系变化;依据所述定位精度与参数关系模型建立精确三维定位优化模型;将所述精确三维定位优化模型应用于所述精确多点三维定位模型,优化所述终端精确坐标。所述优化过程为求解完成最优三维定位精度的最小基站数量。
根据优化后的精确三维定位优化模型对各个终端进行筛选,定位终端,计算终端与基站之间的距离,验证终端定位的准确性;
①.如图4,建立基站间连接信任度模型,用于表征基站之间的协同定位度,包括:
任意两基站以它们之间的距离表征基站信任度,基站信彼此任度值为:
Figure GDA0002452826950000161
其中,数据集中范围为200m,ζ为0-1;
②.建立虚拟基站模型,用于量化基站有效测量范围及基站采集TOA数据信任度;所述建立虚拟基站模型过程包括:
基站采集TOA数据可信度及最终定位精度,以基站为圆心,设置一个表征基站可测范围的同心圆,所述基站采集TOA数据的可信程度由圆心指向圆周方向逐渐变小,所述基站采集TOA数据信任度
Figure GDA0002452826950000171
为:
Figure GDA0002452826950000172
其中;
Figure GDA0002452826950000173
为0-1。
③建立基于基站信任度模型及虚拟基站模型的终端定位模型,根据所述基于基站信任度模型及虚拟基站模型的终端定位模型计算终端坐标精确度,根据终端坐标精确度映射信号干扰比值SINR的地域差异,根据信号干扰比值SINR的地域差异使用上位机计算出三维信号干扰比值SINR的地域差异。
步骤③中建立基于基站信任度模型及虚拟基站模型的终端定位模型包括:
(A)根据步骤①所述基站信任度模型对所有基站进行分类,得出N个基站测量小组;
(B)根据步骤②所述虚拟基站模型计算所有的基站采集TOA数据信任度
Figure GDA0002452826950000174
(C)根据所述基站采集TOA数据信任度
Figure GDA0002452826950000175
为测量数据TOA权值,以基站测量小组为测量基站,使用步骤(1)中所述精确三维定位优化模型对终端进行精确定位;
其中N为正整数。
本实施例相对于实施例1,实现了终端无需尝试所有连接实现该位置的定位稳定性和平均连接度数。如图5,平均连接度数越大,定位精度越高。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员能够理解本发明,但是本发明不仅限于具体实施方式的范围,对本技术领域的普通技术人员而言,只要各种变化只要在所附的权利要求限定和确定的本发明精神和范围内,一切利用本发明构思的发明创造均在保护之列。

Claims (9)

1.一种基于通信基站三维定位的跟踪与轨迹方法,基于通信基站三维定位的跟踪与轨迹方法包括根据CHAN算法进行三维室内粗定位,得到基站采集TOA数据,预处理TOA数据,根据LS算法消除多路径误差,其特征在于:基于通信基站三维定位的跟踪与轨迹方法还包括:
(1)建立基站加权投票估值模型,建立度量值拆分模型,根据所述度量值拆分模型拆分出真实时延模型,噪声时延模型及干扰时延模型,建立机器学习度量微调模型,建立精确多点三维定位模型;
所述建立基站加权投票估值模型包括:
(ⅰ)根据所述TOA数据,估计各个基站的定位区域;
(ⅱ)计算各个基站定位区域坐标,依据各基站定位区域交叉程度定义定位区域权值;
(ⅲ)保存所定位区域权值,完成建模;
(2)根据步骤(1)所述精确多点三维定位模型,建立定位精度与参数关系的模型,用于量化分析定位精度与参数关系变化;依据所述定位精度与参数关系模型建立精确三维定位优化模型;将所述精确三维定位优化模型应用于步骤(1)中精确多点三维定位模型得出终端的精确坐标,优化所述终端精确坐标,优化过程包括求解完成最优三维定位精度的最小基站数量建立精确三维定位优化模型;
(3)根据步骤(1)中所述精确多点三维定位模型建立改进终端运动轨迹定位模型,完成运动终端轨迹定位;所述建立改进终端运动轨迹定位模型包括计算得出定位标识图,两个相邻点的干扰系数和噪声分布相似度大于相似度阈值,判断两个点为真正相邻点,于真正相邻点中间的通信间隙进行插值;根据改进终端运动轨迹定位模型进行轨迹定位运算,完成运动轨迹定位;
所述轨迹定位运算步骤如下:
(A).根据CHAN算法对所有终端轨迹上的坐标进行精确定位,确定最外围端点坐标;
(B).设置终端坐标存储栈,将起始点入栈;
(C).根据步骤(B),设置步骤(B)中外围端点为起始点,计算起始点噪声及干扰场;根据噪声干扰数据定位噪声干扰相似距离相近坐标点,将噪声干扰相似距离相近坐标点入栈,根据栈顶5点判断运动方向正确性,正确时重复步骤(C),不正确时进入步骤(D);
(D).将栈顶终端坐标点出栈,执行步骤(E);
(E).所有端点执行完毕结束,进入步骤(3),所有端点未执行完毕则返回步骤(C)。
2.根据权利要求1所述的基于通信基站三维定位的跟踪与轨迹方法,其特征在于:所述基于通信基站三维定位的跟踪与轨迹方法还包括根据滑动窗口算法对局部异常部分的位点进行还原处理,所述还原处理包括将原时延模型进行拆解以及将基站采集TOA数据模块化为TOA数据段,识别出相应的受干扰TOA数据区段,整体还原为步骤(1)所述的真实时延模型,剔除时延干扰,计算终端精确的运算轨迹。
3.根据权利要求1或2所述的基于通信基站三维定位的跟踪与轨迹方法,其特征在于:所述方法还包括根据步骤(2)中精确三维定位优化模型对各个终端进行筛选,定位终端,计算终端与基站之间的距离,验证终端定位的准确性;
①.建立基站间连接信任度模型,用于表征基站之间的协同定位度,包括:
任意两基站以它们之间的距离表征基站信任度,基站彼此信任度值为:
Figure FDA0002746840310000031
其中,数据集中范围为200m,ζ为0-1;
②.建立虚拟基站模型,用于量化基站有效测量范围及基站采集TOA数据信任度,所述建立虚拟基站模型过程包括:
基站采集TOA数据可信度及最终定位精度,以基站为圆心,设置一个表征基站可测范围的同心圆,所述基站采集TOA数据的可信程度由圆心指向圆周方向逐渐变小,所述基站采集TOA数据信任度
Figure FDA0002746840310000032
为:
Figure FDA0002746840310000033
其中;
Figure FDA0002746840310000034
为0-1;
③建立基于基站信任度模型及虚拟基站模型的终端定位模型,根据所述基于基站信任度模型及虚拟基站模型的终端定位模型计算终端坐标精确度,根据终端坐标精确度映射信号干扰比值SINR的地域差异,根据信号干扰比值SINR的地域差异使用上位机计算出三维信号干扰比值SINR的地域差异;d为终端到基站的直线距离。
4.根据权利要求3所述的基于通信基站三维定位的跟踪与轨迹方法,其特征在于:所述步骤③中建立基于基站信任度模型及虚拟基站模型的终端定位模型,包括:
(A)根据步骤①所述基站信任度模型对所有基站进行分类,得出N个基站测量小组;
(B)根据步骤②所述虚拟基站模型计算所有的基站采集TOA数据信任度
Figure FDA0002746840310000035
(C)根据所述基站采集TOA数据信任度
Figure FDA0002746840310000036
为测量数据TOA权值,以基站测量小组为测量基站,使用步骤(2)中所述精确三维定位优化模型对终端进行精确定位;
其中,N为正整数。
5.根据权利要求3所述的基于通信基站三维定位的跟踪与轨迹方法,其特征在于:所述步骤(1)中建立真实时延模型包括:
(1a)建立概率密度函数:
Figure FDA0002746840310000041
(1b)根据步骤(1a),得到支路信号附加时延的概率密度分布模型:
Figure FDA0002746840310000042
所述支路信号附加时延τi为一组相互独立的指数分布随机变量,i=1,2,…,n;
(1c)根据步骤(1b)建立τmin的概率密度函数:
Figure FDA0002746840310000043
(1d)计算实际到达时间为表示τ0i中的最小值τ0min
其中,τms为均方根延迟扩展,T为τms在d=1km的中值,ε是0.5到1的指数分量,ξ为均值为零、标准差σξ为4~6dB的对数正态分布随机变量,n为发送信号的终端对应的传播路径数量,τ0为视距波到达接收端的时间,τmax为时延最大的支路信号的到达时间,τmin=min(τ1…τn)。
6.根据权利要求1或2所述的基于通信基站三维定位的跟踪与轨迹方法,其特征在于:所述步骤(1)中建立干扰时间模型包括:
(1A)在系统误差和错误信道环境中,建立一个基站时信号到达时间
Figure FDA0002746840310000051
(1B)求解任意两个基站i,j到达时间差为:
Figure FDA0002746840310000052
(1C)建立类正态分布函数:
Figure FDA0002746840310000053
(1D)根据步骤(1C)的类正态分布函数,利用最小二乘法拟合随机指数分布的信道环境误差(τiminjmin),取
Figure FDA0002746840310000054
时,类正态分布密度曲线是指数分布密度曲线在最小二乘意义下的最优拟合,得到信道环境误差(τiminjmin)为
Figure FDA0002746840310000055
(1E)根据TDOA中系统误差μ0和信道环境误差μij,计算出i基站与j基站信号到达时间差为:
Figure FDA0002746840310000056
所述系统误差μ0和信道环境误差μij具有相同的高斯分布μ~N(0,σ2),方差
Figure FDA0002746840310000057
其中,m为基站数量,
Figure FDA0002746840310000058
为理想条件下信号到达两基站的时间差,
Figure FDA0002746840310000059
为由基站i及基站j检测设备引起的系统误差,t0=cd为视线信号传播时间,c是电波空气中的传播速度,d为终端到基站的直线距离,τ0为系统误差,
Figure FDA00027468403100000510
iminjmin)为服从指数分布的信道环境误差。
7.根据权利要求1或2所述的基于通信基站三维定位的跟踪与轨迹方法,其特征在于:所述步骤(1)中建立噪声时延模型过程包括:根据噪声强度对基站所测区域进行划分,分析判断噪声强度为区域分布,根据噪声强度做出等高线图,得出在所测量区域由区域中心向边缘发散分布的噪声强度。
8.根据权利要求5所述的基于通信基站三维定位的跟踪与轨迹方法,其特征在于:所述步骤(1)中建立机器学习度量微调模型用于将真实时延与噪声时延及干扰时延进行剥离,包括:
定义长度为N的任意离散信号
Figure FDA0002746840310000061
使用基于训练的学习方法,根据ψ及S求解
Figure FDA0002746840310000062
其中,X=[x1,x2...,xn]是TOA数据集,S=[s1,s2,...,sn]稀疏表达,θ为信号在正交基下展开的系数;T为τms在d=1km的中值,Ψ为一组基向量{ψi}。
9.根据权利要求1或2所述的基于通信基站三维定位的跟踪与轨迹方法,其特征在于:所述步骤(1)所述建立精确多点三维定位模型包括:
(a)利用全基站投票加权估值模型计算基站的权值;
(b)利用噪声时延和干扰时延模型移出所测数据噪声时延和干扰时延;
(c)利用机器学习算法模型对所测数据进行进一步的优化微调;
(d)利用最终精确测量数据和TOA定位算法计算终端精确坐标。
CN201710156027.3A 2017-03-16 2017-03-16 一种基于通信基站三维定位的跟踪与轨迹方法 Active CN106970353B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710156027.3A CN106970353B (zh) 2017-03-16 2017-03-16 一种基于通信基站三维定位的跟踪与轨迹方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710156027.3A CN106970353B (zh) 2017-03-16 2017-03-16 一种基于通信基站三维定位的跟踪与轨迹方法

Publications (2)

Publication Number Publication Date
CN106970353A CN106970353A (zh) 2017-07-21
CN106970353B true CN106970353B (zh) 2021-01-05

Family

ID=59329832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710156027.3A Active CN106970353B (zh) 2017-03-16 2017-03-16 一种基于通信基站三维定位的跟踪与轨迹方法

Country Status (1)

Country Link
CN (1) CN106970353B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107274714B (zh) * 2017-07-25 2019-10-18 中国联合网络通信集团有限公司 停车位推送方法及装置
CN108492564B (zh) * 2018-04-18 2020-08-07 山东省交通规划设计院 基于路网匹配测量高速公路车辆行驶速度的方法及系统
CN108650629B (zh) * 2018-04-26 2020-04-03 兰州理工大学温州泵阀工程研究院 一种基于无线通信基站的室内三维定位算法
CA3104580A1 (en) 2018-06-22 2019-12-26 Humanitas Solutions Inc. Method and system for determining a position of a plurality of transmitting nodes
CN111784730B (zh) * 2020-07-01 2024-05-03 杭州海康威视数字技术股份有限公司 一种对象跟踪方法、装置、电子设备及存储介质
CN111970641B (zh) * 2020-07-28 2022-06-14 国网上海市电力公司 一种基于tdoa的定位追踪方法
US20230397152A1 (en) * 2020-10-30 2023-12-07 Purple Mountain Laboratories Method and Apparatus for Locating Terminal, Computer Device, and Storage Medium
CN113099470B (zh) * 2021-03-14 2023-04-14 长安通信科技有限责任公司 一种基站探测方法及系统、计算机可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281566A (zh) * 2011-08-10 2011-12-14 周小伟 具有自动修正功能的无线基站定位数据采集方法
CN102547827A (zh) * 2010-12-30 2012-07-04 展讯通信(上海)有限公司 非可视路径的鉴别方法及移动终端定位方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547827A (zh) * 2010-12-30 2012-07-04 展讯通信(上海)有限公司 非可视路径的鉴别方法及移动终端定位方法
CN102281566A (zh) * 2011-08-10 2011-12-14 周小伟 具有自动修正功能的无线基站定位数据采集方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A 3-D RSS Distribution Model Based on Statistical Properties for Indoor Localization Systems;Chang Zhao et al.;《2015 IEEE/CIC International Conference on Communications in China(ICCC)》;20160407;1-6 *
一种基于TOA定位的CHAN改进算法;杨天池 等;《电子学报》;20090430;第37卷(第4期);819-822 *
一种无线定位非视距误差消除算法研究;邹强;《重庆邮电大学学报(自然科学版)》;20120229;第24卷(第1期);114-117 *

Also Published As

Publication number Publication date
CN106970353A (zh) 2017-07-21

Similar Documents

Publication Publication Date Title
CN106970353B (zh) 一种基于通信基站三维定位的跟踪与轨迹方法
CN106851821B (zh) 一种基于无线通信基站的室内三维定位方法
CN109963287B (zh) 天线方向角优化方法、装置、设备及介质
CN106912105B (zh) 基于pso_bp神经网络的三维定位方法
CN109672973B (zh) 一种基于最强ap的室内定位融合方法
WO2019062734A1 (zh) 基于Wi-Fi热点的室内定位方法及装置
CN105044662A (zh) 一种基于wifi信号强度的指纹聚类多点联合室内定位方法
CN112218330B (zh) 定位方法及通信装置
CN109490826B (zh) 一种基于无线电波场强rssi的测距与位置定位方法
CN109348403B (zh) 一种异构网络环境中面向指纹定位的基站部署优化方法
CN110049549B (zh) 基于WiFi指纹的多融合室内定位方法及其系统
Ning et al. Outdoor location estimation using received signal strength-based fingerprinting
CN112601173B (zh) 5g定位真值检测与攻击溯源方法、系统、设备及应用
CN111148030A (zh) 指纹数据库的更新方法、装置、服务器及存储介质
Yang et al. Research on 3D positioning of handheld terminal based on particle swarm optimization
CN108650629A (zh) 一种基于无线通信基站的室内三维定位算法
Li et al. Cramer-rao lower bound analysis of data fusion for fingerprinting localization in non-line-of-sight environments
Torres-Sospedra et al. Scalable and efficient clustering for fingerprint-based positioning
WO2021259372A1 (zh) 无线信号传播预测方法及装置
CN110856100B (zh) 基于5g信号的终端定位及定位模型构建的方法和装置
Zhang et al. Analysis of the NLOS channel environment of TDOA multiple algorithms
Assayag et al. Indoor positioning system using synthetic training and data fusion
CN113970762B (zh) 一种多级干扰源定位方法及系统
Zheng et al. RSS-based indoor passive localization using clustering and filtering in a LTE network
Wu et al. Research on RSS based indoor location method

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant