CN106935651A - 晶体管装置 - Google Patents

晶体管装置 Download PDF

Info

Publication number
CN106935651A
CN106935651A CN201611020363.7A CN201611020363A CN106935651A CN 106935651 A CN106935651 A CN 106935651A CN 201611020363 A CN201611020363 A CN 201611020363A CN 106935651 A CN106935651 A CN 106935651A
Authority
CN
China
Prior art keywords
barrier layer
tunneling barrier
passage
tunneling
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611020363.7A
Other languages
English (en)
Inventor
雅利安·阿弗萨蓝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN106935651A publication Critical patent/CN106935651A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66522Unipolar field-effect transistors with an insulated gate, i.e. MISFET with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

晶体管装置包括:通道,位于通道的第一侧上的第一源极/漏极区域,位于通道的与通道第一侧相对的第二侧上的第二源极/漏极区域,以及设置在通道与第一源极/漏极区域之间的穿隧阻障层,此穿隧阻障层适合于当晶体管装置处于断态时抑制能带间穿隧。

Description

晶体管装置
技术领域
本揭示内容是关于晶体管装置、半导体装置及形成晶体管装置的方法,特别是关于具有穿隧阻障层的晶体管装置及半导体装置及形成晶体管装置的方法。
背景技术
在半导体集成电路(IC)行业中,IC材料和设计的技术进步已经产生了若干代IC,其中每一代比上一代具有更小和更复杂的电路。在IC进化过程中,功能密度(亦即,每晶片面积的互连设备数量)已经普遍增大,而几何尺寸(亦即,使用制造制程可产生的最小部件(或者接线))已经减小。此按比例缩小过程通常通过提高生产效率及降低相关成本来提供益处。此类按比例缩小亦已经增大了IC处理及制造的复杂性。
集成电路中的常用设备是晶体管。典型的晶体管基于施加在栅极处的电压及晶体管类型允许或者禁止电流在源极端与漏极端之间流动。特别地,当晶体管处于通态时,允许电流在源极端与漏极端之间流动。当晶体管处于断态时,禁止电流在源极端与漏极端之间流动。通常,即使处于断态,电流亦可能经由晶体管装置泄漏。期望尽可能减少此漏电流。
发明内容
根据一个实例,晶体管装置包括通道,位于通道的第一侧上的第一源极/漏极区域,位于通道的与通道第一侧相对的第二侧上的第二源极/漏极区域,以及设置在通道与第一源极/漏极区域之间的穿隧阻障层,此穿隧阻障层适合于当晶体管装置处于断态时抑制能带间穿隧。
附图说明
当结合附图阅读以下详细描述时,本揭示案的各态样将最易于理解。应注意的是,根据行业标准操作规程,各种特征结构可能并非按比例绘制。事实上,为了论述的清晰性,可以任意地增大或减小各种特征结构的尺寸。
图1为根据本文所描述原理的一个实例图示具有穿隧阻障层的例示性晶体管装置的附图;
图2A为根据本文所描述原理的一个实例,图示具有穿隧阻障层的晶体管装置中的例示性断态能隙的曲线图;
图2B为根据本文所描述原理的一个实例,图示具有穿隧阻障层的晶体管装置中的例示性通态能隙的曲线图;
图3A为根据本文所描述原理的一个实例,图示具有穿隧阻障层的晶体管装置中的例示性断态能隙的曲线图;
图3B为根据本文所描述原理的一个实例,图示具有穿隧阻障层的晶体管装置中的例示性通态能隙的曲线图;
图4A及图4B为根据本文所描述原理的一个实例,图示具有穿隧阻障层的例示性鳍结构晶体管装置的附图;
图5为根据本文所描述原理的一个实例,图示具有穿隧阻障层的例示性垂直晶体管结构的附图;
图6A为根据本文所描述原理的一个实例,图示具有两个穿隧阻障层的例示性晶体管装置的附图;
图6B为根据本文所描述原理的一个实例,图示具有两个穿隧阻障层的晶体管装置中的例示性断态能隙的曲线图;
图7为根据本文所描述原理的一个实例,图示在通道顶部上具有穿隧阻障层的例示性晶体管装置的附图;
图8为根据本文所描述原理的一个实例,图示用于形成具有穿隧阻障层的晶体管装置的例示性方法的流程图;
图9为根据本文所描述原理的一个实例,图示用于通过替换通道的部分来形成穿隧阻障层的例示性方法的流程图;
图10为根据本文所描述原理的一个实例,图示用于形成邻近于栅极堆叠的穿隧阻障层的例示性方法的流程图;
图11为根据本文所描述原理的一个实例,图示用于形成具有穿隧阻障层的垂直晶体管结构的例示性方法的流程图;
图12为根据本文所描述原理的一个实例,图示具有穿隧阻障层的晶体管中的例示性断态能隙的附图,此穿隧阻障层适合于用于限制直接的源极至漏极穿隧;
图13为根据本文所描述原理的一个实例,图示具有穿隧阻障层的晶体管中的例示性断态能隙的附图,此穿隧阻障层适合于用于限制双共振能带间穿隧及能带间穿隧两者;
图14为根据本文所描述原理的一个实例,图示比较不具有穿隧阻障层的设备与具有穿隧阻障层的设备的模拟结果的曲线图;
图15为根据本文所描述原理的一个实例,比较不具有穿隧阻障层的设备与具有适合于减少共振穿隧的穿隧阻障层的设备的模拟结果的曲线图;
图16为根据本文所描述原理的一个实例,图示比较不具有穿隧阻障层的设备与具有一个穿隧阻障层的设备及具有两个穿隧阻障层的设备的模拟结果的曲线图。
具体实施方式
以下揭示内容提供用于实施所提供标的的不同特征的许多不同的实施例或实例。部件及配置的特定实例描述如下,以简化本案揭示内容。这些实例当然仅为实例并且并不意欲作为限制。例如,以下描述中在第二特征结构上方或上面形成第一特征结构可包括其中这些第一和第二特征结构是以直接接触形成的实施例,并且亦可包括其中可在这些第一和第二特征结构之间形成额外的特征结构以使得这些第一和第二特征结构可不直接接触的实施例。此外,本揭示案可在各个实例中重复参考数字及/或字母。此重复是出于简洁明了的目的并且其本身并非指示所论述的各个实施例及/或配置之间的关系。
此外,空间相对术语,诸如“在...下面”、“在……下方”、“在……下部”、“在……上方”、“在……上面”等等,可在本文中出于便于描述的目的用于描述如附图所示的一个元件或特征结构与另一元件或特征结构的关系。这些空间相对术语意欲涵盖使用或操作中的设备除了在附图中描述的取向以外的不同取向。装置可以其他方式取向(旋转90度或者为其他取向),并且本文使用的空间相对描述词可据此类似地解释。
如上所述,期望减少处于断态的晶体管装置的漏电流量。漏电流可由各种因素引起,包括能带间穿隧、共振穿隧,以及直接的源极至漏极穿隧。根据本文所描述的原理,穿隧阻障层位于通道与源极与漏极区域之间。穿隧阻障层可具有抑制漏电流,同时对通态电流具有最小影响的各种特性。在一个实例中,穿隧阻障层表现出比通道更低的价带,由此增大了穿隧阻障层内价带与导带之间的能隙。穿隧阻障层的能隙可通过具有不同材料而变得与通道的能隙不同。在一些情况中,穿隧阻障层亦可被掺杂,且不同于通道及源极或漏极。
图1为图示具有穿隧阻障层112的例示性晶体管装置100的附图。根据本实例,晶体管装置100形成于基板102中。此晶体管装置100包括栅极106、通道104、第一源极/漏极区域108、第二源极/漏极区域110,以及穿隧阻障层112。
基板102可为半导体基板,诸如硅基板。在一些情况中,基板可基于其上所形成的晶体管的类型而经掺杂。例如,对于N型晶体管,基板102可掺杂有P型掺杂剂。对于P型晶体管,基板102可掺杂有N型掺杂剂。
第一源极/漏极区域108及第二源极/漏极区域110可为高度掺杂的区域。在N型晶体管的情况下,第一源极/漏极区域108及第二源极/漏极区域110可掺杂有N型掺杂剂。在P型晶体管的情况下,第一源极/漏极区域108及第二源极/漏极区域110可掺杂有P型掺杂剂。第一源极/漏极区域108及第二源极/漏极区域110两者可连接至导电触点(未图示)。经由此类触点,电流可穿过第一源极/漏极区域108与第二源极/漏极区域110之间的晶体管。
栅极106可由导电材料构成,诸如金属或聚硅。栅极106可包括栅极堆叠,此栅极堆叠包括多层各种材料。例如,栅极堆叠可包括高k介电层及许多金属层。栅极106亦可连接至触点。经由栅极106的触点施加至栅极106的电压位准可决定晶体管装置100是处于断态还是通态。
通道104可包含半导体材料,诸如硅。在一些情况中,通道104可包含高迁移率的半导体材料。高迁移率材料是具有比硅更高的迁移率的材料。高迁移率材料包括硅锗(SiGe)、砷化铟(InAs),或者锑化铟(InSb)。因为此类高迁移率的半导体材料在导带与价带之间具有较小的能隙,所以尽管此类材料可提供更好的通态效能,但是此类材料可表现出更多的漏电流。
在本实例中,穿隧阻障层112位于通道与第二源极/漏极区域110之间。穿隧阻障层112可具有抑制断态漏电流的特性。在一个实例中,穿隧阻障层l12的导带及价带可具有与通道的导带及价带不同的能阶。在一些实例中,穿隧阻障层可具有比通道更大的能隙。在一个实例中,如下文将进一步详细描述的,穿隧阻障层112可具有比通道更低的价带。在一个实例中,如下文将进一步详细描述的,穿隧阻障层112可具有比通道更高的导带。在一些实例中,穿隧阻障层112的较大能隙可能是由于形成穿隧阻障层112的材料的类型。例如,穿隧阻障层可由硅锗构成,而通道104可由硅构成。在一个实例中,穿隧阻障层112可由砷锑化铟(InAsSb)构成,而通道104可由锑化铟(InSb)构成。在一个实例中,穿隧阻障层112可由砷化铟镓(InGaAs)构成,而通道104可由砷化铟(InAs)构成。可考虑使穿隧阻障层112具有比通道更大能隙的材料的其他组合。
在本实例中,穿隧阻障层112位于栅极106下方,以使得穿隧阻障层112的边缘与栅极106的边缘实质上对准。然而,在一些实例中,穿隧阻障层112可延伸超出栅极106。在一些实例中,栅极106可延伸超出穿隧阻障层112。
可以其他方式调整穿隧阻障层112,以进一步相对于通道104的导带及价带影响导带及价带。在一些实例中,穿隧阻障层112可具有比通道的有效质量更高的有效质量。此可经由各种机制实现。例如,恰当的应变效应(经由不同半导体材料的磊晶生长)可改变此有效质量。在一些实例中,用于穿隧阻障层的材料可具有比用于通道的材料更高的有效质量。有效质量的改变可与导带及价带能阶的改变组合使用。在一些实例中,穿隧阻障层112可具有与通道104的形状不同的形状。例如,穿隧阻障层112可大于或小于通道104的横向尺寸。
在一些实例中,可调整穿隧阻障层112的厚度以影响相对于通道104的导带及价带的穿隧阻障层112的导带及价带。例如,穿隧阻障层112的厚度可被设定为最小化漏电流,同时亦最小化对通态电流的影响的长度。在一个实例中,穿隧阻障层可具有在约2至7nm范围内的厚度。亦可考虑其他大小的穿隧阻障层112。
在其他实例中,穿隧阻障层112可由与通道相同的半导体材料构成,但是施加有重掺杂以使穿隧阻障层112的能隙偏移。在N型晶体管的情况下,穿隧阻障层112可用N型掺杂剂高度掺杂。例如,穿隧阻障层112可具有大于1019cm3的掺杂浓度,而通道104可具有小于1017cm3的掺杂浓度。穿隧阻障层112的掺杂浓度亦可高于相邻源极/漏极区域110的掺杂浓度。通过以更高的掺杂浓度掺杂穿隧阻障层112,可使穿隧阻障层112的价带移动至相对于通道104的价带的能阶更低的能阶。
在P型晶体管的情况下,穿隧阻障层112可用P型掺杂剂高度掺杂。例如,穿隧阻障层112可具有大于5×1018cm3的掺杂浓度,而通道104可具有小于1017cm3的掺杂浓度。在一些实例中,穿隧阻障层112可以在约5×1018cm3至1021cm3范围内的掺杂浓度掺杂。穿隧阻障层112的掺杂浓度亦可高于相邻源极/漏极区域110的掺杂浓度。通过以更高的掺杂浓度掺杂穿隧阻障层112,可使穿隧阻障层112的导带移动至相对于通道104的导带的能阶更高的能阶。
图2A为图示具有穿隧阻障层的NMOS晶体管中的例示性断态能隙的曲线图。根据本实例,曲线图200图示晶体管装置(例如,100,图1)的导带202及价带204。导带202在电子空位态的最小范围内。价带在电子通常所存在的电子能的最大范围内。曲线图200的横轴203表示在第一源极/漏极区域108、通道104、穿隧阻障层112,以及第二源极/漏极区域110的位置。曲线图200的纵轴201表示能阶。
在本实例中,穿隧阻障层112使得对应于穿隧阻障层112的区域内的价带204下降。换言之,穿隧阻障层致使相较于没有穿隧阻障层112的情况下价带204的能阶,价带204的能阶凹陷206。在一些实例中,此凹陷206可使价带204的能阶降低约0.1-0.3电子伏的范围。例如,此凹陷206可使价带204的能阶降低约0.2电子伏。代表价带204的实线指示若不存在穿隧阻障层112时的价带204的能阶。图示凹陷206的虚线表示作为穿隧阻障层112存在的结果的价带204的能阶。价带204的凹陷206增大了对应于穿隧阻障层112的区域内价带204与导带202之间的能隙。此增大的能隙致使从价带204传送至导带202的任意漏电流210减少。此类泄漏通常被称为能带间穿隧。.
图2B为图示具有穿隧阻障层112的晶体管装置中的例示性通态能隙的曲线图220。施加电压至栅极(例如,106,图1)降低了通道104内的导带202与价带204两者的能阶。此允许电子更轻易地经由通道104从第一源极/漏极区域108传送至第二源极/漏极区域110,由此产生电流穿过晶体管装置。在本实例中,当穿隧阻障层112存在时,导带202保持实质上相同。因此,通态电流可在正常导带中流过通道。然而,对应于穿隧阻障层112的区域中的价带204仍然凹陷206。因为对于NMOS晶体管,电流在导带中流动,所以价带204改变最小地影响通态电流。但是,断态能带间穿隧电流实质上被减少。
图3A为图示具有穿隧阻障层的NMOS晶体管装置中的例示性断态能隙的曲线图300。根据本实例,曲线图300图示晶体管装置(例如,100,图1)的导带302及价带304。曲线图300的横轴203表示在第一源极/漏极区域108、通道104、穿隧阻障层112,以及第二源极/漏极区域110的位置。曲线图300的纵轴201表示能阶。
在本实例中,穿隧阻障层112导致对应于穿隧阻障层112的区域的导带302的拐点310。换言之,由于穿隧阻障层112的特性,导带302具有升高的能阶。在一些实例中,此拐点310可使导带302的能阶上升约0.1-0.3电子伏的范围。例如,此拐点310可使导带302的能阶上升约0.2电子伏。表示导带302的实线指示若不存在穿隧阻障层112时的导带302的能阶。图示拐点310的虚线表示作为穿隧阻障层112存在的结果的导带302的能阶。导带302的拐点310增大了对应于穿隧阻障层112的区域内价带304与导带302之间的带价。此增大的能隙致使从价带304传送至导带302的任意漏电流308减少。此类泄漏通常被称为能带间穿隧。
图3B为图示具有穿隧阻障层的晶体管装置中的例示性通态能隙的曲线图320。施加电压至栅极(例如,106,图1)降低了通道104内的导带302与价带304两者的能阶。此允许电子更轻易地经由通道104从第一源极/漏极区域108传送至第二源极/漏极区域110,由此产生电流穿过晶体管装置。在本实例中,当穿隧阻障层112存在时,尽管导带202仍然包括拐点310,但是拐点310的大小可对通态电流具有可忽略的影响。换言之,拐点310可实质上降低能带间穿隧,同时对通态电流具有最小影响。在一些实例中,穿隧阻障层相对于栅极边缘的位置亦可帮助限制能带间穿隧及/或最小化对通态电流的影响。特别地,如图1所示,栅极106完全覆盖穿隧阻障层112。
图4A及图4B图示具有穿隧阻障层416的例示性鳍结构晶体管装置400的附图。图4A是垂直于鳍结构402的剖视图。可使用各种制造制程形成鳍结构。鳍结构402为从基板404伸长出的隆起。两图的鳍结构是由半导体材料构成的,并且如下文将进一步详细解释的,可经掺杂以形成源极与漏极区域。栅极层406形成于鳍结构402上方。通常,栅极层406垂直于鳍结构402延伸。另外,栅极层406围绕鳍结构402,以使得栅极层406位于鳍结构402的三个不同的侧面中。
图4B为平行于鳍结构402的剖视图。图4B图示第一源极/漏极区域412及第二源极/漏极区域414。源极/漏极区域412、414可以各种方式形成。在一个实例中,源极/漏极区域412、414是通过掺杂鳍结构的合适区域中的两处来形成的。在一个实例中,源极/漏极区域412、414是通过将沟槽蚀刻成鳍结构并磊晶生长此源极/漏极区域412、414形成之。鳍结构晶体管装置400还包括穿隧阻障层416。穿隧阻障层416表现出会影响穿隧阻障层415内相对于通道的导带及价带的能阶的导带及价带的能阶的特性。
图5为图示具有穿隧阻障层的例示性垂直晶体管结构的附图。根据本实例,垂直晶体管结构500包括伸长的半导体结构510,诸如纳米线。在此伸长的半导体结构510中形成有第一源极/漏极区域502、通道区域512,以及第二源极/漏极区域504。另外,穿隧阻障层506形成于伸长的半导体结构510中。类似于上述穿隧阻障层,穿隧阻障层506表现出影响晶体管装置的能带的特性。特别地,导带及价带的能阶不同于通道的彼等。在一些实例中,穿隧阻障层506中的能隙大于通道区域512的能隙。此有助于抑制断态漏电流。
垂直晶体管结构500亦包括栅极508。在一些实例中,栅极可形成于伸长的半导体结构510的单侧上。在一些实例中,栅极508可位于伸长的半导体结构510的不只一侧上。在一些实例中,栅极508可完全围绕伸长的半导体结构510。栅极508被定位为使得其覆盖穿隧阻障层506。然而,在一些实例中,穿隧阻障层506可延伸略超出栅极508。在一些实例中,栅极可延伸略超出穿隧阻障层506。
图6A为图示具有两个穿隧阻障层602、112的例示性晶体管装置600的附图。根据本实例,第二穿隧阻障层602位于通道104与第一源极/漏极区域108之间。在一些实例中,第二穿隧阻障层602可具有与第一穿隧阻障层112的彼等特性类似的特性。例如,第二穿隧阻障层602可影响晶体管装置600的能隙。特别地,穿隧阻障层602具有与通道104的彼等导带及价带能阶不同的导带及价带能阶。穿隧阻障层602位于栅极106下方,以使得穿隧阻障层602的边缘与栅极106的边缘实质上对准。然而,在一些实例中,穿隧阻障层602可延伸超出栅极106。在一些实例中,栅极106可延伸超出穿隧阻障层602。
图6B为图示具有两个穿隧阻障层的NMOS晶体管装置中的例示性断态能隙的曲线图620。根据本实例,曲线图620图示晶体管装置(例如,600,图6A)的导带622及价带624。曲线图620的横轴623表示第一源极/漏极区域608,通道104,穿隧阻障层602、112,以及第二源极/漏极区域110的位置。曲线图600的纵轴621表示能阶。
第一穿隧阻障层602通过产生拐点626影响导带622并且通过产生凹陷630影响价带624。类似地,第二穿隧阻障层112通过产生拐点628影响导带622并且通过产生凹陷632影响价带624。拐点626、628帮助降低直接的源极至漏极穿隧634,同时对在导带622内流动的通态电流具有最小影响。当NMOS晶体管中的通态电流在导带中流动时,凹陷630、632帮助降低能带间穿隧636,同时对通态电流具有最小影响。在一些实例中,穿隧阻障层602、112可使得导带622中仅存在拐点626、628或者价带624中仅存在凹陷630、632。
图7为图示在通道104的顶部上具有穿隧阻障层702的例示性晶体管装置700的附图。在本实例中,穿隧阻障层702形成于通道104上,以使得穿隧阻障层702的底部实质上与栅极106的底部共平面。在本实例中,穿隧阻障层702具有与栅极106的高度类似的高度。然而,在一些实例中,穿隧阻障层702可具有与栅极106不同的高度。在本实例中,第二源极/漏极区域704形成在穿隧阻障层702的顶部上。因此,代替第二源极/漏极区域704与通道104实质上共平面,第二源极/漏极区域704形成在穿隧阻障层704的顶部上,如图所示。亦可设想穿隧阻障层位于通道与源极/漏极区域之间的其他结构。
图8为图示用于形成具有穿隧阻障层的晶体管装置的例示性方法800的流程图。根据本实例,此方法800包括用于在基板中形成通道的步骤802。此通道可以各种方式形成。例如,在平面晶体管装置的情况下,通道可通过用合适类型的掺杂剂掺杂基板的区域形成。掺杂剂的合适类型取决于晶体管的类型。特别地,对于N型晶体管,通道掺杂有P型掺杂剂。对于P型晶体管,通道掺杂有N型掺杂剂。在finFET(鳍式场效晶体管)的情况下,通道形成为鳍结构。在纳米线晶体管的情况下,通道形成为纳米线结构的部分。
此方法800还包括用于在通道的第一侧上形成至少一个源极/漏极区域的步骤804。此源极/漏极区域可以各种方式形成。例如,源极/漏极区域可通过用合适类型的掺杂剂掺杂基板形成。对于N型晶体管,源极/漏极区域掺杂有N型掺杂剂。对于P型晶体管,源极/漏极区域掺杂有P型掺杂剂。在一些实例中,源极/漏极区域可使用磊晶制程形成。例如,可使用移除制程如蚀刻制程移除将形成源极/漏极区域的区域。源极/漏极区域可随后在通过移除制程形成的沟槽中磊晶生长。在一些实例中,源极/漏极区域可原位掺杂。
此方法800还包括形成设置在通道与源极/漏极区域之间的穿隧阻障层的步骤806。穿隧阻障层适用于抑制处于断态时晶体管装置的能带间穿隧。在一个实例中,穿隧阻障层内的导带及价带的能阶不同于通道的能阶。在一些实例中,穿隧阻障层具有比通道的能隙更大的能隙。较大能隙可为用于形成穿隧阻障层的材料相较于用于形成通道的材料的结果。例如,穿隧阻障层可由InGaAs构成,而通道可由InAs构成。此外,穿隧阻障层可以比相邻源极/漏极区域的掺杂浓度更高的掺杂浓度掺杂。较大能隙亦可帮助抑制其他形式的漏电流,诸如共振穿隧及直接的源极至漏极穿隧。
图9为图示通过替换通道的部分形成穿隧阻障层的例示性方法900的流程图。根据本实例,方法900包括用于在通道相对两侧上形成具有多个源极/漏极区域的通道的步骤902。此通道可以如上所述的各种方式形成。
此方法900亦包括用于蚀刻一部分的通道以形成沟槽的步骤904。形成沟槽邻近于这些源极/漏极区域之一。沟槽可使用移除制程如蚀刻制程形成。例如,光微影技术可用于图案化光阻剂并使下层基板曝露于移除制程。
此方法900亦包括用于在沟槽中形成穿隧阻障层的步骤906。穿隧阻障层适合于用于当晶体管装置处于断态时抑制能带间穿隧。在一个实例中,穿隧阻障层内的导带及价带能阶不同于通道的导带及价带能阶。在一些实例中,穿隧阻障层具有比通道的能隙更大的能隙。较大能隙可为用于形成穿隧阻障层的材料相较于用于形成通道的材料的结果。例如,穿隧阻障层可由InGaAs构成,而通道可由InAs构成。此外,穿隧阻障层可以比相邻源极/漏极区域的掺杂浓度更高的掺杂浓度掺杂。较大能隙亦可帮助抑制其他形式的漏电流,诸如共振穿隧及直接的源极至漏极穿隧。
此方法900亦包括用于在通道上方形成栅极堆叠的步骤908。栅极堆叠可包括包含高k介电材料的许多层及用于形成金属栅极的许多金属层。栅极堆叠亦可覆盖穿隧阻障层。
图10为用于形成邻近于栅极堆叠的穿隧阻障层的例示性方法1000的流程图。根据本实例,此方法1000包括用于形成通道的步骤1002。此通道可以如上所述的各种方式形成。
此方法1000亦包括用于在通道末端上形成穿隧阻障层的步骤1004。穿隧阻障层可以各种方式形成。在一个实例中,穿隧阻障层是经由磊晶制程形成的。磊晶制程涉及在结晶基板上生长晶体材料。在此情况下,结晶基板可为通道,而晶体材料可为穿隧阻障层材料。在一个实例中,通道可由InAs构成,而穿隧阻障层可由InGaAs构成。亦可设想用于形成穿隧阻障层的其他方法。此外,穿隧阻障层适用于当晶体管装置处于断态时抑制能带间穿隧。特别地,穿隧阻障层具有比通道的能隙更大的能隙。较大能隙可为用于形成穿隧阻障层的材料相较于用于形成通道的材料的结果。例如,穿隧阻障层可由InGaAs构成,而通道可由InAs构成。此外,穿隧阻障层可以比相邻源极/漏极区域的掺杂浓度更高的掺杂浓度掺杂。较大能隙亦可帮助抑制其他形式的漏电流,诸如共振穿隧及直接的源极至漏极穿隧。
此方法1000亦包括用于在穿隧阻障层上形成源极/漏极区域的步骤1006。在一些实例中,源极/漏极区域亦可使用磊晶生长制程形成。源极/漏极区域可具有与穿隧阻障层不同的材料。源极/漏极区域是根据晶体管装置的类型掺杂的。
此方法1000亦包括用于在通道上方形成栅极堆叠的步骤1008。栅极堆叠可包括包含高k介电材料的许多层及用于形成金属栅极的许多金属层。栅极堆叠可被形成为邻近于穿隧阻障层,以使得栅极堆叠的底部与穿隧阻障层的底部实质上共平面。
图11为图示用于形成具有穿隧阻障层的垂直晶体管结构的例示性方法1100的流程图。根据本实例,此方法1100包括用于形成垂直晶体管结构的第一源极/漏极区域的步骤1102。此源极/漏极区域可使用磊晶生长制程形成。
此方法1100亦包括在第一源极/漏极区域上形成通道的步骤1104。在一些实例中,通道可具有比第一源极/漏极区域的高度更大的高度。用于通道的掺杂剂的类型取决于晶体管的类型。例如,N型晶体管具有掺杂有P型掺杂剂的通道,而P型晶体管具有掺杂有N型掺杂剂的通道。
此方法1100亦包括用于在通道上形成穿隧阻障层的步骤1106。穿隧阻障层亦可使用磊晶生长制程形成。穿隧阻障层适用于当晶体管装置处于断态时抑制能带间穿隧。在一个实例中,穿隧阻障层内的导带及价带能阶不同于通道的导带及价带能阶。在一些实例中,穿隧阻障层具有比通道的能隙更大的能隙。较大能隙可为用于形成穿隧阻障层的材料相较于用于形成通道的材料的结果。例如,穿隧阻障层可由InGaAs构成,而通道可由InAs构成。此外,穿隧阻障层可以比相邻源极/漏极区域的掺杂浓度更高的掺杂浓度掺杂。较大能隙亦可帮助抑制其他形式的漏电流,诸如共振穿隧及直接的源极至漏极穿隧。
此方法1100亦包括用于在穿隧阻障层上形成第二源极/漏极区域的步骤1108。第二源极/漏极区域可具有与第一源极/漏极区域类似的特性。第二源极/漏极区域亦可使用磊晶制程形成。
此方法1100亦包括用于形成邻近于通道的栅极的步骤1110。此栅极可以各种方式形成。在一些情况中,栅极可完全围绕垂直晶体管结构。栅极可形成为使得栅极邻近于通道及穿隧阻障层,如图5所示。
图12为图示具有适合于用于限制直接的源极至漏极穿隧的穿隧阻障层的NMOS晶体管中的例示性断态能隙的曲线图1200。根据本实例,曲线图1200图示晶体管装置(例如,100,图1)的导带1202及价带1204。曲线图1200的横轴1203表示如图1所示的第一源极/漏极区域108、通道104、穿隧阻障层112以及第二源极/漏极区域110的位置。曲线图1200的纵轴1201表示能阶。在本实例中,穿隧阻障层通过产生拐点1206影响导带1202。拐点1206帮助减少直接的源极至漏极穿隧1208,同时对在导带1202内流动的通态电流具有最小影响。
图13为图示具有适合于限制双共振能带间穿隧(Double resonant band-to-band-tunneling,DRBTBT)及能带间穿隧两者的穿隧阻障层的晶体管中的例示性断态能隙的曲线图1300。如图13中的箭头1310所示,当栅极电压为使得通道中的价带与源极中的导带在能量方面对准时,赋能DRBTBT,从而产生用于使电子从源极穿隧至通道中的价带并且随后至漏极中的导带的泄漏路径。根据本实例,曲线图1300图示晶体管装置(例如,100,图1)的导带1302及价带1304。曲线图1300的横轴1303表示如图1所示的第一源极/漏极区域108、通道104、穿隧阻障层112以及第二源极/漏极区域110的位置。曲线图1300的纵轴1301表示能阶。在本实例中,穿隧阻障层通过产生拐点1306影响导带1302。另外,穿隧阻障层通过产生凹陷1308影响价带1304。拐点1306帮助减少DRBTBT 1310,同时对在导带1302内流动的通态电流具有最小影响。凹陷1308帮助减少能带间穿隧1312,同时对在导带1302内流动的通态电流具有最小影响。拐点1306及凹陷1308两者可组合使用来限制断态漏电流。
上文在图2A、图2B、图3A、图3B、图6B、图12及图13中描述的实例是关于NMOS晶体管。类似的原理可适用于PMOS晶体管。在PMOS晶体管中,电流是由于移动穿过价带的空穴的运动引起的。因此,导带中的拐点可对在价带中流动的电流具有最小影响。另外,价带中的凹陷可被设计成对通态电流几乎没有影响,同时限制断态漏电流。
图14为图示使用原子强力结合量子输运模拟(Atomistic tight bindingquantum transport simulation)比较不具有穿隧阻障层的设备与具有穿隧阻障层的设备的模拟结果的曲线图1400。在本实例中,纵轴1402表示电流,而横轴1404表示电压。第一条线1406表示不具有穿隧阻障层的设备的IV曲线,通道包含InAs,掺杂浓度Nd为2×1019,Vd为0.75。第二条线1408表示具有穿隧阻障层的设备的IV曲线,此穿隧阻障层包含InGaAs,其中铟的原子百分率为70%。第三条线1410表示具有穿隧阻障层的设备的IV曲线,此穿隧阻障层由InGaAs构成,其中铟的原子百分率为53%,并且此阻障层中使用1020cm-3的高度N型掺杂以产生价带(VB)阻障层(凹陷)。1408及1410两者皆具有混合导带/价带阻障层(类似于图13的能带结构)的特性。1410更接近于VB阻障层情况(图2A及图2B),而1408情况更接近于导带(CB)阻障层情况(图3A及图3B)。如图可看出,由线1408及1410表示的设备在区域1412中具有实质上降低的电流位准。此为经由使用穿隧阻障层抑制能带间穿隧电流的结果。对于1408情况,直接的源极至漏极穿隧亦显著地减少。
图15为图示比较不具有穿隧阻障层的设备与具有适合于减少双共振能带间穿隧电流的穿隧阻障层的设备的模拟结果的曲线图1500。在本实例中,纵轴1502表示电流,而横轴1504表示电压。第一条线1506表示不具有穿隧阻障层的设备的IV曲线,通道包含InAs,掺杂浓度Nd为2×1019,Vd为0.5。第二条线1508具有适合于减少共振穿隧(亦即,双共振能带间穿隧电流)的穿隧阻障层的设备的IV曲线,此穿隧阻障层包含InGaAs,其中铟的原子百分率为53%,并且此阻障层中使用1020cm-3的高度N型掺杂。如图可看出,由线1508表示的设备在区域1510中具有实质上降低的电流位准。此为由于使用上述原理导致共振穿隧被抑制的结果。
图16为根据本文所描述的原理的一个实例,图示比较不具有穿隧阻障层的设备与具有穿隧阻障层的设备的模拟结果的曲线图1600。在本实例中,纵轴1602表示电流,而横轴1604表示电压。第一条线1606表示不具有穿隧阻障层的设备的IV曲线,通道包含InAs,掺杂浓度Nd为2×1019,Vd为0.75。第二条线1608表示具有单一穿隧阻障层的设备的IV曲线,此穿隧阻障层包含InGaAs,其中铟的原子百分率为53%,并且此阻障层中使用1020cm-3的高度N型掺杂。第三条线1610表示如图6A所示具有两个穿隧阻障层的设备的IV曲线,此穿隧阻障层包含InGaAs,其中铟的原子百分率为53%,并且在源极和漏极旁的此二阻障层中使用1020cm-3的高度N型掺杂。如图可看出,线1608及1610表示的设备在区域1612中具有降低的电流位准。此为使用适合于抑制漏电流的穿隧阻障层的结果。
使用本文所描述的原理可提供各种优点。特别地,高迁移率材料可用于晶体管装置的通道,同时亦具有相对较低的断态电流。此对于采用各种功率设定的电路为尤其有益的。特别地,行业标准指定了大功率设备、低操作功率设备及低待机功率设备的最小漏电流。但是,有时利用不同功率设定的不同电路可能整合到相同的晶片或者相同的晶圆上。通常,只有具有较高最小漏电流需求的大功率设备可利用高迁移率材料。但是,通过使用本文所描述的技术抑制漏电流,高迁移率材料可用于具有其他功率设定(诸如低操作功率及低待机功率)的电路。因此,制造制程可针对晶圆上的每一晶体管使用相同类型的材料。此提高了制造此类电路的成本效率。
根据一个实例,晶体管装置包括通道,位于通道的第一侧上的第一源极/漏极区域,位于通道的与通道第一侧相对的第二侧上的第二源极/漏极区域,以及设置在通道与第一源极/漏极区域之间的穿隧阻障层,此穿隧阻障层适合于当晶体管装置处于断态时抑制能带间穿隧。
根据一个实例,通道包含第一能隙,且穿隧阻障层包含大于第一能隙的第二能隙。
根据一个实例,穿隧阻障层产生凹陷于在通道及第一源极/漏极区域之间的一价带中。
根据一个实例,穿隧阻障层对于在通道及第一源极/漏极区域之间的导带具有可忽略的影响。
根据一个实例,穿隧阻障层产生拐点于在通道及第一源极/漏极区域之间的导带中。
根据一个实例,通道包含高迁移率材料。
根据一个实例,通道包含砷化铟,穿隧阻障层包含砷化铟镓。
根据一个实例,通道及穿隧阻障层材料分别包含下列其中一者:硅及硅锗或磷化铟、硅锗及锗、硅及锗、砷化铟及砷锑化铟、及砷化铟及锑化铟。
根据一个实例,穿隧阻障层包含半导体材料,其被一类型与第一源极/漏极区域的掺杂剂相同的掺杂剂所掺杂,穿隧阻障层具有高于第一源极/漏极区域的掺杂浓度的掺杂浓度。
根据一个实例,穿隧阻障层包含与通道及第一源极/漏极区域不同的材料。
根据一个实例,穿隧阻障层包含半导体材料,其具有一有效质量,此有效质量高于形成通道的半导体材料的有效质量,且高于形成第一源极/漏极区域的半导体材料的有效质量。
根据一个实例,穿隧阻障层直接位于晶体管装置的栅极的下。
根据一个实例,穿隧阻障层直接位于通道之上,且邻近于晶体管装置的栅极,且其中第一源极/漏极区域位于穿隧阻障层之上。
根据一个实例,进一步包含第二穿隧阻障层于通道与第二源极/漏极区域之间。
根据一个实例,半导体装置包括具有第一能隙的通道,位置邻近于通道的栅极,位于通道的第一侧上的第一源极/漏极区域,位于通道的与通道第一侧相对的第二侧上的第二源极/漏极区域,以及设置在通道与第一源极/漏极区域之间的穿隧阻障层,此穿隧阻障层具有大于第一能隙的第二能隙。换句话说,穿隧阻障层具有导带或价带的能阶,此价带低于通道的价带,此导带高于通道的导带。
根据一个实例,半导体装置为垂直晶体管。
根据一个实例,半导体装置为下列其中一者:平面晶体管、鳍式场效晶体管(Finfield effect transistor,finFET)、或环绕式(Gate-all-round,GAA)晶体管。
根据一个实例,一种形成晶体管装置的方法包括:形成用于晶体管装置的通道;形成位于通道的第一侧上的第一源极/漏极区域;形成位于通道的与通道第一侧相对的第二侧上的第二源极/漏极区域;以及形成在通道与第一源极/漏极区域之间的穿隧阻障层,此穿隧阻障层适合于当晶体管装置处于断态时抑制能带间穿隧。
根据一个实例,形成穿隧阻障层包含以类型与第一源极/漏极区域的掺杂剂相同的掺杂剂,且以比第一源极/漏极区域更高的掺杂浓度掺杂穿隧阻障层,使得半导体材料的能隙被改变。
根据一个实例,通道的形成包含第一半导体材料的通道具有第一能隙;以及穿隧阻障层的形成包含形成具有不同于第一能隙的第二能隙的第二半导体材料的穿隧阻障层。
先前概述了若干实施例的特征,以便本领域熟悉此项技艺者可更好地理解本揭示案的各态样。本领域熟悉此项技艺者应当了解到他们可容易地使用本揭示案作为基础来设计或者修改用于实行相同目的及/或实现本文引入的实施例的相同优势的其他制程及结构。本领域熟悉此项技艺者亦应当了解到,此类等效构造不脱离本揭示案的精神及范畴,以及在不脱离本揭示案的精神及范畴的情况下,其可对本文进行各种改变、取代及变更。

Claims (1)

1.一种晶体管装置,其特征在于,包括:
一通道;
一第一源极/漏极区域,该第一源极/漏极区域位于该通道的一第一侧上;
一第二源极/漏极区域,该第二源极/漏极区域位于该通道的与该通道的该第一侧相对的一第二侧上;以及
一穿隧阻障层,该穿隧阻障层设置在该通道与该第一源极/漏极区域之间,该穿隧阻障层适合于当该晶体管装置处于一断态时抑制能带间穿隧。
CN201611020363.7A 2015-12-29 2016-11-21 晶体管装置 Pending CN106935651A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/982,501 US11264452B2 (en) 2015-12-29 2015-12-29 Hetero-tunnel field-effect transistor (TFET) having a tunnel barrier formed directly above channel region, directly below first source/drain region and adjacent gate electrode
US14/982,501 2015-12-29

Publications (1)

Publication Number Publication Date
CN106935651A true CN106935651A (zh) 2017-07-07

Family

ID=59087226

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611020363.7A Pending CN106935651A (zh) 2015-12-29 2016-11-21 晶体管装置

Country Status (3)

Country Link
US (1) US11264452B2 (zh)
CN (1) CN106935651A (zh)
TW (1) TW201735354A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807522A (zh) * 2018-06-07 2018-11-13 中国科学院微电子研究所 一种n型隧穿场效应晶体管及其制作方法
CN108807523A (zh) * 2018-06-07 2018-11-13 中国科学院微电子研究所 一种p型隧穿场效应晶体管及其制作方法
CN109786466A (zh) * 2019-01-24 2019-05-21 杭州电子科技大学 一种提高FinFET器件高频/高速性能的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11018226B2 (en) 2018-08-14 2021-05-25 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
US11245011B2 (en) * 2018-09-25 2022-02-08 Taiwan Semiconductor Manufacturing Co., Ltd. Vertical tunnel field-effect transistor with U-shaped gate and band aligner
US11024729B2 (en) * 2018-09-27 2021-06-01 Taiwan Semiconductor Manufacturing Co., Ltd Method for manufacturing semiconductor device
US11257908B2 (en) * 2018-10-26 2022-02-22 Taiwan Semiconductor Manufacturing Company, Ltd. Transistors with stacked semiconductor layers as channels

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1172861A3 (en) * 2000-07-12 2003-11-05 Matsushita Electric Industrial Co., Ltd. Nonvolatile semiconductor memory device and method for fabricating the same
JP2008204969A (ja) * 2007-02-16 2008-09-04 Sony Corp 半導体装置の製造方法
US7667271B2 (en) 2007-04-27 2010-02-23 Taiwan Semiconductor Manufacturing Company, Ltd. Fin field-effect transistors
US8497528B2 (en) 2010-05-06 2013-07-30 Taiwan Semiconductor Manufacturing Company, Ltd. Method for fabricating a strained structure
US8440517B2 (en) 2010-10-13 2013-05-14 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET and method of fabricating the same
US9245805B2 (en) 2009-09-24 2016-01-26 Taiwan Semiconductor Manufacturing Company, Ltd. Germanium FinFETs with metal gates and stressors
US8362575B2 (en) 2009-09-29 2013-01-29 Taiwan Semiconductor Manufacturing Company, Ltd. Controlling the shape of source/drain regions in FinFETs
US8610240B2 (en) 2009-10-16 2013-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit with multi recessed shallow trench isolation
US8436422B2 (en) * 2010-03-08 2013-05-07 Sematech, Inc. Tunneling field-effect transistor with direct tunneling for enhanced tunneling current
US8729627B2 (en) 2010-05-14 2014-05-20 Taiwan Semiconductor Manufacturing Company, Ltd. Strained channel integrated circuit devices
US8796759B2 (en) 2010-07-15 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-like field effect transistor (FinFET) device and method of manufacturing same
US8367498B2 (en) 2010-10-18 2013-02-05 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-like field effect transistor (FinFET) device and method of manufacturing same
US8890118B2 (en) * 2010-12-17 2014-11-18 Intel Corporation Tunnel field effect transistor
US8962400B2 (en) 2011-07-07 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. In-situ doping of arsenic for source and drain epitaxy
US8841701B2 (en) 2011-08-30 2014-09-23 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device having a channel defined in a diamond-like shape semiconductor structure
US8723272B2 (en) 2011-10-04 2014-05-13 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device and method of manufacturing same
US8723236B2 (en) 2011-10-13 2014-05-13 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device and method of manufacturing same
US8471329B2 (en) * 2011-11-16 2013-06-25 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel FET and methods for forming the same
US8847293B2 (en) 2012-03-02 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Gate structure for semiconductor device
US8836016B2 (en) 2012-03-08 2014-09-16 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structures and methods with high mobility and high energy bandgap materials
US8785285B2 (en) 2012-03-08 2014-07-22 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods of manufacture thereof
US8680576B2 (en) 2012-05-16 2014-03-25 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS device and method of forming the same
US8729634B2 (en) 2012-06-15 2014-05-20 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET with high mobility and strain channel
FR2993394B1 (fr) * 2012-07-11 2014-08-22 Commissariat Energie Atomique Transistor tunnel a fort courant par amplification bipolaire
US8809139B2 (en) 2012-11-29 2014-08-19 Taiwan Semiconductor Manufacturing Company, Ltd. Fin-last FinFET and methods of forming same
US8853025B2 (en) 2013-02-08 2014-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET/tri-gate channel doping for multiple threshold voltage tuning
US9093514B2 (en) 2013-03-06 2015-07-28 Taiwan Semiconductor Manufacturing Co., Ltd. Strained and uniform doping technique for FINFETs
KR102157825B1 (ko) * 2014-01-16 2020-09-18 삼성전자주식회사 터널링 전계 효과 트랜지스터
US9818744B2 (en) * 2014-09-04 2017-11-14 Taiwan Semiconductor Manufacturing Company, Ltd. Leakage current suppression methods and related structures
EP3010044B1 (en) * 2014-10-13 2019-02-13 IMEC vzw Layered structure of a p-TFET

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807522A (zh) * 2018-06-07 2018-11-13 中国科学院微电子研究所 一种n型隧穿场效应晶体管及其制作方法
CN108807523A (zh) * 2018-06-07 2018-11-13 中国科学院微电子研究所 一种p型隧穿场效应晶体管及其制作方法
CN108807522B (zh) * 2018-06-07 2021-04-27 中国科学院微电子研究所 一种n型隧穿场效应晶体管及其制作方法
CN108807523B (zh) * 2018-06-07 2021-04-27 中国科学院微电子研究所 一种p型隧穿场效应晶体管及其制作方法
CN109786466A (zh) * 2019-01-24 2019-05-21 杭州电子科技大学 一种提高FinFET器件高频/高速性能的方法

Also Published As

Publication number Publication date
US20170186839A1 (en) 2017-06-29
US11264452B2 (en) 2022-03-01
TW201735354A (zh) 2017-10-01

Similar Documents

Publication Publication Date Title
CN106935651A (zh) 晶体管装置
Anghel et al. 30-nm tunnel FET with improved performance and reduced ambipolar current
CN104813477B (zh) 具有成分坡度变化的半导体沟道的非平面ⅲ‑n晶体管
US8772877B2 (en) Tunnel field-effect transistor
US7851857B2 (en) Dual current path LDMOSFET with graded PBL for ultra high voltage smart power applications
US9136363B2 (en) Compound tunneling field effect transistor integrated on silicon substrate and method for fabricating the same
KR101681494B1 (ko) 반도체 장치
US20080303095A1 (en) Varying mugfet width to adjust device characteristics
US9064722B2 (en) Breakdown voltage multiplying integration scheme
WO2008034850A2 (en) Assembly of nanoscaled field effect transistors
US8431990B2 (en) Semiconductor device
US8288803B2 (en) Tunnel field effect devices
US20150243758A1 (en) Method and system for a gallium nitride vertical transistor
US20140231884A1 (en) Bootstrap mos for high voltage applications
EP2993696B1 (en) Heterosection tunnel field-effect transistor (TFET)
US9349834B2 (en) Method of manufacturing a semiconductor device
US20150228794A1 (en) N/p mos finfet performance enhancement by specific orientation surface
US8878251B2 (en) Silicon-compatible compound junctionless field effect transistor
US9252269B2 (en) Tunnel effect transistor
EP3010044B1 (en) Layered structure of a p-TFET
KR102608554B1 (ko) 상보형 스위치 소자
US20150001630A1 (en) Structure and methods of fabricating y-shaped dmos finfet
EP1965437A1 (en) Nano-scale transistor device with large current handling capability
Al-Dirini et al. Graphene Self Switching Diodes with high rectification ratios
CN107302019A (zh) 竖直半导体结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170707

WD01 Invention patent application deemed withdrawn after publication