CN106924747A - 一种纳米仿脂蛋白结构药物载体及其制备方法和应用 - Google Patents

一种纳米仿脂蛋白结构药物载体及其制备方法和应用 Download PDF

Info

Publication number
CN106924747A
CN106924747A CN201710159456.6A CN201710159456A CN106924747A CN 106924747 A CN106924747 A CN 106924747A CN 201710159456 A CN201710159456 A CN 201710159456A CN 106924747 A CN106924747 A CN 106924747A
Authority
CN
China
Prior art keywords
nanometer
imitative
pharmaceutical carrier
medicine
lipoprotein structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710159456.6A
Other languages
English (en)
Inventor
陈聪慧
丁昌元
王慧
李海刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linyi University
Original Assignee
Linyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linyi University filed Critical Linyi University
Priority to CN201710159456.6A priority Critical patent/CN106924747A/zh
Publication of CN106924747A publication Critical patent/CN106924747A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供了一种原料易得、安全性高、具有pH敏感释药功能的纳米仿脂蛋白结构药物载体及其制备方法和在制备治疗肿瘤中的应用。本纳米仿脂蛋白结构药物载体,由脂质核心和包覆蛋白组成,所述脂质核心由包载药物,二油酰磷脂酰乙醇胺,油酸,胆固醇和十八胺组成;所述包覆蛋白通过静电作用吸附于脂质核心外围。所述纳米仿脂蛋白结构药物载体,用于制备治疗肿瘤的药物,在pH 7.4的溶液环境中结构稳定,在pH 6.5以下的溶液环境中快速释放包载药物。本发明的纳米仿脂蛋白结构药物载体作为具有生物相容性,肿瘤靶向以及pH敏感释药功能的一种新型仿纳米仿脂蛋白结构药物载体,可有效将药物脂溶性抗肿瘤药物递送至肿瘤细胞内,达到理想的抗肿瘤效果。

Description

一种纳米仿脂蛋白结构药物载体及其制备方法和应用
技术领域
本发明属于医药制剂领域,涉及一种纳米仿脂蛋白结构药物载体及其制备方法和应用。
背景技术
脂蛋白(Lipoprotein)是由包含载脂蛋白和游离胆固醇(Free cholesterol, FC)的磷脂层以及非极性的脂质核心组成的生物大分子,作为内源性载体,在血浆中承担胆固醇、胆固醇酯的运送。早在20世纪60年代天然脂蛋白已作为药物载体进行研究,而近年来合成脂蛋白成为药物递送领域新的研究热点。目前研究较广泛的是基于低密度脂蛋白和高密度脂蛋白的纳米药物载体。与其他纳米粒相比,合成脂蛋白载体具有显著的优势。首先,合成脂蛋白纳米载体具有良好的生物相容性,不仅可以避免被体内网状内皮系统识别而快速清除,也可在体内被彻底降解。其次,合成脂蛋白构建的载体由亲水性表面和疏水性核心组成,这种结构有利于运输疏水性物质。合成脂蛋白载体在血液中可长时间循环,而且它的粒径大小适宜,既小到可以穿透肿瘤纤维间隙,也可避免由于粒径过小引起肾脏的快速消隙,也可避免由于粒径过小引起肾脏的快速消除,因此是一种可维持长时间疗效的良好的纳米药物载体。
由于脂蛋白纳米载体都来源于血浆分离,难以大规模生产,且其生物安全性也受到质疑,因此开发新型的人工模拟脂蛋白或纳米仿脂蛋白结构药物载体极具意义。尽管相关肽的合成技术已经开发,但用作临床纳米载体还有很多因素需要考察。此外,低密度脂蛋白受体介导的机制并不是一个理想的靶向传递途径,这些受体也存在于一些正常组织中,可能导致靶点外细胞毒性,另外,低密度脂蛋白受体在许多肿瘤细胞不过度表达,都限制了其进一步的应用。因此需要构建一种新型的仿纳米仿脂蛋白结构药物载体,来继承其优点,克服其不足。
发明内容
针对目前抗肿瘤载体所面临的问题,本发明提供一种原料易得、安全性高、具有pH敏感释药功能的的纳米仿脂蛋白结构药物载体及其一种简便地制备该纳米仿脂蛋白结构药物载体的方法。
本发明另一目是提供所述纳米仿脂蛋白结构药物载体在制备治疗肿瘤药物中的应用。
为实现上述目的,本发明采用如下技术方案。
一种纳米仿脂蛋白结构药物载体,由脂质核心与包覆蛋白的质量比为5-20:1的脂质核心和包覆蛋白组成,所述脂质核心由包载药物,二油酰磷脂酰乙醇胺,油酸,胆固醇,十八胺组成,所述二油酰磷脂酰乙醇胺与油酸摩尔比为1-8:1;所述二油酰磷脂酰乙醇胺与胆固醇的质量比为2-6:1。
作为优选,载药脂质核心与包覆蛋白的质量比为10-20:1;二油酰磷脂酰乙醇胺与油酸摩尔比为2-4:1;二油酰磷脂酰乙醇胺与胆固醇的质量比为4-6:1。
上述纳米仿脂蛋白结构药物载体,二油酰磷脂酰乙醇胺与包载药物的质量比为5-20:1;二油酰磷脂酰乙醇胺与十八胺的质量比为15-60:1。
作为优选,二油酰磷脂酰乙醇胺与被载药物的质量比为10-15:1;二油酰磷脂酰乙醇胺与十八胺的质量比为30-60:1。
上述纳米仿脂蛋白结构药物载体,所述的包覆蛋白为血清蛋白,选自人血清蛋白或牛血清蛋白。所述包覆蛋白通过静电作用吸附于脂质核心外围,作为纳米仿脂蛋白结构药物载体的蛋白结构部分。
上述纳米仿脂蛋白结构药物载体,所述的包载药物为脂溶性抗肿瘤药物,优选为紫杉烷、姜黄素、喜树碱、多西他赛,更优选为紫杉烷。所述紫杉烷选自紫杉醇、多烯紫杉醇、7-乙酰基紫杉醇、t-乙酰基紫杉醇、10-去乙酰基紫杉醇、10-去乙酰基-7-表紫杉醇、7-木糖苷紫杉醇、10-去乙酰基-7-戊二酰基紫杉醇、7-N,N-二甲基甘氨酰紫杉醇和7-L-丙氨酰紫杉醇中的一种或者多种。
上述纳米仿脂蛋白结构药物载体,所述纳米仿脂蛋白结构药物载体,粒径为50-150 nm;所述脂质核心的粒径为60-120nm。
一种制备上述纳米仿脂蛋白结构药物载体的方法,包括以下步骤:
1)将二油酰磷脂酰乙醇胺、油酸、胆固醇、包载药物、十八胺用有机溶剂溶解,减压蒸干成膜;加入磷酸盐缓冲液冰浴超声,制成载药脂质核心液;
(2)称取包覆蛋白,用磷酸缓冲液溶解成蛋白溶液,缓慢、搅拌加入到上述步骤(1)所得载药脂质核心液中,30-40 ºC孵育6-8 h,即得纳米仿脂蛋白结构药物载体。
上述步骤(1)中,蒸干温度为30-50 ℃,优选为35-40 ℃;磷酸缓冲液的pH为7.4;超声时间为5-15min,优选为5-10 min。
上述步骤(1)中,有机溶剂选自乙醚、氯仿和二氯甲烷中的一种或几种的混合。
上述步骤(2)中包覆蛋白的浓度为1-10 mg/ml,优选为1-5 mg/ml。
所述纳米仿脂蛋白结构药物载体用于制备治疗肿瘤药物的应用。应用时,给药方式为静脉注射。
在纳米仿脂蛋白结构药物载体的脂质核心中加入少量十八胺,使脂质核心带正电荷。由于血清蛋白的等电点约为4.9-5.3,因此在pH 7.4的近中性环境下,血清蛋白带负电荷,通过正负电荷相互吸引的的静电作用包覆在带正电荷的脂质核心上。
纳米仿脂蛋白结构药物载体中油酸成分在的中性条件下,羧酸基离子化,弥补二油酰磷脂酰乙醇胺(DOPE)的立体缺陷,共同形成稳定的脂质体双层膜,可在血浆等近中性的体液中稳定存在。表面的包覆蛋白可被肿瘤细胞表面的受体识别,介导纳米仿脂蛋白结构药物载体内吞进入肿瘤细胞。在酸性溶酶体环境中,由于pH< 6.5,油酸羧酸基质子化,失去对DOPE的补缺作用,引起六方晶格(非相层结构)的形成,双分子层稳定性受到破坏,与生物膜发生膜融合作用,释放包封物质至胞浆内,实现溶酶体逃逸功能。
本发明具有以下优点:
本发明制备的新型纳米仿脂蛋白结构药物载体具有肿瘤靶向及pH敏感性,可制备多种包载脂溶性药物的制剂,尤其是脂溶性抗肿瘤药物制剂。血浆中含有大量带负电的血浆调理蛋白,在对外源性物质的清除中发挥重要作用:调理蛋白吸附于外源性物质,进而被内皮系统(RES)识别和清除。因此,将内源性血清白蛋白通过合适手段吸附于载药纳米颗粒表面,一方面可以降低表面电荷,另外可以增加载药纳米颗粒表面的亲水性,降低与调理蛋白等的亲和力。表面电荷的降低和亲水性的增加可以减少与血浆蛋白及调理蛋白的结合,增加载药纳米颗粒在血浆中的稳定性。本纳米仿脂蛋白结构药物载体由于具有亲水性及生物相容性蛋白层,因此在血浆中具有良好的稳定性,可延长其在血液中的循环时间,增加体内稳定性,并且通过GP60(Glycoprotein 60)受体及富含半胱氨酸的酸性分泌蛋白(Secretedprotein, acidic and rich in cysteine,SPARC)介导的内吞,可靶向作用于肿瘤细胞。
在纳米仿脂蛋白结构药物载体的脂质核心,加入具有pH敏感作用的脂质成分二油酰磷脂酰乙醇胺(1,2-dioleoyl-sn-glycero- 3-phosphoethanolamine, DOPE)与油酸(Oleic acid, OA),用来实现内涵体或溶酶体逃逸功能。因此,本发明的纳米仿脂蛋白结构药物载体作为具有生物相容性,肿瘤靶向以及pH敏感释药功能的一种新型仿纳米仿脂蛋白结构药物载体,可有效将药物脂溶性抗肿瘤药物递送至肿瘤细胞内,达到理想的抗肿瘤效果。
附图说明
图1为载紫杉醇仿脂蛋白结构载体的电镜照片;
图2为载紫杉醇仿脂蛋白结构载体在不同pH条件下的体外累积释放曲线;
图3为各载药纳米载体对MCF-7细胞的细胞毒性。
具体实施方式
下面结合实施例和附图对本发明做进一步说明,但本发明不受下述实施例的限制。
实施例1载紫杉醇仿脂蛋白结构载体的制备。
(1)称取二油酰磷脂酰乙醇胺(DOPE)60 mg,油酸(OA)5.7 mg,胆固醇为12 mg,紫杉醇6 mg,十八胺2 mg,用10 mL氯仿溶解,置于100 mL茄形瓶中,37 ºC减压旋转蒸干成膜,加入10 mL磷酸盐缓冲液(pH 7.4,0.02 mol/L),37 ºC水化30 min;冰浴上探头超声5 min制成脂质核心液;
(2)准确称取牛血清蛋白8.4 mg,用1.68 ml磷酸盐缓冲液(pH 7.4,0.02 mol/L)溶解成5 mg/mL的蛋白溶液,步骤(2)中脂质核心液缓慢、搅拌加入到上述载药脂质核心液中,37ºC缓慢搅拌孵育8h,即得载紫杉醇仿脂蛋白结构载体(简称为BSA-LC/DOPE-PTX)溶液。
实施例2含大豆卵磷脂成分载紫杉醇仿脂蛋白结构载体的制备。
参照实施例1中的制备方法制备对照用含大豆卵磷脂成分载紫杉醇脂质核心(LC/SPC-PTX)和含大豆卵磷脂成分载紫杉醇仿脂蛋白结构载体(BSA-LC/SPC-PTX),区别为用大豆卵磷脂(SPC)取代LC/DOPE-PTX中的DOPE及OA成分,其他成分用量保持不变。
实施例3载药脂质核心的表征。
3.1脂质核心的粒径及Zeta电位
取适量新鲜制备的载紫杉醇脂质核心,加蒸馏水稀释至适当浓度。采用Zetasizer-Nano ZS90粒度和Zeta 电位分析仪对稀释液中粒径及其分布进行考察,并对其Zeta电位进行测定,结果如表1所示。
3.2 脂质核心的包封率与载药量
采用低速和超速离心法相结合的方法分离游离药物,测定脂质核心中紫杉醇的包封率,结果如表1所示,具体步骤如下:
(1)先取样品溶液,用磷酸盐缓冲液(pH 7.4,0.02 mol/L)稀释后,置于离心管中1000r/min离心10 min,得上清液,重复此操作两次,即得载药脂质核心上清液;
(2)取上述上清液超速离心50000 r/min,30 min。移走上清液后,将沉淀物用磷酸盐缓冲液(pH 7.4,0.02 mol/L)洗2次,得脂质核心沉淀;
(3)在上述沉淀中,加甲醇定容,超声破坏,过0.22 μm微孔滤膜,HPLC法检测紫杉醇含量,得载药脂质核心中紫杉醇的量。按公式Eq. 1计算包封率(Encapsulation Efficiency,EE),按公式Eq. 2计算载药量(Drug-loading efficiency, DL):
包封率(EE)= (Eq. 1)
载药量(DL)= (Eq. 2)
表1 载紫杉醇脂质核心的粒径、DPI、Zeta电位、包封率、载药量
表中数据为3次测量平均值±标准差。
由表1数据可知,脂质核心LC/DOPE-PTX,粒径为102 nm,且粒径PDI 值为0.177,具有良好的粒径分布;Zeta值为16.97 mV,适于下一步的蛋白包覆;并且具有较高的包封率及载药量,分别为93.03%及6.97%,因此可用于药物紫杉醇的包载及递送。
实施例4载紫杉醇仿脂蛋白结构载体的表征。
4.1载紫杉醇仿脂蛋白结构载体的形态、粒径及Zeta电位
取适量新鲜制备的载紫杉醇仿脂蛋白结构载体,加蒸馏水稀释至适当浓度。将稀释液滴加于覆盖碳膜的铜网上,使液体尽量铺满整个铜网,室温下自然晾干,于透射电子显微镜(TEM)下观察形态并拍照,得电镜照片图1。采用Zetasizer-Nano ZS90粒度和Zeta电位分析仪对稀释液中粒径及其分布进行考察,并对其Zeta电位进行测定,结果如表2所示。
4.2载紫杉醇仿脂蛋白结构载体的包封率、载药量及包覆率
参照3.2中脂质核心的包封率与载药量的测定方法对载紫杉醇仿脂蛋白结构载体的包封率、载药量进行测定,结果见表2。
取适量新鲜制备的载紫杉醇仿脂蛋白结构载体,微柱离心法分离未包覆的游离蛋白,收集游离即未被包覆的蛋白部分至10 mL容量瓶,加入并以蒸馏水定容,采用考马斯亮蓝法测定游离蛋白含量,按公式Eq. 3计算包覆率(Coating Efficiency, CE),结果见表2:
包覆率(CE)= (Eq. 3)
表2 载紫杉醇仿脂蛋白结构载体的粒径、DPI、Zeta电位、包封率与包覆率
表中数据为3次测量平均值±标准差。
由表2数据可知,制备的载紫杉醇仿脂蛋白结构载体的粒径约为121 nm,粒径分布指数PDI为0.185,Zeta电位为4.89 mV,包封率、载药量、包覆率分别为89.77%、6.60%、85.9%。相比于载药脂质核心,载紫杉醇仿脂蛋白结构载体由于包覆了血清蛋白,粒径明显增加;由于带负电荷的蛋白部分屏蔽脂质核心表面的正电荷,导致其表面Zeta电位明显下降,以上均证明了血清蛋白的有效包覆。制备的载紫杉醇仿脂蛋白结构载体具有良好的粒径分布,缓和的电位值,以及外层包覆的具有亲水,良好生物相容性的蛋白层,能够避免RES识别与清除,提高载体在体内的血液循环的稳定性。制备的载紫杉醇仿脂蛋白结构载体具有具有较高的包封率、载药量与包覆率,因此适用于药物紫杉醇的运载。
4.4 载紫杉醇仿脂蛋白结构载体于体外pH敏感释放药物行为
精密吸取载紫杉醇仿脂蛋白结构载体溶液0.1 mL于透析袋中,置于200 mL,pH值分别为5.0,6.0,7.4,含0.1%(v/v)吐温-80的磷酸盐缓冲液释放介质中,于37 ºC,100 r/min的摇床中振摇,定时取出释放介质200 μL,同时补充相同体积和温度的新鲜释放介质。HPLC法测定释放介质中的药物含量,计算累积释放度并绘制累积释放曲线,考察不同pH条件下,纳米载体的体外释药行为。以时间为横坐标,以累计释放率为纵坐标,做图2。
由图2可知,载紫杉醇仿脂蛋白结构载体在pH 7.4条件下,药物缓慢释放,在48 h的累积释放量不超过40%;相反,当pH降低至6.0时,药物从载紫杉醇仿脂蛋白结构载体中快速释放,累积释放量在48 h时达到59.5%,并且在pH为5.0时,药物释放明显增加,12 h内释放量为57.7%,48 h后累积释放量为69.3%。药物在pH 7.4条件下缓慢释放,表明载紫杉醇仿脂蛋白结构载体在生理条件下比较完整。由于载紫杉醇仿脂蛋白结构载体具备这种pH敏感的释放药物行为,因此具备细胞内的药物传递功能。通过在肿瘤细胞内与内涵体或溶酶体膜融合,有效地将包封物质传递至胞质中,达到良好的抗肿瘤效果。
4.5 血浆稳定性
载紫杉醇仿脂蛋白结构载体分别在同体积的磷酸盐缓冲液(PBS)及含50 %血浆的磷酸盐缓冲液(Plamsa)中,37 ºC下孵育。分别在3 h,12 h,24 h取样,测定载体粒径,测定方法考察纳米载体在血浆中的稳定性,结果见表3。
表3载紫杉醇仿脂蛋白结构载体血浆稳定性
表中数据为3次测量平均值±标准差。
由表3结果可知,BSA-LC/DOPE-PTX在与同体积的PBS及Plamsa在37 ºC下孵育后的的粒径没有明显变化,表明BSA-LC/DOPE-PTX的亲水性及生物相容性蛋白层使其在血浆中具有稳定性。并且在共同孵育24 h后,粒径均没有发生明显变化,仍具有较好的稳定性。
实施例5载紫杉醇仿脂蛋白结构载体的抗肿瘤活性。
将各载紫杉醇纳米载体LC/DOPE-PTX,BSA-LC/SPC-PTX,BSA-LC/DOPE-PTX,及Taxol®(Bristol Myers Squibb SRL 公司生产)用不含血清的培养液制成不同紫杉醇浓度,0.22 μm微孔滤膜过滤除菌。分别取对数生长期的MCF-7细胞,以5×103 cells/well接种于96孔板中,37 ºC培养。同时设置空白组(只加不含细胞的培养液)。培养12 h后,取出培养板,吸走孔内培养液,每孔加入不同紫杉醇浓度的各种载药制剂200 μL,每组设5个复孔。对照组为不加载药制剂的200 μL无血清培养液。置培养箱中培养48 h后,吸去培养液,每孔加入20 μL MTT溶液(5.0 mg/mL)继续培养4 h,弃去孔内液体,每孔加入150 μL二甲亚砜,震荡10 min,使沉淀充分溶解。最后用酶标仪490 nm测定吸光度值。按下式计算细胞存活率(Cell viability)。以紫杉醇浓度为横坐标,以细胞存活率为纵坐标作图3,说明各载药纳米载体的细胞毒性,其中标注**的表示统计学意义上有极显著差异:
细胞存活率= (Eq. 4)。
由图3数据可知,Taxol®在中高浓度1 μg/mL及10 μg/mL,有较高的细胞毒性,是由于Taxol®中聚氧乙烯蓖麻油(CremophorEL)对细胞的毒性较大,因此产生较高的细胞毒性。然而,载紫杉醇纳米载体LC/DOPE-PTX,BSA-LC/SPC-PTX,BSA-LC/DOPE-PTX在较低紫杉醇浓度(低于0.1 μg/mL)时,具有比Taxol®更高的细胞抑制作用。相对于游离紫杉醇对细胞膜的被动扩散作用,BSA-LC/SPC-PTX、BSA-LC/DOPE-PTX借助载体的蛋白层牛血清蛋白与肿瘤细胞表面的受体及富含半胱氨酸的酸性分泌蛋白(SPARC)高度亲和性,靶向结合,通过SPARC介导的内化作用,将药物紫杉醇更多的传递至肿瘤细胞,产生较高的细胞毒性。由结果可知,BSA-LC/DOPE-PTX对肿瘤细胞MCF-7的抑制作用明显高于BSA-LC/SPC-PTX。BSA-LC/DOPE-PTX由于具有pH敏感作用的DOPE,介导载体与溶酶体膜产生膜融合效应,将药物紫杉醇从溶酶体中逃逸,释放到胞浆中,较无溶酶体逃逸功能的BSA-LC/SPC-PTX产生更高的细胞毒性。因此,BSA-LC/DOPE-PTX通过SPARC介导的靶向作用及DOPE的pH敏感作用介导载体与溶酶体膜产生膜融合效应,对MCF-7肿瘤细胞发挥明显生长抑制作用,达到理想的抗肿瘤效果。

Claims (9)

1.一种纳米仿脂蛋白结构药物载体,其特征在于,由脂质核心与包覆蛋白质量比为5-20:1的脂质核心和包覆蛋白组成,所述脂质核心由包载药物,二油酰磷脂酰乙醇胺,油酸,胆固醇,十八胺组成,所述二油酰磷脂酰乙醇胺与油酸摩尔比为1-8:1;二油酰磷脂酰乙醇胺与胆固醇的质量比为2-6:1。
2.根据权利要求1所述的纳米仿脂蛋白结构药物载体,其特征在于,二油酰磷脂酰乙醇胺与包载药物的质量比为5-20:1;二油酰磷脂酰乙醇胺与十八胺的质量比为15-60:1。
3.根据权利要求1所述的纳米仿脂蛋白结构药物载体,其特征在于,采用以下制备方法获得:将二油酰磷脂酰乙醇胺、油酸、胆固醇、包载药物、十八胺用有机溶剂溶解,蒸干成膜;加入磷酸盐缓冲液冰浴超声,制成载药脂质核心液;称取包覆蛋白,用磷酸缓冲液溶解成蛋白溶液,加入到上述载药脂质核心液中,30-40 ºC孵育6-8 h,即得纳米仿脂蛋白结构药物载体。
4.根据权利要求1所述的纳米仿脂蛋白结构药物载体,其特征在于,所述包覆蛋白通过静电作用吸附于脂质核心外围;所述的包覆蛋白为血清蛋白,选自人血清蛋白或牛血清蛋白。
5.根据权利要求1所述的纳米仿脂蛋白结构药物载体,其特征在于,所述的包载药物为脂溶性抗肿瘤药物,选自紫杉烷、姜黄素、喜树碱或多西他赛。
6.一种如权利要求1所述纳米仿脂蛋白结构药物载体的制备方法,采用以下步骤:
(1)将二油酰磷脂酰乙醇胺、油酸、胆固醇、包载药物、十八胺用有机溶剂溶解,蒸干成膜;加入磷酸盐缓冲液冰浴超声,制成载药脂质核心液;
(2)称取包覆蛋白,用磷酸缓冲液溶解成蛋白溶液,加入到上述步骤(1)所得载药脂质核心液中,30-40 ºC孵育6-8 h,即得纳米仿脂蛋白结构药物载体。
7.根据权利要求6所述的制备方法,其特征在于,步骤(1)中有机溶剂选自乙醚、氯仿和二氯甲烷中的一种或几种的混合。
8.根据权利要求6所述的制备方法,其特征在于,蒸干温度为30-50℃;磷酸缓冲液的pH为7.4;超声时间为5-15min;包覆蛋白的浓度为1-10 mg/ml。
9.根据权利要求1所述的纳米仿脂蛋白结构药物载体用于制备治疗肿瘤药物的应用。
CN201710159456.6A 2017-03-17 2017-03-17 一种纳米仿脂蛋白结构药物载体及其制备方法和应用 Withdrawn CN106924747A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710159456.6A CN106924747A (zh) 2017-03-17 2017-03-17 一种纳米仿脂蛋白结构药物载体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710159456.6A CN106924747A (zh) 2017-03-17 2017-03-17 一种纳米仿脂蛋白结构药物载体及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN106924747A true CN106924747A (zh) 2017-07-07

Family

ID=59433241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710159456.6A Withdrawn CN106924747A (zh) 2017-03-17 2017-03-17 一种纳米仿脂蛋白结构药物载体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106924747A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113476405A (zh) * 2021-08-12 2021-10-08 临沂大学 一种治疗多药耐药肿瘤的纳米制剂、组合物及应用
CN114099656A (zh) * 2021-12-02 2022-03-01 临沂大学 一种基于抗原和活性多糖的共载纳米制剂及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101045049A (zh) * 2006-03-28 2007-10-03 上海医药工业研究院 一种丝裂霉素c多泡脂质体及其制备方法
CN102274185A (zh) * 2011-08-10 2011-12-14 山东大学 抗肿瘤pH敏感脂质体、其冻干粉针制剂及它们的制备方法
CN102552145A (zh) * 2012-02-02 2012-07-11 吕梁学院 一种人工脂质体的制备方法
CN105902516A (zh) * 2016-05-24 2016-08-31 东南大学 一种可控药物释放的纳米药物载体粒子及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101045049A (zh) * 2006-03-28 2007-10-03 上海医药工业研究院 一种丝裂霉素c多泡脂质体及其制备方法
CN102274185A (zh) * 2011-08-10 2011-12-14 山东大学 抗肿瘤pH敏感脂质体、其冻干粉针制剂及它们的制备方法
CN102552145A (zh) * 2012-02-02 2012-07-11 吕梁学院 一种人工脂质体的制备方法
CN105902516A (zh) * 2016-05-24 2016-08-31 东南大学 一种可控药物释放的纳米药物载体粒子及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CONGHUI CHEN ET AL.,: "Tumor-targeting and pH-sensitive lipoprotein-mimic nanocarrier for targeted intracellular delivery of paclitaxel", 《 INTERNATIONAL JOURNAL OF PHARMACEUTICS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113476405A (zh) * 2021-08-12 2021-10-08 临沂大学 一种治疗多药耐药肿瘤的纳米制剂、组合物及应用
CN114099656A (zh) * 2021-12-02 2022-03-01 临沂大学 一种基于抗原和活性多糖的共载纳米制剂及其制备方法与应用

Similar Documents

Publication Publication Date Title
Lombardo et al. Methods of liposomes preparation: formation and control factors of versatile nanocarriers for biomedical and nanomedicine application
CN102271659B (zh) 伊立替康或盐酸伊立替康脂质体及其制备方法
CN102036652A (zh) 适于螯合胆甾醇的纳米结构
CN106798725A (zh) 一种虫草素纳米脂质体及其制备方法与抗肿瘤活性应用
Lamparelli et al. Lipid nano-vesicles for thyroid hormone encapsulation: A comparison between different fabrication technologies, drug loading, and an in vitro delivery to human tendon stem/progenitor cells in 2D and 3D culture
Landucci et al. Preparation of liposomal formulations for ocular delivery of thymoquinone: in vitro evaluation in HCEC-2 e HConEC cells
Liu et al. Preparation and in vivo safety evaluations of antileukemic homoharringtonine-loaded PEGylated liposomes
CN106924747A (zh) 一种纳米仿脂蛋白结构药物载体及其制备方法和应用
CN103585106B (zh) 一种pH敏感性修饰脂质体及其制备方法
An et al. Reversal of multidrug resistance by apolipoprotein A1-modified doxorubicin liposome for breast cancer treatment
Shair Mohammad et al. Homotype-targeted biogenic nanoparticles to kill multidrug-resistant cancer cells
CN105030681B (zh) 一种脂质体药物及其制备方法
CN105999290B (zh) 一种磷脂酰丝氨酸修饰的姜黄素纳米粒
CN111001006A (zh) 葫芦素b和氧化响应抗肿瘤前药共载仿生纳米粒
Suyamud et al. Silk fibroin-coated liposomes as biomimetic nanocarrier for long-term release delivery system in cancer therapy
Langer et al. Mitotane nanocarriers for the treatment of adrenocortical carcinoma: Evaluation of albumin-stabilized nanoparticles and liposomes in a preclinical in vitro study with 3D spheroids
Chen et al. Preparation of triptolide ethosomes
Sheng et al. Cationic nanoparticles assembled from natural-based steroid lipid for improved intracellular transport of siRNA and pDNA
Lee et al. The effects of doxorubicin‑loaded liposomes on viability, stem cell surface marker expression and secretion of vascular endothelial growth factor of three‑dimensional stem cell spheroids
Ndemazie et al. Evaluation of anticancer activity of Zhubech, a New 5-FU analog liposomal formulation, against pancreatic cancer
CN112057425A (zh) 一种雷帕霉素制剂及其制备方法
Badran et al. Novel metoprolol-loaded chitosan-coated deformable liposomes in thermosensitive in situ gels for the management of glaucoma: a repurposing approach
CN104814928B (zh) 一种载二氢杨梅素三元复合脂质体的制备方法
Kang et al. Effect of chitosan coating for efficient encapsulation and improved stability under loading preparation and storage conditions of bacillus lipopeptides
CN114246843B (zh) 一种同时包埋有竹红菌素和顺铂的载药纳米粒子的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20170707