CN106968931B - 压缩机驱动系统及其的控制方法、装置 - Google Patents

压缩机驱动系统及其的控制方法、装置 Download PDF

Info

Publication number
CN106968931B
CN106968931B CN201710352185.6A CN201710352185A CN106968931B CN 106968931 B CN106968931 B CN 106968931B CN 201710352185 A CN201710352185 A CN 201710352185A CN 106968931 B CN106968931 B CN 106968931B
Authority
CN
China
Prior art keywords
frequency
vibration frequency
bat
compressor
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710352185.6A
Other languages
English (en)
Other versions
CN106968931A (zh
Inventor
张国柱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GD Midea Air Conditioning Equipment Co Ltd
Original Assignee
Guangdong Midea Refrigeration Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Midea Refrigeration Equipment Co Ltd filed Critical Guangdong Midea Refrigeration Equipment Co Ltd
Priority to CN201710352185.6A priority Critical patent/CN106968931B/zh
Priority to PCT/CN2017/091125 priority patent/WO2018209773A1/zh
Publication of CN106968931A publication Critical patent/CN106968931A/zh
Application granted granted Critical
Publication of CN106968931B publication Critical patent/CN106968931B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明公开了一种压缩机驱动系统及其的控制方法、装置,所述方法包括以下步骤:获取压缩机的转速波动频率,并获取输入交流电源的频率;根据转速波动频率和输入交流电源的频率获取拍振频率;以及根据拍振频率对压缩机的运行频率进行调节,以对压缩机进行防拍振控制。该方法通过根据压缩机的转速波动频率和输入交流电源频率来对压缩机进行防拍振控制,以避免因拍振现象而引起的噪音问题。

Description

压缩机驱动系统及其的控制方法、装置
技术领域
本发明涉及电机控制技术领域,特别涉及一种压缩机驱动系统的控制方法、一种计算机存储介质、一种压缩机驱动系统的控制装置和一种压缩机驱动系统。
背景技术
随着消费者对机电产品节能性要求的提升,效率更高的变频电机驱动器得到了越来越广泛的应用。如图1所示,常规变频驱动器的直流母线电压处于稳定状态,逆变部分与输入交流电压相对独立,从而使逆变部分的控制无需考虑输入电压的瞬时变化,便于控制方法的实现。然而,这种设计方法需要配备容值较大的电解电容,使得驱动器体积变大,成本提升,而且电解电容的寿命有限,其有效工作时间往往是驱动器寿命的瓶颈。
为此,相关技术中提出了一种电容小型化的电机驱动器,如图2所示。与常规的交直交驱动电路相比,省去了PFC(Power Factor Correction,功率因数校正)部分,并以小容值的薄膜电容(或陶瓷电容)取代电解电容,因此,既能实现降成本,又能消除电解电容引起的使用寿命瓶颈。
但是,当电容小型化电机驱动技术应用于对成本与节能性要求较高的压缩机驱动系统中时,由于电容小型化电机驱动技术需输出频率与两倍电源频率一致的波动力矩,以确保逆变的电压利用率和满足驱动器的高功率因数,所以该技术必然造成电机输出转速具有与两倍电源频率一致的波动成分,同时,由于压缩机负载存在周期性波动现象,而该波动成分的频率与两倍电源频率不一致,因此很可能引起拍振现象。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的第一个目的在于提出一种压缩机驱动系统的控制方法,通过根据压缩机的转速波动频率和输入交流电源的频率来对压缩机进行防拍振控制,以避免因拍振现象而引起的噪音问题。
本发明的第二个目的在于提出一种计算机存储介质。
本发明的第三个目的在于提出一种压缩机驱动系统的控制装置。
本发明的第四个目的在于提出一种压缩机驱动系统。
为实现上述目的,本发明第一方面实施例提出了一种压缩机驱动系统的控制方法,包括以下步骤:获取压缩机的转速波动频率,并获取输入交流电源的频率;根据所述转速波动频率和所述输入交流电源的频率获取拍振频率;以及根据所述拍振频率对所述压缩机的运行频率进行调节,以对所述压缩机进行防拍振控制。
根据本发明实施例的压缩机驱动系统的控制方法,实时获取压缩机的转速波动频率,并获取输入交流电源的频率,然后根据转速波动频率和输入交流电源的频率获取拍振频率,并根据拍振频率对压缩机的运行频率进行调节,以对压缩机进行防拍振控制。该方法通过根据压缩机的转速波动频率和输入交流电源的频率来对压缩机进行防拍振控制,以避免因拍振现象而引起的噪音问题。
根据本发明的一个实施例,通过以下公式获取所述拍振频率:
fbi=A*fgk-B*frl
其中,fbi为所述拍振频率,fgk为fg的k次谐波频率,frl为fr的l次谐波频率,fg为两倍的所述输入交流电源的频率,fr为所述转速波动频率,k和l为正整数,A和B为整数。
根据本发明的一个实施例,所述拍振频率包括多个,所述根据所述拍振频率对所述压缩机的运行频率进行调节,包括:判断多个拍振频率的绝对值是否均大于预设拍振频率阈值;如果所述多个拍振频率中存在拍振频率的绝对值小于等于所述预设拍振频率阈值,则根据所述拍振频率对所述压缩机的目标运行频率进行调节,直至所述多个拍振频率的绝对值均大于所述预设拍振频率阈值。
根据本发明的一个实施例,所述根据所述拍振频率对所述压缩机的目标运行频率进行调节,包括:如果所述拍振频率大于零,则将所述压缩机的目标运行频率调高第一预设频率;如果所述拍振频率小于零,则将所述压缩机的目标运行频率调低所述第一预设频率。
为实现上述目的,本发明第二方面实施例提出了一种计算机存储介质,用于存储应用程序,所述应用程序用于执行上述的压缩机驱动系统的控制方法。
本发明实施例的计算机存储介质,通过执行上述的压缩机驱动系统的控制方法,能够根据压缩机的转速波动频率和输入交流电源的频率来对压缩机进行防拍振控制,以避免因拍振现象而引起的噪音问题。
为实现上述目的,本发明第三方面实施例提出的一种压缩机驱动系统的控制装置,包括:第一获取模块,用于获取压缩机的转速波动频率;第二获取模块,用于获取输入交流电源的频率;控制模块,用于根据所述转速波动频率和所述输入交流电源的频率获取拍振频率,并根据所述拍振频率对所述压缩机的运行频率进行调节,以对所述压缩机进行防拍振控制。
根据本发明实施例的压缩机驱动系统的控制装置,通过第一获取模块实时获取压缩机的转速波动频率,并通过第二获取模块获取输入交流电源的频率,控制模块根据转速波动频率和输入交流电源的频率获取拍振频率,并根据拍振频率对压缩机的运行频率进行调节,以对压缩机进行防拍振控制。该装置通过根据压缩机的转速波动频率和输入交流电源的频率来对压缩机进行防拍振控制,以避免因拍振现象而引起的噪音问题。
根据本发明的一个实施例,所述控制模块通过以下公式获取所述拍振频率:
fbi=A*fgk-B*frl
其中,fbi为所述拍振频率,fgk为fg的k次谐波频率,frl为fr的l次谐波频率,fg为两倍的所述输入交流电源的频率,fr为所述转速波动频率,k和l为正整数,A和B为整数。
根据本发明的一个实施例,所述拍振频率包括多个,所述控制模块根据所述拍振频率对所述压缩机的运行频率进行调节时,其中,所述控制模块判断多个拍振频率的绝对值是否均大于预设拍振频率阈值;如果所述多个拍振频率中存在拍振频率的绝对值小于等于所述预设拍振频率阈值,所述控制模块则根据所述拍振频率对所述压缩机的目标运行频率进行调节,直至所述多个拍振频率的绝对值均大于所述预设拍振频率阈值。
根据本发明的一个实施例,所述控制模块根据所述拍振频率对所述压缩机的目标运行频率进行调节时,其中,如果所述拍振频率大于零,所述控制模块则将所述压缩机的目标运行频率调高第一预设频率;如果所述拍振频率小于零,所述控制模块则将所述压缩机的目标运行频率调低所述第一预设频率。
为实现上述目的,本发明第四方面实施例提出了一种压缩机驱动系统,其包括上述的压缩机驱动系统的控制装置。
本发明实施例的压缩机驱动系统,通过上述的控制装置,根据压缩机的转速波动频率和输入交流电源的频率来对压缩机进行防拍振控制,以避免因拍振现象而引起的噪音问题。
附图说明
图1是带有PFC电路的常规变频驱动器的拓扑图;
图2是电容小型化的电机驱动器的拓扑图;
图3是拍振现象产生的原理示意图;
图4是根据本发明实施例的压缩机驱动系统的控制方法的流程图;
图5是根据本发明一个实施例的拍振频率的获取示意图;以及
图6是根据本发明实施例的压缩机驱动系统的控制装置的方框示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在对本发明实施例的压缩机驱动系统的控制方法、压缩机驱动系统的控制装置和压缩机驱动系统进行详细描述之前,先来详细分析下压缩机产生拍振现象的机理。
图3是拍振现象产生的原理示意图,同时也是电容小型化压缩机驱动系统的闭环模型。如图3所示,ASR(Automatic Speed Regulator)和ACR(Automatic CurrentRegulator)分别表示速度控制器和电流控制器,MTPA(Maximum Torque Per Ampere)表示最大转矩电流比控制(也称定子电流最小控制),PWM(Pulse Width Modulation)表示脉冲宽度调制,用于将dq轴的电压指令转换为三相占空比。
从图3可以看出,转矩指令Tref等于ASR输出的初始转矩指令T0乘以波形系数wf,即:
Tref=T0*wf (1)
其中,波形系数wf为与输入交流电源的相位θg同步的变量,其频率为fg。具体地,波形系数wf可表示为:
其中,为输入交流电压相位的偏差角度,t为时间。
并且,从图3可以看出,ASR的输入为速度误差ωrefr,其中,ωref为压缩机的转速给定值,ωr为压缩机的转子速度估计值。由于压缩机负载具有周期性波动,因此速度误差ωrefr具有频率为fr的波动,该波动将导致ASR输出的初始转矩指令T0也具有频率为fr的波动,因此,初始转矩指令T0可以表示为:
其中,T0dc为初始转矩指令的恒定分量,T0r为初始转矩指令的波动分量的幅值,为初始转矩指令的波动分量的相位差。
根据图3,转矩指令Tref等于ASR输出的初始转矩指令T0乘以波形系数wf,因此有:
上式中,最后一项为频率为fr-fg的拍振分量,如果该拍振分量的频率fr-fg较小,则将产生拍振(拍振是由频率相近的、幅值相近的两个信号叠加在一起形成时强时弱的信号),而如果该拍振分量的频率fr-fg较大,则不会产生拍振。
简单的说,压缩机驱动系统中拍振现象产生的机理是:压缩机负载波动成分通过ASR产生频率为fr的波动初始转矩指令T0,而最终转矩指令Tref由T0乘以波形系数wf产生,由于波形系数wf含有两倍电源频率fg的成分,因而转矩指令Tref将产生频率为|fr-fg|的波动量。如果该波动量的频率较低(如小于等于2Hz),将产生明显的低频振动与噪音,即产生拍振,此时需要对压缩机的控制进行调整,以避免发生拍振引起噪音;而如果该波动量的频率|fr-fg|较高,则不会产生低频振动与噪音,此时不会产生拍振。
另外,由上述分析可知,由于转矩指令Tref由初始转矩指令T0与波形系数wf相乘产生,因此,初始转矩指令T0和波形系数wf的波动成分将引起频率为两者频率之差的拍振成分,同理,初始转矩指令T0和波形系数wf的谐波成分也将引起拍振成分。
为了有效解决因压缩机周期性负载波动与输入交流电源波动相互作用产生的拍振现象,本发明首先提出了一种压缩机驱动系统的控制方法。
图4是根据本发明实施例的压缩机驱动系统的控制方法的流程图。如图4所示,本发明实施例的压缩机驱动系统的控制方法包括以下步骤:
S1,获取压缩机的转速波动频率,并获取输入交流电源的频率。
具体地,可通过对压缩机的转速进行快速傅里叶变换以获得转速波动频率fr,也可以根据压缩机的负载特性,并结合压缩机的运行频率直接获取转速波动频率fr。例如,对于单转子压缩机,由于每个机械周期都存在一个负载波动周期,因此当单转子压缩机的运行频率为49Hz时,将产生频率为49Hz的转速波动,即转速波动频率fr=49Hz。
S2,根据转速波动频率和输入交流电源的频率获取拍振频率。
在本发明的实施例中,可根据转速波动频率fr和两倍的输入交流电源的频率fg获取拍振频率fb
具体地,结合图3在前面已经阐明了初始转矩指令T0与波形系数wf的基波成分在压缩机的闭环系统中产生拍振成分的基本原理,而实际上,该原理对于初始转矩指令T0与波形系数wf的谐波成分同样满足,那么拍振频率可通过下述公式(5)计算获得:
fbi=A*fgk-B*frl
其中,fbi为拍振频率,fgk为fg的k次谐波频率,也即波形系数wf中k次谐波的频率,frl为fr的l次谐波频率,也即初始转矩指令T0中l次谐波的频率,fg为两倍的输入交流电源的频率,fr为转速波动频率,k和l为正整数,A和B为整数。也就是说,拍振频率可包括基频之间产生的拍振频率、倍频之间产生的拍振频率以及基频与倍频之间产生的拍振频率。
考虑到阶次足够高的谐波成分所产生的噪音可忽略,所以可以对谐波的阶次进行限制,假设初始转矩指令T0与波形系数wf的谐波成分的阶次上限值分别为M和N,那么上述公式(5)中k的上限值为M,l的上限值为N。
S3,根据拍振频率对压缩机的运行频率进行调节,以对压缩机进行防拍振控制。
具体而言,根据前述分析可知,当波动量的频率|fr-fg|较低时,将产生明显的低频振动与噪音即拍振,而当波动量的频率|fr-fg|较高时,不会产生拍振,所以当拍振频率fbi较小(如小于等于2Hz)时,将使压缩机驱动系统产生明显的有节奏感的噪音,而为了消除该噪音,期望拍振频率的绝对值均大于预设拍振频率阈值,并据此来对压缩机的运行频率进行控制,以防止压缩机出现拍振现象。
根据本发明的一个实施例,拍振频率包括多个,根据拍振频率对压缩机的运行频率进行调节,包括:判断多个拍振频率的绝对值是否均大于预设拍振频率阈值;如果多个拍振频率中存在拍振频率的绝对值小于等于预设拍振频率阈值,则根据拍振频率对压缩机的目标运行频率进行调节,直至多个拍振频率的绝对值均大于预设拍振频率阈值。其中,预设拍振频率阈值可以是拍振频率的下限值,具体可根据实际情况进行标定,例如,预设拍振频率阈值可以为2Hz。
举例说明,如图5所示,初始转矩指令T0与波形系数wf中不同阶次的谐波成分将在特定的频率点附近存在较小的差拍频率,例如,在2fr与fg之间、4fr与2fg之间、6fr与3fg之间、…、将分别产生较小的差拍频率fb1=fg-2fr,fb2=2fg-4fr,fb3=3fg-6fr,…。由于这些差拍频率较小,会使压缩机驱动系统产生明显的有节奏感的噪音,即拍振,因此需要对压缩机的运行频率进行调节,以使这些差拍频率大于一定值,以消除拍振。
进一步地,根据本发明的一个实施例,根据拍振频率对压缩机的目标运行频率进行调节,包括:如果拍振频率大于零,则将压缩机的目标运行频率调高第一预设频率;如果拍振频率小于零,则将压缩机的目标运行频率调低第一预设频率。其中,第一预设频率可根据实际情况进行标定。
具体而言,通过前面分析可知,初始转矩指令T0与波形系数wf的基波成分和谐波成分均可能产生拍振现象,所以获得的拍振频率将包含多个,而为了有效防止压缩机驱动系统出现拍振现象,需要保证多个拍振频率中的每个拍振频率均大于预设拍振频率阈值,即保证fbi的绝对值均大于预设拍振频率阈值。如果存在fbi的绝对值小于预设拍振频率阈值(如2Hz),则对压缩机的目标运行频率进行调节。其中,如果fbi>0,则将压缩机的目标运行频率调高第一预设频率(如1Hz);如果fbi<0,则将压缩机的目标运行频率调低第一预设频率(如1Hz)。在对压缩机的目标运行频率进行调节后,继续判断fbi的绝对值是否均大于预设拍振频率阈值。如果仍存在fbi的绝对值小于预设拍振频率阈值,则继续对压缩机的目标运行频率进行调节,直至fbi的绝对值均大于预设拍振频率阈值,结束对压缩机目标运行频率的调节,从而实现对压缩机的防拍振控制,有效避免因拍振现象引起的噪音问题。
其中,需要说明的是,在判断fbi的绝对值是否均大于预设拍振频率阈值时,可以直接对每个拍振频率进行判断,也可以先获取fbi的绝对值中的最小值,然后判断该最小值是否大于预设拍振频率阈值,如果该最小值大于预设拍振频率阈值,则表示fbi的绝对值均大于预设拍振频率阈值。
综上所述,根据本发明实施例的压缩机驱动系统的控制方法,实时获取压缩机的转速波动频率,并获取输入交流电源的频率,然后根据转速波动频率和输入交流电源的频率获取拍振频率,并根据拍振频率对压缩机的运行频率进行调节,以对压缩机进行防拍振控制。该方法通过根据压缩机的转速波动频率和输入交流电源的频率来对压缩机进行防拍振控制,以避免因拍振现象而引起的噪音问题。
图6是根据本发明实施例的压缩机驱动系统的控制装置的方框示意图。如图6所示,本发明实施例的压缩机驱动系统的控制装置包括:第一获取模块10、第二获取模块20和控制模块30。
其中,第一获取模块10用于获取压缩机的转速波动频率。第二获取模块20用于获取输入交流电源的频率。控制模块30用于根据转速波动频率和输入交流电源的频率获取拍振频率,并根据拍振频率对压缩机的运行频率进行调节,以对压缩机进行防拍振控制。
根据本发明的一个实施例,控制模块30通过上述公式(5)获取拍振频率。
根据本发明的一个实施例,拍振频率包括多个,控制模块30根据拍振频率对压缩机的运行频率进行调节时,其中,控制模块30判断多个拍振频率的绝对值是否均大于预设拍振频率阈值;如果多个拍振频率中存在拍振频率的绝对值小于等于预设拍振频率阈值,控制模块30则根据拍振频率对压缩机的目标运行频率进行调节,直至多个拍振频率的绝对值均大于预设拍振频率阈值。
根据本发明的一个实施例,控制模块30根据拍振频率对压缩机的目标运行频率进行调节时,其中,如果拍振频率大于零,控制模块30则将压缩机的目标运行频率调高第一预设频率;如果拍振频率小于零,控制模块30则将压缩机的目标运行频率调低第一预设频率。
需要说明的是,在本发明实施例的压缩机驱动系统的振控制装置中未披露的细节,请参照本发明实施例的压缩机驱动系统的控制方法中所披露的细节,具体这里不再详述。
根据本发明实施例的压缩机驱动系统的控制装置,通过第一获取模块实时获取压缩机的转速波动频率,并通过第二获取模块获取输入交流电源的频率,控制模块根据转速波动频率和输入交流电源的频率获取拍振频率,并根据拍振频率对压缩机的运行频率进行调节,以对压缩机进行防拍振控制。该装置通过根据压缩机的转速波动频率和输入交流电源的频率来对压缩机进行防拍振控制,以避免因拍振现象而引起的噪音问题。
另外,本发明的实施例还提出了一种计算机存储介质,用于存储应用程序,所述应用程序用于执行上述的压缩机驱动系统的控制方法。
本发明实施例的计算机存储介质,通过执行上述的压缩机驱动系统的控制方法,能够根据压缩机的转速波动频率和输入交流电源的频率来对压缩机进行防拍振控制,以避免因拍振现象而引起的噪音问题。
此外,本发明的实施例提出了一种压缩机驱动系统,其包括上述的压缩机驱动系统的控制装置。
本发明实施例的压缩机驱动系统,通过上述的控制装置,根据压缩机的转速波动频率和输入交流电源的频率来对压缩机进行防拍振控制,以避免因拍振现象而引起的噪音问题。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
另外,在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种压缩机驱动系统的控制方法,其特征在于,包括以下步骤:
获取压缩机的转速波动频率,并获取输入交流电源的频率;
根据所述转速波动频率和所述输入交流电源的频率获取拍振频率;以及
根据所述拍振频率对所述压缩机的运行频率进行调节,以对所述压缩机进行防拍振控制。
2.如权利要求1所述的压缩机驱动系统的控制方法,其特征在于,通过以下公式获取所述拍振频率:
fbi=A*fgk-B*frl
其中,fbi为所述拍振频率,fgk为fg的k次谐波频率,frl为fr的l次谐波频率,fg为两倍的所述输入交流电源的频率,fr为所述转速波动频率,k和l为正整数,A和B为整数。
3.如权利要求1或2所述的压缩机驱动系统的控制方法,其特征在于,所述拍振频率包括多个,所述根据所述拍振频率对所述压缩机的运行频率进行调节,包括:
判断多个拍振频率的绝对值是否均大于预设拍振频率阈值;
如果所述多个拍振频率中存在拍振频率的绝对值小于等于所述预设拍振频率阈值,则根据所述拍振频率对所述压缩机的目标运行频率进行调节,直至所述多个拍振频率的绝对值均大于所述预设拍振频率阈值。
4.如权利要求3所述的压缩机驱动系统的控制方法,其特征在于,所述根据所述拍振频率对所述压缩机的目标运行频率进行调节,包括:
如果所述拍振频率大于零,则将所述压缩机的目标运行频率调高第一预设频率;
如果所述拍振频率小于零,则将所述压缩机的目标运行频率调低所述第一预设频率。
5.一种计算机存储介质,其特征在于,用于存储应用程序,所述应用程序用于执行权利要求1至4中任一项所述的压缩机驱动系统的控制方法。
6.一种压缩机驱动系统的控制装置,其特征在于,包括:
第一获取模块,用于获取压缩机的转速波动频率;
第二获取模块,用于获取输入交流电源的频率;
控制模块,用于根据所述转速波动频率和所述输入交流电源的频率获取拍振频率,并根据所述拍振频率对所述压缩机的运行频率进行调节,以对所述压缩机进行防拍振控制。
7.如权利要求6所述的压缩机驱动系统的控制装置,其特征在于,所述控制模块通过以下公式获取所述拍振频率:
fbi=A*fgk-B*frl
其中,fbi为所述拍振频率,fgk为fg的k次谐波频率,frl为fr的l次谐波频率,fg为两倍的所述输入交流电源的频率,fr为所述转速波动频率,k和l为正整数,A和B为整数。
8.如权利要求6或7所述的压缩机驱动系统的控制装置,其特征在于,所述拍振频率包括多个,所述控制模块根据所述拍振频率对所述压缩机的运行频率进行调节时,其中,
所述控制模块判断多个拍振频率的绝对值是否均大于预设拍振频率阈值;
如果所述多个拍振频率中存在拍振频率的绝对值小于等于所述预设拍振频率阈值,所述控制模块则根据所述拍振频率对所述压缩机的目标运行频率进行调节,直至所述多个拍振频率的绝对值均大于所述预设拍振频率阈值。
9.如权利要求8所述的压缩机驱动系统的控制装置,其特征在于,所述控制模块根据所述拍振频率对所述压缩机的目标运行频率进行调节时,其中,
如果所述拍振频率大于零,所述控制模块则将所述压缩机的目标运行频率调高第一预设频率;
如果所述拍振频率小于零,所述控制模块则将所述压缩机的目标运行频率调低所述第一预设频率。
10.一种压缩机驱动系统,其特征在于,包括如权利要求6-9中任一项所述的压缩机驱动系统的控制装置。
CN201710352185.6A 2017-05-18 2017-05-18 压缩机驱动系统及其的控制方法、装置 Active CN106968931B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710352185.6A CN106968931B (zh) 2017-05-18 2017-05-18 压缩机驱动系统及其的控制方法、装置
PCT/CN2017/091125 WO2018209773A1 (zh) 2017-05-18 2017-06-30 压缩机驱动系统及其的控制方法、装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710352185.6A CN106968931B (zh) 2017-05-18 2017-05-18 压缩机驱动系统及其的控制方法、装置

Publications (2)

Publication Number Publication Date
CN106968931A CN106968931A (zh) 2017-07-21
CN106968931B true CN106968931B (zh) 2018-07-13

Family

ID=59326192

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710352185.6A Active CN106968931B (zh) 2017-05-18 2017-05-18 压缩机驱动系统及其的控制方法、装置

Country Status (2)

Country Link
CN (1) CN106968931B (zh)
WO (1) WO2018209773A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110701057B (zh) * 2019-09-12 2021-01-29 珠海格力电器股份有限公司 一种双系统螺杆机防拍振噪声控制方法、计算机可读存储介质及系统
CN112600485B (zh) * 2020-12-29 2023-05-16 广东美的白色家电技术创新中心有限公司 一种变频驱动装置的控制方法、装置和存储介质
CN112713832B (zh) * 2020-12-29 2023-03-17 广东美的白色家电技术创新中心有限公司 一种变频驱动装置的控制方法、装置和存储介质
CN114151308B (zh) * 2021-11-26 2023-10-24 广东美芝制冷设备有限公司 高频噪音的消除方法、装置和矢量控制系统
CN114382678A (zh) * 2022-01-14 2022-04-22 四川奥库科技有限公司 变频压缩机振动规避方法
CN114857007B (zh) * 2022-05-27 2023-08-15 珠海格力电器股份有限公司 压缩机的减振控制方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721120A (zh) * 2012-05-08 2012-10-10 广东美的制冷设备有限公司 一种控制变频空调室外风机与压缩机拍振噪音的方法
CN103967794A (zh) * 2013-02-05 2014-08-06 广东美的制冷设备有限公司 一种单转子压缩机的振动补偿方法及控制器
CN106016625A (zh) * 2016-07-01 2016-10-12 海信(山东)空调有限公司 变频空调压缩机与风扇拍振的控制方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030175112A1 (en) * 2002-03-13 2003-09-18 Hirotaka Namiki Vacuum pump system and vacuum pump RPM control method
JP2003269373A (ja) * 2002-03-13 2003-09-25 Boc Edwards Technologies Ltd 真空ポンプシステム及び真空ポンプの回転数制御方法
DE10242305B4 (de) * 2002-09-12 2013-11-14 Robert Bosch Gmbh Verfahren zur Messung der Drehzahl eines Pumpenmotors
KR100608690B1 (ko) * 2004-09-11 2006-08-09 엘지전자 주식회사 왕복동식 압축기의 운전제어장치 및 방법
US20140064948A1 (en) * 2012-08-31 2014-03-06 Dresser, Inc. System and method for operating a compressor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721120A (zh) * 2012-05-08 2012-10-10 广东美的制冷设备有限公司 一种控制变频空调室外风机与压缩机拍振噪音的方法
CN103967794A (zh) * 2013-02-05 2014-08-06 广东美的制冷设备有限公司 一种单转子压缩机的振动补偿方法及控制器
CN106016625A (zh) * 2016-07-01 2016-10-12 海信(山东)空调有限公司 变频空调压缩机与风扇拍振的控制方法和装置

Also Published As

Publication number Publication date
WO2018209773A1 (zh) 2018-11-22
CN106968931A (zh) 2017-07-21

Similar Documents

Publication Publication Date Title
CN106968931B (zh) 压缩机驱动系统及其的控制方法、装置
CN107013447B (zh) 压缩机驱动系统及其的控制方法、装置
CN106762653B (zh) 压缩机转矩补偿方法、装置和压缩机及其控制方法
CN106026818B (zh) 压缩机转矩补偿方法、装置及空调
CN105978433B (zh) 电容小型化的电机驱动装置和变频空调器
US7116073B1 (en) Methods and apparatus for controlling a motor/generator
US9602040B2 (en) Apparatus for controlling first and second rotary electric machines
CN106712631B (zh) 永磁同步电机系统及其弱磁控制方法和装置
CN105027424B (zh) 旋转电机驱动装置
JP2014096856A (ja) 交流電動機の制御システム
CN106208868B (zh) 无电解电容电机驱动系统及其控制方法、装置
BR112021016236A2 (pt) Dispositivo de conversão de potência direta
CN106208869B (zh) 无电解电容电机驱动系统及其控制方法、装置
CN105048891A (zh) 电动机控制装置
US7135829B1 (en) Methods and apparatus for controlling a motor/generator
US8736221B2 (en) Direct-current to three-phase alternating-current inverter system
JP2005168161A (ja) モータ制御装置、モータ制御方法、及びモータ制御装置を具える車両
Hayashi et al. Electrolytic capacitor-less single-phase to three-phase inverter with harmonics suppression control for air conditioner
CN104953910A (zh) 永磁同步电机及永磁同步电机的控制方法、控制装置
CN114337437B (zh) 变频空调器的控制方法、变频空调器和计算机存储介质
Chomat et al. Adjustable-speed drive with single-phase induction machine for HVAC applications
JP5760588B2 (ja) モータの制御装置
CN112600485A (zh) 一种变频驱动装置的控制方法、装置和存储介质
CN112600475A (zh) 弱磁控制方法、弱磁控制装置、电机驱动器及家用电器
Kumar et al. DSP based IFO control of HEV fed through impedance source inverter

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant