CN106917089A - 复合涂层麻醉针及其制备方法 - Google Patents

复合涂层麻醉针及其制备方法 Download PDF

Info

Publication number
CN106917089A
CN106917089A CN201710199212.0A CN201710199212A CN106917089A CN 106917089 A CN106917089 A CN 106917089A CN 201710199212 A CN201710199212 A CN 201710199212A CN 106917089 A CN106917089 A CN 106917089A
Authority
CN
China
Prior art keywords
pvd
anestetic needle
particle
composite coating
pvd coatings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710199212.0A
Other languages
English (en)
Inventor
黄世伟
沈学忠
袁安素
朱国朝
温振伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing Aode Nanotechnology Co Ltd
Limited By Share Ltd New Material
Original Assignee
Jiaxing Aode Nanotechnology Co Ltd
Limited By Share Ltd New Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing Aode Nanotechnology Co Ltd, Limited By Share Ltd New Material filed Critical Jiaxing Aode Nanotechnology Co Ltd
Priority to CN201710199212.0A priority Critical patent/CN106917089A/zh
Publication of CN106917089A publication Critical patent/CN106917089A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明是关于复合涂层麻醉针及其制备方法。本发明一实施例提供一复合涂层麻醉针,其包括:麻醉针;麻醉针的表面依次附着渗氮层、物理气相沉积PVD涂层和抗菌纳米粒子改性的PVD涂层,其中PVD涂层为包括AlCrN、CrAlN、CrN、TiN、AlTiN、TiAlN、TiAlCrN、TiSiN、TiSiAlN、TiAlWN或其混合物的纳米硬质涂层。本发明实施例提供了复合涂层麻醉针及其制备方法,其通过在麻醉针的表面依次沉积渗氮层、PVD涂层和抗菌纳米粒子改性的PVD涂层形成复合涂层麻醉针,一方面增强了麻醉针的硬度及耐磨性,另一方面,抗菌纳米粒子改性的PVD涂层中的抗菌纳米粒子也能有效抵抗细菌,降低患者感染细菌的风险。

Description

复合涂层麻醉针及其制备方法
技术领域
本发明涉及医疗外科器械技术领域,特别涉及复合涂层麻醉针及其制备方法。
背景技术
根据世界卫生组织颁布的《院内感染防治实用手册》中的有关数据,全世界每天有超过1400万人在遭受院内感染的痛苦,其中60%的细菌感染与临床使用的医疗器械有关。也就是说,目前临床使用的医疗器械,大到手术刀和骨钻,小到骨针和麻醉针,因无法满足抗菌要求而在与人体直接接触时使患者遭受细菌感染。
因而,现有的医疗器械亟需改进,以提升医疗器械的抗菌效果,降低患者感染细菌的风险。
发明内容
本发明的目的之一在于提供一复合涂层麻醉针,其具有有效的抗菌功能。
根据本发明的一实施例,一复合涂层麻醉针,其包括:麻醉针;麻醉针的表面依次附着渗氮层、物理气相沉积PVD涂层和抗菌纳米粒子改性的PVD涂层,其中PVD涂层为包括AlCrN、CrAlN、CrN、TiN、AlTiN、TiAlN、TiAlCrN、TiSiN、TiSiAlN、TiAlWN或其混合物的纳米硬质涂层。
根据本发明的另一实施例还提供了复合涂层麻醉针的制备方法,其包括如下步骤:提供麻醉针;对麻醉针进行离子渗氮处理以在麻醉针的表面形成渗氮层;采用物理气相沉积PVD工艺在渗氮层的表面沉积包括AlCrN、CrAlN、CrN、TiN、AlTiN、TiAlN、TiAlCrN、TiSiN、TiSiAlN、TiAlWN或其混合物的纳米硬质涂层以形成PVD涂层;将抗菌纳米粒子导入物理气相沉积PVD工艺炉中,采用物理气相沉积PVD工艺在PVD涂层的表面形成抗菌纳米粒子改性的PVD涂层。
本发明实施例提供了复合涂层麻醉针及其制备方法,其通过在麻醉针的表面依次沉积渗氮层、PVD涂层和抗菌纳米粒子改性的PVD涂层形成复合涂层麻醉针,一方面增强了麻醉针的硬度及耐磨性,另一方面,抗菌纳米粒子改性的PVD涂层中的抗菌纳米粒子也能有效抵抗细菌,降低患者感染细菌的风险。
附图说明
图1所示是根据本发明一实施例的复合涂层麻醉针的主视图
图2所示是图1所示的复合涂层麻醉针A-A方向的截面图
具体实施方式
为更好的理解本发明的精神,以下结合本发明的部分优选实施例对其作进一步说明。
图1所示是根据本发明一实施例的复合涂层麻醉针100的主视图,图2所示是图1所示的复合涂层麻醉针100A-A方向的截面图。
如图1和2所示,复合涂层麻醉针100包括麻醉针10,麻醉针10的表面10a依次附着渗氮层16、PVD涂层12和抗菌纳米粒子改性的PVD涂层14。其中,PVD涂层12为包括AlCrN、CrAlN、CrN、TiN、AlTiN、TiAlN、TiAlCrN、TiSiN、TiSiAlN、TiAlWN或其混合物的纳米硬质涂层,用以强化麻醉针10的耐磨性能。
抗菌纳米粒子改性的PVD涂层14中的抗菌纳米粒子用以强化麻醉针10的抗菌性能,使其与人体接触时,降低或消除患者感染细菌的风险,同时抗菌纳米粒子改性的PVD涂层14还可以进一步强化麻醉针10的耐磨性能。位于麻醉针10和PVD涂层12之间的渗氮层16用以进一步强化麻醉针10的表面10a和PVD涂层12之间的结合度。
在本发明的一实施例中,抗菌纳米粒子改性的PVD涂层14中的抗菌纳米粒子包括银纳米粒子、铜纳米粒子或其混合物。
在本发明的一实施例中,抗菌纳米粒子在抗菌纳米粒子改性的PVD涂层14中的原子百分比为0.1-25%。
在本发明的一实施例中,抗菌纳米粒子的粒径为1-100nm。
在本发明的又一实施例中,PVD涂层12的厚度为1-15μm,PVD涂层12的厚度可进一步优选为3-6μm,PVD涂层12的表面硬度为1500HV-5000HV。PVD涂层12的表面硬度可进一步优选为约2000HV-3500HV。
在本发明的又一实施例中,抗菌纳米粒子改性的PVD涂层14的厚度为1-15μm,抗菌纳米粒子改性的PVD涂层14的厚度可进一步优选为3-6μm。
在本发明的又一实施例中,抗菌纳米粒子改性的PVD涂层14的表面硬度为1000HV-3000HV。抗菌纳米粒子改性的PVD涂层14的表面硬度可进一步优选为约1500HV-2500HV。
在本发明的又一实施例中,渗氮层16的厚度为0.01mm-0.5mm。渗氮层16的厚度可进一步优选为不小于0.2mm。
图1所示根据本发明一实施例的复合涂层麻醉针100的制备方法包括如下步骤:
提供麻醉针10;对麻醉针10进行离子渗氮处理以在麻醉针10的表面10a形成渗氮层16;
采用PVD工艺在渗氮层16的表面16a上沉积包括AlCrN、CrAlN、CrN、TiN、AlTiN、TiAlN、TiAlCrN、TiSiN、TiSiAlN、TiAlWN或其混合物的纳米硬质涂层以形成PVD涂层12;以及
将抗菌纳米粒子导入PVD工艺炉中,采用PVD工艺在PVD涂层12的表面12a形成抗菌纳米粒子改性的PVD涂层14。
在本发明的一实施例中,抗菌纳米粒子改性的PVD涂层14中的抗菌纳米粒子包括银纳米粒子、铜纳米粒子或其混合物。
在本发明的一实施例中,采用PVD工艺形成PVD涂层12的步骤包括:首先通入纯度为99.999%的氩气,在偏压为800-1000V的条件下清洁渗氮层16的表面16a;然后停止通入氩气,通入纯度为99.999%的氮气,在偏压为80-100V的条件下,打开包含用于组成PVD涂层12的金属的靶,弧电流为120A-200A,采用PVD工艺在清洁后渗氮层16的表面16a沉积形成PVD涂层12。
在本发明的一实施例中,采用PVD工艺形成抗菌纳米粒子改性的PVD涂层14的步骤包括:继续通入纯度为99.999%的氮气,在偏压为80-100V的条件下,保持包含用于组成PVD涂层12的金属的靶的开启状态,同时导入包含银纳米粒子、铜纳米粒子或其混合物的抗菌纳米粒子,弧电流为120A-200A,采用PVD工艺在PVD涂层12的表面12a沉积形成抗菌纳米粒子改性的PVD涂层14。
本发明实施例可通过常规的PVD设备采用常规的PVD工艺形成PVD涂层12和抗菌纳米粒子改性的PVD涂层14。
以下结合本发明的部分更优选实施例对其作进一步说明。
实施例1
提供麻醉针;在400℃的氮气环境下对麻醉针10进行离子渗氮处理以在麻醉针10的表面10a形成渗氮层16,渗氮层的厚度为0.25mm;
通入纯度为99.999%的氩气(即高纯氩气),在偏压为800-1000V的条件下,清洁渗氮层16的表面16a;然后停止通入氩气,通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,打开Ti靶,弧电流为120A-200A,采用PVD工艺在清洁后渗氮层16的表面16a沉积TiN合金形成厚度为3-6μm的PVD涂层;
接着,继续通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,保持CrAl靶的开启状态,同时导入1-100nm的银纳米粒子,弧电流为120A-200A,采用PVD工艺在PVD涂层的表面沉积厚度为3-6μm的银纳米粒子改性的PVD涂层,从而形成复合涂层麻醉针。
实施例2
提供麻醉针;在400℃的氮气环境下对麻醉针10进行离子渗氮处理以在麻醉针10的表面10a形成渗氮层16,渗氮层的厚度为0.3mm;
通入纯度为99.999%的氩气(即高纯氩气),在偏压为800-1000V的条件下,清洁渗氮层16的表面16a;然后停止通入氩气,通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,打开Ti靶,弧电流为120A-200A,采用PVD工艺在清洁后渗氮层16的表面16a沉积TiN合金形成厚度为3-6μm的PVD涂层;
接着,继续通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,保持CrAl靶的开启状态,同时导入1-100nm的铜纳米粒子,弧电流为120A-200A,采用PVD工艺在PVD涂层的表面沉积厚度为3-6μm的铜纳米粒子改性的PVD涂层,从而形成复合涂层麻醉针。
实施例3
提供麻醉针;在400℃的氮气环境下对麻醉针10进行离子渗氮处理以在麻醉针10的表面10a形成渗氮层16,渗氮层的厚度为0.35mm;
通入纯度为99.999%的氩气(即高纯氩气),在偏压为800-1000V的条件下,清洁渗氮层16的表面16a;然后停止通入氩气,通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,打开AlTi靶,弧电流为120A-200A,采用PVD工艺在清洁后渗氮层16的表面16a沉积TiAlN合金形成厚度为3-6μm的PVD涂层;
接着,继续通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,保持AlTi靶的开启状态,同时导入1-100nm的铜纳米粒子,弧电流为120A-200A,采用PVD工艺在PVD涂层的表面沉积厚度为3-6μm的铜纳米粒子改性的PVD涂层,从而形成复合涂层麻醉针。
实施例4
提供麻醉针;在400℃的氮气环境下对麻醉针10进行离子渗氮处理以在麻醉针10的表面10a形成渗氮层16,渗氮层的厚度为0.5mm;
通入纯度为99.999%的氩气(即高纯氩气),在偏压为800-1000V的条件下,清洁渗氮层16的表面16a;然后停止通入氩气,通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,打开AlTi靶,弧电流为120A-200A,采用PVD工艺在清洁后渗氮层16的表面16a沉积TiAlN合金形成厚度为3-6μm的PVD涂层;
接着,继续通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,保持AlTi靶的开启状态,同时导入1-100nm的铜纳米粒子,弧电流为120A-200A,采用PVD工艺在PVD涂层的表面沉积厚度为3-6μm的铜纳米粒子改性的PVD涂层,从而形成复合涂层麻醉针。
实施例5
提供麻醉针;在400℃的氮气环境下对麻醉针10进行离子渗氮处理以在麻醉针10的表面10a形成渗氮层16,渗氮层的厚度为0.4mm;
通入纯度为99.999%的氩气(即高纯氩气),在偏压为800-1000V的条件下,清洁渗氮层16的表面16a;然后停止通入氩气,通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,打开AlTi靶,弧电流为120A-200A,采用PVD工艺在清洁后渗氮层16的表面16a沉积TiAlN合金形成厚度为3-6μm的PVD涂层;
接着,继续通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,保持AlTi靶的开启状态,同时导入1-100nm的银纳米粒子和铜纳米粒子,弧电流为120A-200A,采用PVD工艺在PVD涂层的表面沉积厚度为3-6μm的抗菌纳米粒子改性的PVD涂层,从而形成复合涂层麻醉针。
实施例6
提供麻醉针;在400℃的氮气环境下对麻醉针10进行离子渗氮处理以在麻醉针10的表面10a形成渗氮层16,渗氮层的厚度为0.25mm;
通入纯度为99.999%的氩气(即高纯氩气),在偏压为800-1000V的条件下,清洁渗氮层16的表面16a;然后停止通入氩气,通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,打开AlTi靶,弧电流为120A-200A,采用PVD工艺在清洁后渗氮层16的表面16a沉积TiAlN合金形成厚度为3-6μm的PVD涂层;
接着,继续通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,保持AlTi靶的开启状态,同时导入1-100nm的银纳米粒子和铜纳米粒子,弧电流为120A-200A,采用PVD工艺在PVD涂层的表面沉积厚度为3-6μm的抗菌纳米粒子改性的PVD涂层,从而形成复合涂层麻醉针。
实施例7
提供麻醉针;在400℃的氮气环境下对麻醉针10进行离子渗氮处理以在麻醉针10的表面10a形成渗氮层16,渗氮层的厚度为0.3mm;
通入纯度为99.999%的氩气(即高纯氩气),在偏压为800-1000V的条件下,清洁渗氮层16的表面16a;然后停止通入氩气,通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,打开AlTi靶,弧电流为120A-200A,采用PVD工艺在清洁后渗氮层16的表面16a沉积TiAlN合金形成厚度为3-6μm的PVD涂层;
接着,继续通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,保持AlTi靶的开启状态,同时导入1-100nm的银纳米粒子和铜纳米粒子,弧电流为120A-200A,采用PVD工艺在PVD涂层的表面沉积厚度为3-6μm的抗菌纳米粒子改性的PVD涂层,从而形成复合涂层麻醉针。
实施例8
提供麻醉针;在400℃的氮气环境下对麻醉针10进行离子渗氮处理以在麻醉针10的表面10a形成渗氮层16,渗氮层的厚度为0.3mm;
通入纯度为99.999%的氩气(即高纯氩气),在偏压为800-1000V的条件下,清洁渗氮层16的表面16a;然后停止通入氩气,通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,打开AlTi靶,弧电流为120A-200A,采用PVD工艺在清洁后渗氮层16的表面16a沉积TiAlN合金形成厚度为3-6μm的PVD涂层;
接着,继续通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,保持AlTi靶的开启状态,同时导入1-100nm的银纳米粒子,弧电流为120A-200A,采用PVD工艺在PVD涂层的表面沉积厚度为3-6μm的银纳米粒子改性的PVD涂层,从而形成复合涂层麻醉针。
实施例9
提供麻醉针;在400℃的氮气环境下对麻醉针10进行离子渗氮处理以在麻醉针10的表面10a形成渗氮层16,渗氮层的厚度为0.25mm;
通入纯度为99.999%的氩气(即高纯氩气),在偏压为800-1000V的条件下,清洁渗氮层16的表面16a;然后停止通入氩气,通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,打开CrAl靶,弧电流为120A-200A,采用PVD工艺在清洁后渗氮层16的表面16a沉积AlCrN合金形成厚度为3-6μm的PVD涂层;
接着,继续通入纯度为99.999%的氮气(即高纯氮气),在偏压为80-100V的条件下,保持CrAl靶的开启状态,同时导入1-100nm的银纳米粒子,弧电流为120A-200A,采用PVD工艺在PVD涂层的表面沉积厚度为3-6μm的银纳米粒子改性的PVD涂层,从而形成复合涂层麻醉针。
对上述实施例1-9的复合涂层麻醉针和常用的普通麻醉针进行抗菌效果实验。测试方法:参考ISO22196:2011;实验菌种:黄金色葡萄球菌ATCC6538P(表一),大肠杆菌ATCC8739(表二)。
实验数据请参见表一和表二。
表一
表二
注:
●参照标准ISO8251-87和JISH8682标准,用磨擦轮磨耗试验机测定在规定的试验条件下,使涂层与胶接在磨擦轮外缘上的研磨砂纸作平面往复运动,每双行程后磨擦轮转动一小角度(0.9°),经规定的若干次研磨后,涂层质量(mg)的减少作为衡量耐磨性的标准。
●本发明各实施例的复合涂层麻醉针的抗菌活性值为相对于普通麻醉针的抗菌活性值。
由上表可知,相较于常用的普通麻醉针,本发明实施例提供的复合涂层麻醉针,通过在麻醉针的表面设置PVD涂层和抗菌纳米粒子改性的PVD涂层,有效提高了复合涂层麻醉针的表面硬度和抗菌性能,从而提高了复合涂层麻醉针的品质及使用寿命,在复合涂层麻醉针接触人体的过程中,降低或消除患者感染细菌的风险。
本发明实施例提供的复合涂层麻醉针,可通过在麻醉针的表面设置渗氮层来提高麻醉针的表面的涂层的结合度,有效避免涂层脱落,从而进一步提高复合涂层麻醉针的品质,延长其使用寿命。
虽然PVD技术是一门已知的在现代物理、化学、材料学、电子学、力学等多学科基础上建立起来的工程技术,即将金属或非金属靶材(所镀膜材料)在真空环境下,经过物理过程沉积在需要镀膜工件表面的过程。但仅采用PVD技术在麻醉针10表面直接沉积涂层所得到的麻醉针,其抗菌性无法满足麻醉针的使用要求。而本发明实施例提供的复合涂层麻醉针,将抗菌纳米粒子,如银纳米粒子、铜纳米粒子等,导入PVD工艺,在麻醉针上形成抗菌纳米粒子改性的PVD涂层,提高了复合涂层麻醉针的抗菌性能。
本发明的技术内容及技术特点已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰。因此,本发明的保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求书所涵盖。

Claims (13)

1.一种复合涂层麻醉针,其包括:麻醉针;所述麻醉针的表面依次附着渗氮层、物理气相沉积PVD涂层和抗菌纳米粒子改性的PVD涂层,其中所述PVD涂层为包括AlCrN、CrAlN、CrN、TiN、AlTiN、TiAlN、TiAlCrN、TiSiN、TiSiAlN、TiAlWN或其混合物的纳米硬质涂层。
2.根据权利要求1所述的复合涂层麻醉针,其中所述抗菌纳米粒子包括银纳米粒子、铜纳米粒子或其混合物。
3.根据权利要求1或2所述的复合涂层麻醉针,其中所述抗菌纳米粒子在所述抗菌纳米粒子改性的PVD涂层中的原子百分比为0.1-25%。
4.根据权利要求1或2所述的复合涂层麻醉针,其中所述抗菌纳米粒子的粒径为1nm-100nm。
5.根据权利要求1或2所述的复合涂层麻醉针,其中所述PVD涂层的厚度为1μm-15μm,表面硬度为1500HV-5000HV。
6.根据权利要求1或2所述的复合涂层麻醉针,其中所述抗菌纳米粒子改性的PVD涂层的厚度为1μm-15μm。
7.根据权利要求1或2所述的复合涂层麻醉针,其中所述渗氮层的厚度为0.01mm-0.5mm。
8.一种复合涂层麻醉针的制备方法,其包括如下步骤:
提供麻醉针;对所述麻醉针进行离子渗氮处理以在所述麻醉针的表面形成渗氮层;
采用物理气相沉积PVD工艺在所述渗氮层的表面沉积包括AlCrN、CrAlN、CrN、TiN、AlTiN、TiAlN、TiAlCrN、TiSiN、TiSiAlN、TiAlWN或其混合物的纳米硬质涂层以形成PVD涂层;
将抗菌纳米粒子导入物理气相沉积PVD工艺炉中,采用物理气相沉积PVD工艺在所述PVD涂层的表面形成抗菌纳米粒子改性的PVD涂层。
9.根据权利要求8所述的复合涂层麻醉针的制备方法,其中所述抗菌纳米粒子包括银纳米粒子、铜纳米粒子或其混合物。
10.根据权利要求8或9所述的复合涂层麻醉针的制备方法,其中所述抗菌纳米粒子在所述抗菌纳米粒子改性的PVD涂层中的原子百分比为0.1-25%。
11.根据权利要求8或9所述的复合涂层麻醉针的制备方法,其中所述抗菌纳米粒子的粒径为1nm-100nm。
12.根据权利要求8或9所述的复合涂层麻醉针的制备方法,其中采用PVD工艺形成所述PVD涂层的步骤包括:首先通入纯度为99.999%的氩气,在偏压为800-1000V的条件下清洁所述渗氮层的表面;然后停止通入氩气,通入纯度为99.999%的氮气,在偏压为80-100V的条件下,打开包含用于组成所述PVD涂层的金属的靶,弧电流为120A-200A,采用PVD工艺在清洁后的所述渗氮层的表面沉积形成所述PVD涂层。
13.根据权利要求8或9所述的复合涂层麻醉针的制备方法,其中采用PVD工艺形成所述抗菌纳米粒子改性的PVD涂层的步骤包括:继续通入纯度为99.999%的氮气,在偏压为80-100V的条件下,保持包含用于组成所述PVD涂层的金属的靶的开启状态,同时导入所述抗菌纳米粒子,弧电流为120A-200A,采用PVD工艺在所述PVD涂层的表面沉积形成所述抗菌纳米粒子改性的PVD涂层。
CN201710199212.0A 2017-03-29 2017-03-29 复合涂层麻醉针及其制备方法 Withdrawn CN106917089A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710199212.0A CN106917089A (zh) 2017-03-29 2017-03-29 复合涂层麻醉针及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710199212.0A CN106917089A (zh) 2017-03-29 2017-03-29 复合涂层麻醉针及其制备方法

Publications (1)

Publication Number Publication Date
CN106917089A true CN106917089A (zh) 2017-07-04

Family

ID=59461258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710199212.0A Withdrawn CN106917089A (zh) 2017-03-29 2017-03-29 复合涂层麻醉针及其制备方法

Country Status (1)

Country Link
CN (1) CN106917089A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1392285A (zh) * 2002-03-25 2003-01-22 西安交通大学 精密叶片热锻模具pcvd等离子体渗镀复合强化方法
CN102574362A (zh) * 2009-06-02 2012-07-11 英特格兰科技公司 金属包覆的聚合物制品
CN104494229A (zh) * 2014-12-08 2015-04-08 中国人民解放军装甲兵工程学院 一种抗菌耐磨纳米复合涂层及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1392285A (zh) * 2002-03-25 2003-01-22 西安交通大学 精密叶片热锻模具pcvd等离子体渗镀复合强化方法
CN102574362A (zh) * 2009-06-02 2012-07-11 英特格兰科技公司 金属包覆的聚合物制品
CN104494229A (zh) * 2014-12-08 2015-04-08 中国人民解放军装甲兵工程学院 一种抗菌耐磨纳米复合涂层及其制备方法

Similar Documents

Publication Publication Date Title
US12022822B2 (en) Antibacterial medical product and method for producing same
AU2009208809B2 (en) Coated articles
US7393589B2 (en) Dual layer diffusion bonded chemical vapor coating for medical implants
Dong et al. Surface microstructure and antibacterial property of an active-screen plasma alloyed austenitic stainless steel surface with Cu and N
Huang et al. Surface Hydrophilicity and Antifungal Properties of TiO2 Films Coated on a Co‐Cr Substrate
CN108070829A (zh) 一种Ti-Cu-N纳米复合抗菌涂层及其制备方法
Wang et al. Structure characterization and antibacterial properties of Ag-DLC films fabricated by dual-targets HiPIMS
CN106890367A (zh) 复合涂层手术刀及其制备方法
CN209464372U (zh) 复合涂层手术刀
CN107049413A (zh) 复合涂层骨钻用钻头、其制备方法及骨钻
Braceras et al. TiN-Ag as an antimicrobial and wear resistant coating
CN107058938A (zh) 复合涂层手术剪及其制备方法
CN106175996A (zh) 表面具有富银纳米多层膜修饰的椎间融合器及制备方法
CN106947971A (zh) 复合涂层电刀用刀头、其制备方法及电刀
Tripi et al. Fabrication of hard coatings on NiTi instruments
Marín et al. Influence of silver content on microstructural, bactericidal, and cytotoxic behavior of TiAlVN (Ag) composite coatings deposited by magnetron sputtering
CN106917089A (zh) 复合涂层麻醉针及其制备方法
CN106947972A (zh) 复合涂层骨针及其制备方法
Haung et al. Preparation, characterization, and properties of anticoagulation and antibacterial films of carbon-based nanowires fabricated on surfaces of Ti implants
CN209500358U (zh) 复合涂层人工关节
CN106924811A (zh) 复合涂层人工关节及其制备方法
CN106924821A (zh) 复合涂层骨骼固定件及其制备方法
CN109778121B (zh) 一种Zr-Cu-N纳米复合耐磨抗菌涂层及其制备方法
CN107059006A (zh) 复合涂层骨骼支架及其制备方法
CN108866489B (zh) 一种具有抗菌功能的钛合金纳米涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 314200 No. 1661 Xingping Second Road, Pinghu Economic and Technological Development Zone, Jiaxing City, Zhejiang Province

Applicant after: Nashi New Materials (Zhejiang) Co., Ltd.

Applicant after: Jiaxing Ode Medical Technology Co., Ltd.

Address before: 314200 No. 1661 Xingping Second Road, Pinghu Economic and Technological Development Zone, Jiaxing City, Zhejiang Province

Applicant before: Limited by Share Ltd new material

Applicant before: Jiaxing Aode nanotechnology Co Ltd

CB02 Change of applicant information
WW01 Invention patent application withdrawn after publication

Application publication date: 20170704

WW01 Invention patent application withdrawn after publication