CN106959287A - 一种双亲性单层分子膜的荧光检测方法 - Google Patents

一种双亲性单层分子膜的荧光检测方法 Download PDF

Info

Publication number
CN106959287A
CN106959287A CN201710162651.4A CN201710162651A CN106959287A CN 106959287 A CN106959287 A CN 106959287A CN 201710162651 A CN201710162651 A CN 201710162651A CN 106959287 A CN106959287 A CN 106959287A
Authority
CN
China
Prior art keywords
monofilm
amphiphilic
detection method
fluorescence detection
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710162651.4A
Other languages
English (en)
Other versions
CN106959287B (zh
Inventor
郝长春
张蕾
徐国庆
孙润广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201710162651.4A priority Critical patent/CN106959287B/zh
Publication of CN106959287A publication Critical patent/CN106959287A/zh
Application granted granted Critical
Publication of CN106959287B publication Critical patent/CN106959287B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明属于荧光检测技术领域,特别涉及一种双亲性单层分子膜的荧光检测方法,其通过制膜、垂直提膜法成膜、滴水吸附后荧光检测,将转移至超薄云母片上的单层膜吸附在表面含水的盖玻片上,巧妙利用了水的表面张力和其透明性,来无损检测超薄云母片上的分子膜,避免对膜层造成损,保证膜层完整无损,利于进一步如原子力显微镜观测等操作,保证检测结果准确,本发明用荧光显微镜检测完毕后可通过镊子将云母片很容易的从盖玻片上分离,清洗后盖玻片仍可以重复使用,节约检测成本,而且本发明的检测方法检测,结果清晰,成本较低,无毒无污染,适于大范围推广应用。

Description

一种双亲性单层分子膜的荧光检测方法
技术领域
本发明属于荧光检测技术领域,具体涉及一种单层分子膜的荧光检测方法,特别是双亲性单层分子膜的荧光检测方法。
背景技术
单分子层脂膜作为生物体膜的模型被广泛利用。生物膜的组分繁多,为便于研究,往往采用单一或几种脂质组成的各种人工脂膜结构,单分子层膜就是其中一种。同时,也可将蛋白质嵌入后组成重建膜,利用人工膜可对膜的各种物理化学特性进行深入研究。单分子脂膜的研究在生物医学研究和生物传感器的研制领域具有广泛的潜在应用前景。
目前,对于单分子层脂膜的检测,尤其是具有一定相分离结构的单层膜时,需要用100X的物镜,也就是用油镜来对其进行观测,由于云母片较薄,油镜上面的油接近样品表面时,会呈现出变形,并不能表现出平整的结构,不能聚焦在一个平面上,不能得到理想的图像,仅仅能看到很小的局部。通常采取的方式是采用超薄云母片利用紫外胶黏贴在盖玻片上,这样用来观察样品膜结构。但是制备的单层膜做完荧光观测后,由于油滴的残留致使其在进行原子力显微镜等仪器进一步观测时就造成了一定的影响,使样品表面受损,导致观测结构不准确,而且盖玻片也受损,不能重复使用。
发明内容
针对现有技术的不足,本发明提供了一种简单易行、无毒无污染、观测结果清晰且对膜层无损的双亲性单层分子膜的荧光检测方法。
本发明所采用的技术方案是:
该种双亲性单层分子膜的荧光检测方法,其是由以下步骤组成:
(1)用常规制膜方法制备单一组分或者混合组分的双亲性单层分子膜;
(2)在1~55mN/m的膜压下使用垂直提膜法以15~25mm/min的速度将单分子层转移到新解离的超薄云母基片上,成膜温度控制在21±0.5℃;
(3)在洗干净的盖玻片上滴水,将步骤(2)制备好的混合单层膜,吸附在盖玻片上,按照常规荧光检测操作对单层分子膜进行检测。
进一步限定,上述双亲性单层分子膜是具有荧光标记的固醇类分子或者磷脂类分子或者鞘磷脂类分子或者糖脂类分子或者其任意组合。
进一步限定,上述固醇类分子具体是胆固醇、谷固醇、麦角固醇、胆甾醇、豆固醇或者菜油固醇中的任意一种或任意组合;磷脂类分子是磷脂酰胆碱、磷脂酰乙醇胺、二磷脂酰甘油、磷脂酰丝氨酸或磷脂酰甘油中的任意一种或者其任意组合;鞘磷脂类分子是神经酰胺、鞘磷脂或神经氨酸中任意一种或者其任意组合;糖脂类分子是神经节苷脂、单(二)半乳糖基甘油二酯、脑苷脂、硫脑苷脂、葡萄糖苷神经酰胺、乳糖苷神经酰胺中任意一种或者其任意组合。
进一步限定,上述步骤(1)制备双亲性单层分子膜的方法由以下步骤实现:
将原料溶解在氯仿与甲醇混合的有机溶剂中形成浓度为0.01mmol/L的脂溶液;用微量进样器将脂溶液滴加到纯水表面,令其自动铺展;待铺展的液体表面有机溶剂完全挥发后,以1~20mm/min的速度压膜,得到双亲性单层分子膜。
进一步限定,上述氯仿与甲醇混合有机溶剂中氯仿与甲醇的体积比为3:1~10:1。
进一步限定,上述双亲性单层分子膜的厚度为2~5nm。
进一步限定,上述步骤(2)的垂直提膜法以20mm/min的速度将单分子层转移到新解离的超薄云母基片上。
进一步限定,上述新解离的超薄云母基片的厚度是0.01mm。
进一步限定,上述盖玻片的厚度为0.15~0.17mm。
进一步限定,上述步骤(3)所述的荧光检测操作中所用荧光的激发波长为405~660nm。
本发明的双亲性单层分子膜的荧光检测方法是将转移至超薄云母片上的单层膜吸附在表面含水的盖玻片上,巧妙利用了水的表面张力和其透明性,来无损检测超薄云母片上的分子膜,避免对膜层造成损,保证膜层完整无损,利于进一步如原子力显微镜观测等操作,保证检测结果准确,此外,本发明用荧光显微镜检测完毕后可通过镊子将云母片很容易的从盖玻片上分离,清洗后盖玻片仍可以重复使用,节约检测成本,而且本发明的检测方法检测,结果清晰,成本较低,无毒无污染,适于大范围推广应用。
附图说明
图1为BSM/POPC/Chol(2:2:1)混合单层膜的荧光显微镜观测结果。
图2为BSM/POPC/Chol(2:2:1)混合单层膜的原子力显微镜观测结果。
图3为BSM/POPC(1:1)混合单层膜的荧光显微镜观测结果。
图4为BSM/POPC(1:1)混合单层膜的原子力显微镜观测结果。
具体实施方式
下面结合实验和实施例对本发明作进一步的描述。
实施例1
S1:用常规制膜方法制备双亲性单层分子膜;
本实施例利用LB技术制备大脑鞘磷脂/1棕榈酸-2油酸-磷脂酰胆碱/胆固醇(下述简称:BSM/POPC/Chol)混合单层膜。
将BSM/POPC/Chol(2:2:1,mol:mol:mol)溶解在氯仿与甲醇(10:1,V:V)中形成浓度为0.01mmol/L的混合脂溶液,在KSV-Minitrough仪器中(芬兰KSV公司,槽子:323mm×75mm)进行制备,用微量进样器将50uL的混合脂溶液滴加到纯水表面,让其自动铺展,30min后,等液体表面有机溶剂完全挥发后,以10mm/min的速度压膜,得到厚度为3nm的BSM/POPC/Chol混合单层分子膜。
S2:在固定的膜压(1mN/m~55mN/m)下使用垂直提膜法以15~25mm/min的速度将单分子层转移到新解离的厚度为0.01mm的超薄云母基片上,成膜温度控制在21±0.5℃;
S3:在洗干净的厚度为0.15~0.17mm的盖玻片上滴一滴水,将步骤(2)制备好的混合单层膜吸附在盖玻片上,用荧光显微镜按照常规荧光检测操作对单层分子膜进行检测。
荧光显微镜(奥林巴斯:IX71)物镜为100X油镜,实验中系统放大倍率为1000倍,采用绿光激发TR-DHPE,激发波长为560~600nm,使用高分辨CCD拍照,观测结果如图1所示;在荧光观测之后进一步用原子力显微镜(岛津公司:WET-SPM-9500-J3)扫描采用动态模式,所采用的是标准扫描头,探针材料为Si3N4,悬臂的弹性常数为0.06N/m,调节压电陶瓷管电压使针尖对样品以最小作用力进行扫描,图片像素点收集为512×512,扫描速度为1Hz,结果如图2所示。
结合图1和图2可知,本实施例在固定的表面压力下BSM/POPC/Chol(2:2:1)单层膜分子间的相互作用和单层膜的结构表明,在固定的表面压力下,单层膜呈现出明显的相分离现象,当胆固醇加入到BSM/POPC混合脂质单层膜中影响了BSM/POPC分子间的相互作用,使BSM微区具有了一定的流动性,微区结构从能量较高的“花形”逐渐转化为能量较低的“圆形”。
实施例2
S1:用常规制膜方法制备双亲性单层分子膜;
将大脑鞘磷脂和1棕榈酸-2油酸-磷脂酰胆碱(下述简称:BSM/POPC)按照摩尔比为1:1的比例混合后溶解在氯仿与甲醇(3:1,V:V)中形成浓度为0.5mmol/L的混合脂溶液,在KSV-Minitrough仪器中(芬兰KSV公司,槽子:323mm×75mm)进行制备,用微量进样器将20uL的混合脂溶液滴加到纯水表面,让其自动铺展,15min后,等液体表面有机溶剂完全挥发后,以10mm/min的速度压膜,得到厚度为3nm的BSM/POPC混合单层分子膜。
S2:在固定的膜压(1mN/m~55mN/m)下使用垂直提膜法以15~25mm/min的速度将单分子层转移到新解离的超薄云母基片上,成膜温度控制在21±0.5℃;
S3:在洗干净的盖玻片上滴一滴水,将步骤(2)制备好的混合单层膜吸附在盖玻片上,按照常规荧光检测操作对单层分子膜进行检测。
荧光显微镜(奥林巴斯:IX71)物镜为100X油镜,实验中系统放大倍率为1000倍,采用绿光激发TR-DHPE,激发波长为560~600nm,使用高分辨CCD拍照,观测结果如图3所示;在荧光观测之后进一步用原子力显微镜(岛津公司:WET-SPM-9500-J3)扫描采用动态模式,所采用的是标准扫描头,探针材料为Si3N4,悬臂的弹性常数为0.06N/m,调节压电陶瓷管电压使针尖对样品以最小作用力进行扫描,图片像素点收集为512×512,扫描速度为1Hz,结果如图4所示。
结合图3和图4可知,在固定的表面压力下BSM/POPC(1:1)单层膜分子间的相互作用和单层膜的结构表明,在固定的表面压力下,单层膜呈现出明显的相分离现象,液态的POPC(图3亮区域)与形成明显“花形”微区结构的凝胶相BSM(图4暗区域)共存状态,微区结构呈现能量较高的“花形”。
实施例3
S1:用常规制膜方法制备双亲性单层分子膜;
将固醇类分子溶解在氯仿与甲醇(10:1,V:V)中形成浓度为0.01mmol/L的脂溶液,在KSV-Minitrough仪器中(芬兰KSV公司,槽子:323mm×75mm)进行制备,用微量进样器将50uL的脂溶液滴加到纯水表面,让其自动铺展,30min后,等液体表面有机溶剂完全挥发后,以20mm/min的速度压膜,得到固醇类单层分子膜。
S2:在固定的膜压(1mN/m~55mN/m)下使用垂直提膜法以15~25mm/min的速度将单分子层转移到新解离的厚度为0.01mm的超薄云母基片上,成膜温度控制在21±0.5℃;
S3:在洗干净的厚度为0.15~0.17mm的盖玻片上滴一滴水,将步骤(2)制备好的混合单层膜吸附在盖玻片上,用荧光显微镜按照常规荧光检测操作对单层分子膜进行检测,荧光的激发波长可依据固醇类分子的荧光标记特性在405~660nm范围内调整。
本实施例的固醇类分子是具有荧光标记的胆固醇、谷固醇、麦角固醇、胆甾醇、豆固醇或者菜油固醇中的任意一种或其任意组合,均可适用。
实施例4
S1:用常规制膜方法制备双亲性单层分子膜;
将固醇类分子与鞘磷脂类分子按照摩尔比为1:2的比例混合后溶解在氯仿与甲醇(10:1,V:V)中形成浓度为0.01mmol/L的脂溶液,在KSV-Minitrough仪器中(芬兰KSV公司,槽子:323mm×75mm)进行制备,用微量进样器将50uL的脂溶液滴加到纯水表面,让其自动铺展,30min后,等液体表面有机溶剂完全挥发后,以20mm/min的速度压膜,得到固醇类单层分子膜。
S2:在固定的膜压(1mN/m~55mN/m)下使用垂直提膜法以15~25mm/min的速度将单分子层转移到新解离的厚度为0.01mm的超薄云母基片上,成膜温度控制在21±0.5℃;
S3:在洗干净的厚度为0.15~0.17mm的盖玻片上滴一滴水,将步骤(2)制备好的混合单层膜吸附在盖玻片上,用荧光显微镜按照常规荧光检测操作对单层分子膜进行检测,荧光的激发波长可依据固醇类分子的荧光标记特性在405~660nm范围内调整。
本实施例的固醇类分子是具有荧光标记的胆固醇、谷固醇、麦角固醇、胆甾醇、豆固醇或者菜油固醇中的任意一种或其任意组合,鞘磷脂类分子是神经酰胺、鞘磷脂或神经氨酸中任意一种或者其任意组合,均可适用。
此外需要进一步说明的是固醇类分子与鞘磷脂类分子可按照任意需要的比例混合。
实施例5
S1:用常规制膜方法制备双亲性单层分子膜;
将磷脂类分子与鞘磷脂类分子按照摩尔比为2:1的比例混合后溶解在氯仿与甲醇(10:1,V:V)中形成浓度为0.01mmol/L的脂溶液,在KSV-Minitrough仪器中(芬兰KSV公司,槽子:323mm×75mm)进行制备,用微量进样器将50uL的脂溶液滴加到纯水表面,让其自动铺展,30min后,等液体表面有机溶剂完全挥发后,以20mm/min的速度压膜,得到固醇类单层分子膜。
S2:在固定的膜压(1mN/m~55mN/m)下使用垂直提膜法以15~25mm/min的速度将单分子层转移到新解离的厚度为0.01mm的超薄云母基片上,成膜温度控制在21±0.5℃;
S3:在洗干净的厚度为0.15~0.17mm的盖玻片上加一滴水,将步骤(2)制备好的混合单层膜吸附在盖玻片上,用荧光显微镜按照常规荧光检测操作对单层分子膜进行检测,荧光的激发波长可依据固醇类分子的荧光标记特性在405~660nm范围内调整。
本实施例的磷脂类分子是磷脂酰胆碱、磷脂酰乙醇胺、二磷脂酰甘油、磷脂酰丝氨酸或磷脂酰甘油中的任意一种或者其任意组合,鞘磷脂类分子是神经酰胺、鞘磷脂或神经氨酸中任意一种或者其任意组合,均可适用。
此外需要进一步说明的是磷脂类分子与鞘磷脂类分子可按照任意需要的比例混合。
实施例6
S1:用常规制膜方法制备双亲性单层分子膜;
将磷脂类分子与鞘磷脂类分子、固醇类分子、糖脂类分子按照摩尔比为1:1:1:0.5的比例混合后溶解在氯仿与甲醇(10:1,V:V)中形成浓度为0.01mmol/L的脂溶液,在KSV-Minitrough仪器中(芬兰KSV公司,槽子:323mm×75mm)进行制备,用微量进样器将50uL的脂溶液滴加到纯水表面,让其自动铺展,30min后,等液体表面有机溶剂完全挥发后,以20mm/min的速度压膜,得到固醇类单层分子膜。
S2:在固定的膜压(1mN/m~55mN/m)下使用垂直提膜法以15~25mm/min的速度将单分子层转移到新解离的厚度为0.01mm的超薄云母基片上,成膜温度控制在21±0.5℃;
S3:在洗干净的厚度为0.15~0.17mm的盖玻片上滴一滴水,将步骤(2)制备好的混合单层膜吸附在盖玻片上,用荧光显微镜按照常规荧光检测操作对单层分子膜进行检测,荧光的激发波长可依据固醇类分子的荧光标记特性在405~660nm范围内调整。
本实施例的磷脂类分子是磷脂酰胆碱、磷脂酰乙醇胺、二磷脂酰甘油、磷脂酰丝氨酸或磷脂酰甘油中的任意一种或者其任意组合,鞘磷脂类分子是神经酰胺、鞘磷脂或神经氨酸中任意一种或者其任意组合,固醇类分子具体是胆固醇、谷固醇、麦角固醇、胆甾醇、豆固醇或者菜油固醇中的任意一种或任意组合;糖脂类分子是神经节苷脂、单(二)半乳糖基甘油二酯、脑苷脂、硫脑苷脂、葡萄糖苷神经酰胺、乳糖苷神经酰胺中任意一种或者其任意组合均可适用。
此外需要进一步说明的是磷脂类分子与鞘磷脂类分子、固醇类分子、糖脂类分子可按照任意需要的比例混合,所制得双亲性单层分子膜均可在本发明的检测方法中呈现较好的状态,检测所得图像清晰。

Claims (10)

1.一种双亲性单层分子膜的荧光检测方法,其特征在于由以下步骤组成:
(1)用常规制膜方法制备单一组分或者混合组分的双亲性单层分子膜;
(2)在1~55mN/m的膜压下使用垂直提膜法以15~25mm/min的速度将单分子层转移到新解离的超薄云母基片上,成膜温度控制在21±0.5℃;
(3)在洗干净的盖玻片上滴水,将步骤(2)制备好的混合单层膜,吸附在盖玻片上,按照常规荧光检测操作对单层分子膜进行检测。
2.根据权利要求1所述的双亲性单层分子膜的荧光检测方法,其特征在于:所述双亲性单层分子膜是具有荧光标记的固醇类分子或者磷脂类分子或者鞘磷脂类分子或者糖脂类分子或者其任意组合。
3.根据权利要求2所述的双亲性单层分子膜的荧光检测方法,其特征在于:所述固醇类分子具体是胆固醇、谷固醇、麦角固醇、胆甾醇、豆固醇或者菜油固醇中的任意一种或任意组合;磷脂类分子是磷脂酰胆碱、磷脂酰乙醇胺、二磷脂酰甘油、磷脂酰丝氨酸或磷脂酰甘油中的任意一种或者其任意组合;鞘磷脂类分子是神经酰胺、鞘磷脂或神经氨酸中任意一种或者其任意组合;糖脂类分子是神经节苷脂、单(二)半乳糖基甘油二酯、脑苷脂、硫脑苷脂、葡萄糖苷神经酰胺、乳糖苷神经酰胺中任意一种或者其任意组合。
4.根据权利要求1~3任一项所述的双亲性单层分子膜的荧光检测方法,其特征在于:所述步骤(1)制备双亲性单层分子膜的方法由以下步骤实现:
将原料溶解在氯仿与甲醇混合的有机溶剂中形成浓度为0.01mmol/L的脂溶液;用微量进样器将脂溶液滴加到纯水表面,令其自动铺展;待铺展的液体表面有机溶剂完全挥发后,以1~20mm/min的速度压膜,得到双亲性单层分子膜。
5.根据权利要求4所述的双亲性单层分子膜的荧光检测方法,其特征在于:所述氯仿与甲醇混合的有机溶剂中氯仿与甲醇的体积比为3:1~10:1。
6.根据权利要求4所述的双亲性单层分子膜的荧光检测方法,其特征在于:所述双亲性单层分子膜的厚度为2~5nm。
7.根据权利要求1所述的双亲性单层分子膜的荧光检测方法,其特征在于:所述步骤(2)的垂直提膜法以20mm/min的速度将单分子层转移到新解离的超薄云母基片上。
8.根据权利要求7所述的双亲性单层分子膜的荧光检测方法,其特征在于:所述新解离的超薄云母基片的厚度是0.01mm。
9.根据权利要求1所述的双亲性单层分子膜的荧光检测方法,其特征在于:所述盖玻片的厚度为0.15~0.17mm。
10.根据权利要求1所述的双亲性单层分子膜的荧光检测方法,其特征在于:步骤(3)所述的荧光检测操作中所用荧光的激发波长为405~660nm。
CN201710162651.4A 2017-03-18 2017-03-18 一种双亲性单层分子膜的荧光检测方法 Active CN106959287B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710162651.4A CN106959287B (zh) 2017-03-18 2017-03-18 一种双亲性单层分子膜的荧光检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710162651.4A CN106959287B (zh) 2017-03-18 2017-03-18 一种双亲性单层分子膜的荧光检测方法

Publications (2)

Publication Number Publication Date
CN106959287A true CN106959287A (zh) 2017-07-18
CN106959287B CN106959287B (zh) 2019-10-29

Family

ID=59470240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710162651.4A Active CN106959287B (zh) 2017-03-18 2017-03-18 一种双亲性单层分子膜的荧光检测方法

Country Status (1)

Country Link
CN (1) CN106959287B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2611382Y (zh) * 2003-01-29 2004-04-14 陕西西大北美基因股份有限公司 病原微生物感染诊断型细胞芯片
CN105928942A (zh) * 2016-04-19 2016-09-07 临沂大学 金银花单宁的一种原位检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2611382Y (zh) * 2003-01-29 2004-04-14 陕西西大北美基因股份有限公司 病原微生物感染诊断型细胞芯片
CN105928942A (zh) * 2016-04-19 2016-09-07 临沂大学 金银花单宁的一种原位检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李晋等: "鞘磷脂、胆固醇和两性霉素B混合单层膜的热力学特性研究及AFM观测", 《生物物理学报》 *

Also Published As

Publication number Publication date
CN106959287B (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
Dimova et al. The giant vesicle book
Shchelokovskyy et al. Effect of the HIV-1 fusion peptide on the mechanical properties and leaflet coupling of lipid bilayers
Bagatolli et al. Giant phospholipid vesicles: comparison among the whole lipid sample characteristics using different preparation methods: a two photon fluorescence microscopy study
Portet et al. A new method for measuring edge tensions and stability of lipid bilayers: effect of membrane composition
Zhou et al. Supramolecular assemblies of a naturally derived sophorolipid
Dimova et al. Giant vesicles in electric fields
Varnier et al. A simple method for the reconstitution of membrane proteins into giant unilamellar vesicles
Bagatolli et al. Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles
Baba et al. Formation and characterization of planar lipid bilayer membranes from synthetic phytanyl-chained glycolipids
Heo et al. Highly Reproducible Physiological Asymmetric Membrane with Freely Diffusing Embedded Proteins in a 3D‐Printed Microfluidic Setup
Kresse et al. Novel application of cellulose paper as a platform for the macromolecular self-assembly of biomimetic giant liposomes
CN106959287B (zh) 一种双亲性单层分子膜的荧光检测方法
Chen et al. Visualising nanoscale restructuring of a cellular membrane triggered by polyelectrolyte microcapsules
Faizi et al. Viscosity of fluid membranes measured from vesicle deformation
Mitkova et al. Bending rigidity of phosphatidylserine-containing lipid bilayers in acidic aqueous solutions
Juhaniewicz-Dębińska et al. Lipopeptide-induced changes in permeability of solid supported bilayers composed of bacterial membrane lipids
Huang et al. Influence of salt on the formation and separation of droplet interface bilayers
Brewer et al. Enzymatic studies on planar supported membranes using a widefield fluorescence LAURDAN Generalized Polarization imaging approach
Selvaraj et al. Effect of Partially Hydrolyzed Ginsenoside on In Vitro Skin Permeation and Retention of Collagen Pentapeptide (Palmitoyl-KTTKS).
Sakuma et al. Adhesion of binary giant vesicles containing negative spontaneous curvature lipids induced by phase separation
Schöps et al. Block copolymers in giant unilamellar vesicles with proteins or with phospholipids
GB2527827A (en) Microfluidic nanopore array supporting a lipid bilayer assembly
De Souza et al. Liposome stability verification by atomic force microscopy.
Ridolfi et al. Electrostatic interactions control the adsorption of extracellular vesicles onto supported lipid bilayers
Valkova et al. VV-hemorphin-5 association to lipid bilayers and alterations of membrane bending rigidity.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant