CN106950212B - 一种快速检测微生物的基于星状环糊精的荧光传感器 - Google Patents

一种快速检测微生物的基于星状环糊精的荧光传感器 Download PDF

Info

Publication number
CN106950212B
CN106950212B CN201710298168.9A CN201710298168A CN106950212B CN 106950212 B CN106950212 B CN 106950212B CN 201710298168 A CN201710298168 A CN 201710298168A CN 106950212 B CN106950212 B CN 106950212B
Authority
CN
China
Prior art keywords
cyclodextrin
added
star
complex
microbial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710298168.9A
Other languages
English (en)
Other versions
CN106950212A (zh
Inventor
万逸
周腾
葛鉴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan View Kr Bio Tech Co ltd
Wan Yi
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Priority to CN201710298168.9A priority Critical patent/CN106950212B/zh
Publication of CN106950212A publication Critical patent/CN106950212A/zh
Application granted granted Critical
Publication of CN106950212B publication Critical patent/CN106950212B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本工作拟研发了一种星状环糊精的荧光传感器快速检测微生物,并对微生物膜的抗生素抗菌机制进行筛选,这种复合体结合统计分析工具可以特异性识别病原微生物膜。该复合体结合特征微生物膜,特征微生物竞争作用使其表面的荧光蛋白游离,每种微生物膜结合强度和相互作用力不一样导致可以得到特征的响应信号。基于上述的实验,进一步把这种复合体用到抗生素机制评估和筛选。本工作创新性体现在:借助于星状季铵盐化环糊精与荧光蛋白形成复合体来检测微生物膜,微生物膜体系无需任何前处理,只需要简单的步骤,为解决涉及微生物检测方法中“在线”、“便携式”和“全自动”的机电工程与生物学复合问题提供参考和借鉴。

Description

一种快速检测微生物的基于星状环糊精的荧光传感器
技术领域
一种基于星状季铵盐化环糊精与荧光蛋白形成复合体阵列检测和微生物膜并响应微生物膜对抗生素的抗菌机制。
背景技术
微生物生物膜是由微生物群体及其包被的细胞外多聚物和基质网组成,它们彼此黏附或者黏附到组织或物体的表面。最近的研究发现高达60%手术后导致的疾病都是手术器材微生物感染导致。微生物生物膜与微生物的耐药性形成、基因的转移以及引起机体的持续性感染等都密切相关。当前常用的对微生物膜进行检测的方法包括基于培养方法、血液分析、显微镜观察、组织切片观察、探针成像、免疫诊断分析和分子检测。培养分析方法能够准确阐明临床相关疾病确实是微生物膜感染导致,这种方法存在的不足之处是需要时间长,一般3-5天才能获得分析结果(Rogers, G.B., Carroll, M.P., Bruce, K.D., 2009.Journal of medical microbiology 58(Pt 11), 1401-1418.)。血液分析通常是分析血液中验证因子,但是这种方法没有特异性(Mathur, T., Singhal, S., Khan, S.,Upadhyay, D.J., Fatma, T., Rattan, A., 2006. Indian journal of medicalmicrobiology 24(1), 25-29)。最近相关成像技术也被用于微生物活体诊断,比如核磁共振成像、超声波、内窥镜、计算机断层扫描等(Temple, C.L., Ross, D.C., Bennett,J.D., Garvin, G.J., King, G.J., Faber, K.J., 2005. The Journal of handsurgery 30(3), 534-542.),但是这些方法的成本非常高。酶链免疫反应可以快速诊断微生物膜,但是其抗体稳定性不好,很容易失活(Hall-Stoodley, L., Stoodley, P.,Kathju, S., Høiby, N., Moser, C., William Costerton, J., Moter, A.,Bjarnsholt, T., 2012. FEMS Immunology & Medical Microbiology 65(2), 127-145.)。
基于纳米材料阵列响应来快速诊断微生物得到了响应的关注。比如利用纳米金与带负电荧光聚合物可以选择性检测微生物(Phillips, R.L., Miranda, O.R., You, C.-C., Rotello, V.M., Bunz, U.H.F., 2008. Angewandte Chemie InternationalEdition 47(14), 2590-2594.)。我们也前期设计了磁性颗粒与带负电荧光聚合物来选择性检测微生物(Wan, Y., Sun, Y., Qi, P., Wang, P., Zhang, D., 2014. Biosensorsand Bioelectronics 55, 289-293)。本方案则采用基于星状环糊精与荧光蛋白的阵列响应来检测微生物膜,并使其来筛选微生物的抗生素的抗菌机制。
发明内容
为实现上述目的,本发明采用技术方案为:
一种快速检测微生物的基于星状环糊精的荧光传感器,其特征包括季铵盐化的环糊精与绿色荧光蛋白、红色荧光蛋白、蓝色荧光蛋白形成的复合体。
作为优选所述的一种快速检测微生物的基于星状环糊精的荧光传感器,所述的季铵盐化的环糊精,包括:苯基官能团的季铵盐化环糊精,正己烷官能团的季铵盐化环糊精,二茂铁基官能团的季铵盐化环糊精,辛烷基官能团的季铵盐化环糊精,和甲基官能团的季铵盐化环糊精。
作为优选所述的环糊精,包括:-环糊精,-环糊精和-环糊精。
附图说明
图1 星状季铵盐化环糊精与荧光蛋白形成检测微生物的复合体阵列示意图。
图2星状季铵盐化环糊精与荧光蛋白形成复合体阵列检测八种不同微生物。
图3星状季铵盐化环糊精与荧光蛋白形成复合体阵列检测抗生素机制(利用爱德华弧菌生物膜作为来源)。
具体实施方式
下面通过实施例对本发明做进一步说明。
实施例1:
纳米传感器构建:浓度分别为(100 n M)的绿色荧光蛋白、红色荧光蛋白和蓝色荧光蛋白与星状季铵盐的环糊精进行滴定反应,直到三种荧光强度减少到最低值。既可以获得星状季铵盐化环糊精与荧光蛋白形成复合体。
实施例2:
大肠杆菌在LB培养基中37度培养12小时,再用离心机清洗三次。在600nm处测量悬浮的微生物浓度,加入培养基进行培养。培养中加入0.1%葡萄糖、1m M 硫酸镁和0.15M 硫酸铵及34 m M柠檬酸,并调整到pH=7,加入微孔板。培养板在室温下培养3天,其中第二天去除悬浮的菌液,加入新鲜的培养基。等到第三次去除菌液并用PBS冲洗三次。往每孔中加入200 μL的纳米传感器复合体,培育15分钟,用酶标仪测量三种荧光阵列响应信号。结合线性判别分析既可以确定大肠杆菌的种类。
实施例3:
沙门杆菌在LB培养基中37度培养12小时,再用离心机清洗三次。在600nm处测量悬浮的微生物浓度,加入培养基进行培养。培养中加入0.1%葡萄糖、1m M 硫酸镁和0.15M 硫酸铵及34 m M柠檬酸,并调整到pH=7,加入微孔板。培养板在室温下培养3天,其中第二天去除悬浮的菌液,加入新鲜的培养基。等到第三次去除菌液并用PBS冲洗三次。往每孔中加入200 μL的纳米传感器复合体,培育15分钟,用酶标仪测量三种荧光阵列响应信号。结合线性判别分析既可以确定沙门杆菌的种类。
实施例4:
金黄色葡萄球菌在LB培养基中37度培养12小时,再用离心机清洗三次。在600nm处测量悬浮的微生物浓度,加入培养基进行培养。培养中加入0.1%葡萄糖、1m M 硫酸镁和0.15M 硫酸铵及34 m M柠檬酸,并调整到pH=7,加入微孔板。培养板在室温下培养3天,其中第二天去除悬浮的菌液,加入新鲜的培养基。等到第三次去除菌液并用PBS冲洗三次。往每孔中加入200 μL的纳米传感器复合体,培育15分钟,用酶标仪测量三种荧光阵列响应信号。结合线性判别分析既可以确定金黄色葡萄球菌的种类。
实施例5:
铜绿假单胞菌在LB培养基中37度培养12小时,再用离心机清洗三次。在600nm处测量悬浮的微生物浓度,加入培养基进行培养。培养中加入0.1%葡萄糖、1m M 硫酸镁和0.15M硫酸铵及34 m M柠檬酸,并调整到pH=7,加入微孔板。培养板在室温下培养3天,其中第二天去除悬浮的菌液,加入新鲜的培养基。等到第三次去除菌液并用PBS冲洗三次。往每孔中加入200 μL的纳米传感器复合体,培育15分钟,用酶标仪测量三种荧光阵列响应信号。结合线性判别分析既可以确定铜绿假单胞菌的种类。
实施例6:
爱德华弧菌在LB培养基中37度培养12小时,再用离心机清洗三次。在600nm处测量悬浮的微生物浓度,加入培养基进行培养。培养中加入0.1%葡萄糖、1m M 硫酸镁和0.15M硫酸铵及34 m M柠檬酸,并调整到pH=7,加入微孔板。培养板在室温下培养3天,其中第二天去除悬浮的菌液,加入新鲜的培养基。等到第三次去除菌液并用PBS冲洗三次。往每孔中加入200 μL的纳米传感器复合体,培育15分钟,用酶标仪测量三种荧光阵列响应信号。结合线性判别分析既可以确定爱德华弧菌的种类。
实施例7:
链球菌在LB培养基中37度培养12小时,再用离心机清洗三次。在600nm处测量悬浮的微生物浓度,加入培养基进行培养。培养中加入0.1%葡萄糖、1m M 硫酸镁和0.15M 硫酸铵及34 m M柠檬酸,并调整到pH=7,加入微孔板。培养板在室温下培养3天,其中第二天去除悬浮的菌液,加入新鲜的培养基。等到第三次去除菌液并用PBS冲洗三次。往每孔中加入200μL的纳米传感器复合体,培育15分钟,用酶标仪测量三种荧光阵列响应信号。结合线性判别分析既可以确定链球菌的种类。
实施例8:
大肠杆菌在LB培养基中37度培养12小时,再用离心机清洗三次。在600nm处测量悬浮的微生物浓度,加入培养基进行培养。培养中加入0.1%葡萄糖、1m M 硫酸镁和0.15M 硫酸铵及34 m M柠檬酸,并调整到pH=7,加入微孔板。培养板在室温下培养3天,其中第二天去除悬浮的菌液,加入新鲜的培养基。等到第三次去除菌液并用PBS冲洗三次。再加入微生物膜半死亡浓度的青霉素,培育24小时,微孔板清洗三次。加入往每孔中加入200 μL的纳米传感器复合体,培育15分钟,用酶标仪测量三种荧光阵列响应信号。结合线性判别分析既可以确定抗生素的种类。
实施例9:
大肠杆菌在LB培养基中37度培养12小时,再用离心机清洗三次。在600nm处测量悬浮的微生物浓度,加入培养基进行培养。培养中加入0.1%葡萄糖、1m M 硫酸镁和0.15M 硫酸铵及34 m M柠檬酸,并调整到pH=7,加入微孔板。培养板在室温下培养3天,其中第二天去除悬浮的菌液,加入新鲜的培养基。等到第三次去除菌液并用PBS冲洗三次。再加入微生物膜半死亡浓度的头孢菌素,培育24小时,微孔板清洗三次。加入往每孔中加入200 μL的纳米传感器复合体,培育15分钟,用酶标仪测量三种荧光阵列响应信号。结合线性判别分析既可以确定抗生素的种类。
实施例10:
大肠杆菌在LB培养基中37度培养12小时,再用离心机清洗三次。在600nm处测量悬浮的微生物浓度,加入培养基进行培养。培养中加入0.1%葡萄糖、1m M 硫酸镁和0.15M 硫酸铵及34 m M柠檬酸,并调整到pH=7,加入微孔板。培养板在室温下培养3天,其中第二天去除悬浮的菌液,加入新鲜的培养基。等到第三次去除菌液并用PBS冲洗三次。再加入微生物膜半死亡浓度的四环素,培育24小时,微孔板清洗三次。加入往每孔中加入200 μL的纳米传感器复合体,培育15分钟,用酶标仪测量三种荧光阵列响应信号。结合线性判别分析既可以确定抗生素的种类。
实施例11:
金黄色葡萄球菌在LB培养基中37度培养12小时,再用离心机清洗三次。在600nm处测量悬浮的微生物浓度,加入培养基进行培养。培养中加入0.1%葡萄糖、1m M 硫酸镁和0.15M 硫酸铵及34 m M柠檬酸,并调整到pH=7,加入微孔板。培养板在室温下培养3天,其中第二天去除悬浮的菌液,加入新鲜的培养基。等到第三次去除菌液并用PBS冲洗三次。再加入微生物膜半死亡浓度的万古霉素,培育24小时,微孔板清洗三次。加入往每孔中加入200μL的纳米传感器复合体,培育15分钟,用酶标仪测量三种荧光阵列响应信号。结合线性判别分析既可以确定抗生素的种类。
实施例12:
大肠杆菌在LB培养基中37度培养12小时,再用离心机清洗三次。在600nm处测量悬浮的微生物浓度,加入培养基进行培养。培养中加入0.1%葡萄糖、1m M 硫酸镁和0.15M 硫酸铵及34 m M柠檬酸,并调整到pH=7,加入微孔板。培养板在室温下培养3天,其中第二天去除悬浮的菌液,加入新鲜的培养基。等到第三次去除菌液并用PBS冲洗三次。再加入微生物膜半死亡浓度的多粘菌素B,培育24小时,微孔板清洗三次。加入往每孔中加入200 μL的纳米传感器复合体,培育15分钟,用酶标仪测量三种荧光阵列响应信号。结合线性判别分析既可以确定抗生素的种类。
实施例13:
金黄色葡萄球菌在LB培养基中37度培养12小时,再用离心机清洗三次。在600nm处测量悬浮的微生物浓度,加入培养基进行培养。培养中加入0.1%葡萄糖、1m M 硫酸镁和0.15M 硫酸铵及34 m M柠檬酸,并调整到pH=7,加入微孔板。培养板在室温下培养3天,其中第二天去除悬浮的菌液,加入新鲜的培养基。等到第三次去除菌液并用PBS冲洗三次。再加入微生物膜半死亡浓度的替考拉宁,培育24小时,微孔板清洗三次。加入往每孔中加入200μL的纳米传感器复合体,培育15分钟,用酶标仪测量三种荧光阵列响应信号。结合线性判别分析既可以确定抗生素的种类。

Claims (3)

1.一种快速检测微生物的基于星状环糊精的荧光传感器,其特征在于 包括季铵盐化的环糊精与绿色荧光蛋白、红色荧光蛋白、蓝色荧光蛋白形成的复合体。
2.如权利要求1所述的一种快速检测微生物的基于星状环糊精的荧光传感器,其特征在于所述的季铵盐化的环糊精,包括:苯基官能团的季铵盐化环糊精,正己烷官能团的季铵盐化环糊精,二茂铁基官能团的季铵盐化环糊精,辛烷基官能团的季铵盐化环糊精,和甲基官能团的季铵盐化环糊精。
3.如权利要求2所述的一种快速检测微生物的基于星状环糊精的荧光传感器,其特征在于,所述的环糊精,包括:-环糊精, -环糊精和 -环糊精。
CN201710298168.9A 2017-04-30 2017-04-30 一种快速检测微生物的基于星状环糊精的荧光传感器 Active CN106950212B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710298168.9A CN106950212B (zh) 2017-04-30 2017-04-30 一种快速检测微生物的基于星状环糊精的荧光传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710298168.9A CN106950212B (zh) 2017-04-30 2017-04-30 一种快速检测微生物的基于星状环糊精的荧光传感器

Publications (2)

Publication Number Publication Date
CN106950212A CN106950212A (zh) 2017-07-14
CN106950212B true CN106950212B (zh) 2019-12-27

Family

ID=59477973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710298168.9A Active CN106950212B (zh) 2017-04-30 2017-04-30 一种快速检测微生物的基于星状环糊精的荧光传感器

Country Status (1)

Country Link
CN (1) CN106950212B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109115741A (zh) * 2018-08-23 2019-01-01 海南大学 一种多色荧光磁性化学鼻传感器快速检测病原微生物
CN111063391B (zh) * 2019-12-20 2023-04-25 海南大学 一种基于生成式对抗网络原理的不可培养微生物筛选系统
CN116626010B (zh) * 2023-07-11 2023-09-29 长春中医药大学 白酒中醇类物质以及金属汞的检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012154651A2 (en) * 2011-05-06 2012-11-15 The Research Foundation Of State University Of New York Molecular roadblocks for rpon binding sites
WO2013090818A1 (en) * 2011-12-16 2013-06-20 The Regents Of The University Of California Multiscale platform for coordinating cellular activity using synthetic biology
CN104237534A (zh) * 2014-09-28 2014-12-24 淮南师范学院 一种快速检测纳米材料生物有效性的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012154651A2 (en) * 2011-05-06 2012-11-15 The Research Foundation Of State University Of New York Molecular roadblocks for rpon binding sites
WO2013090818A1 (en) * 2011-12-16 2013-06-20 The Regents Of The University Of California Multiscale platform for coordinating cellular activity using synthetic biology
CN104237534A (zh) * 2014-09-28 2014-12-24 淮南师范学院 一种快速检测纳米材料生物有效性的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一株微生物采油菌的16rDNA鉴定和绿色荧光蛋白分子标记;王欲晓等;《徐州工程学院学报》;20111231;第26卷(第4期);全文 *

Also Published As

Publication number Publication date
CN106950212A (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
CN106950212B (zh) 一种快速检测微生物的基于星状环糊精的荧光传感器
Ngernpimai et al. Rapid identification of biofilms using a robust multichannel polymer sensor array
Extremina et al. Optimization of processing conditions for the quantification of enterococci biofilms using microtitre-plates
Sachivkina et al. The evaluation of intensity of formation of biomembrane by microscopic fungi of the Candida genus
Al-Jumaily et al. Multidrug resistant Proteus mirabilis isolated from urinary tract infection from different hospitals in Baghdad City
CN109097365B (zh) 用于创伤弧菌识别的核酸适配体及筛选方法与应用
Almeida et al. Rapid detection of urinary tract infections caused by Proteus spp. using PNA-FISH
Zhuang et al. Progress in methods for the detection of viable Escherichia coli
Horváth et al. Rapid identification of pathogens in blood culture with fluorescent in situ hybridization (FISH)
US11327079B2 (en) Direct detection of the active form of beta-lactam-hydrolysing enzymes by using mass spectrophotometry
Abedin et al. Culture positivism exploitation through automated fluorescent-sensor technology from patients with blood stream infections
Bera et al. Estimating bacterial concentrations in fibrous substrates through a combination of scanning electron microscopy and ImageJ
Berhilevych et al. Comparison of cell sizes of methicillin-resistant Staphylococcus aureus with Presence and absence of the MecA Gene
Abdulla et al. Screening of virulence factors in Acintobacter baumannii isolated from clinical samples
Mohammed et al. Molecular detection of virulence genes in Klebsiella pneumoniae isolates from wasit province, Iraq
US8148081B2 (en) Method for detecting microorganisms on a membrane
KR102560716B1 (ko) 이미지 분석을 통한 항생제 감수성을 평가하는 방법
CN109115741A (zh) 一种多色荧光磁性化学鼻传感器快速检测病原微生物
Moza et al. Biofilms in the food industry: a focus on the methods used for detection and study of microbial biofilms.
EP4089179B1 (en) Processes for microbiological detection and determination of antimicrobial susceptibility in clinical, environmental or food samples
Mishyna et al. Stages of Biofilms Formation by the Leading Pathogens in Children With Pyelonephritis on Congenital Hydronephrosis Background Depending on Child’s Age
Ibrišimović et al. A novel spectrophotometric assay for the determination of biofilm forming capacity of causative agents of urinary tract infections
Klančnik et al. Determination of viable biofilm cells in microtiter plates
Sandhya et al. Morphological study of Lactococcus by gram staining to determine shape and size
Al-Sabawi et al. Study gene expression for the PelF gene responsible for the biofilm formation of Pseudomonas aeruginosa using qPCR

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230925

Address after: Room A1-1064, 5th Floor, Building A, Entrepreneurship Incubation Center, Haikou National High tech Zone, No. 266 Nanhai Avenue, Haikou City, Hainan Province, 570311

Patentee after: HAINAN VIEW KR BIO-TECH. CO.,LTD.

Address before: 570228 Hainan Province Haikou City Meilan District Haidian San Xi Road No. 13 Haida Teaching Staff Collective Household

Patentee before: Wan Yi

Effective date of registration: 20230925

Address after: 570228 Hainan Province Haikou City Meilan District Haidian San Xi Road No. 13 Haida Teaching Staff Collective Household

Patentee after: Wan Yi

Address before: 570228 Hainan University, 58 Renmin Avenue, Meilan District, Haikou City, Hainan Province

Patentee before: HAINAN University