CN106910680A - 室温环境下激励砷化镓中金属原子扩散的方法 - Google Patents

室温环境下激励砷化镓中金属原子扩散的方法 Download PDF

Info

Publication number
CN106910680A
CN106910680A CN201510976237.8A CN201510976237A CN106910680A CN 106910680 A CN106910680 A CN 106910680A CN 201510976237 A CN201510976237 A CN 201510976237A CN 106910680 A CN106910680 A CN 106910680A
Authority
CN
China
Prior art keywords
gaas
gamma
ray
room temperature
radiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510976237.8A
Other languages
English (en)
Inventor
徐万劲
李磊
李艳平
姚利
侯瑞祥
秦国刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201510976237.8A priority Critical patent/CN106910680A/zh
Publication of CN106910680A publication Critical patent/CN106910680A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/221Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities of killers
    • H01L21/2215Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities of killers in AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/2605Bombardment with radiation using natural radiation, e.g. alpha, beta or gamma radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种激励砷化镓中金属原子扩散的方法,在室温环境下先通过感应耦合等离子体处理或其他方法在砷化镓材料或砷化镓器件表面引入表面缺陷,再对砷化镓材料或砷化镓器件进行一定剂量的伽马射线辐照,激活励砷化镓内的金属杂质扩散。该方法简单快捷,而且由于不需高温,不仅可用于改善砷化镓晶片的性能,还可用于改善砷化镓器件的性能。

Description

室温环境下激励砷化镓中金属原子扩散的方法
技术领域
本发明涉及一种激励砷化镓中金属杂质扩散的方法,特别涉及一种在室温环境下激励砷化镓中金属原子扩散的方法。
背景技术
砷化镓中含有如锰、铬、镁、锌和铝等微量金属杂质,且在器件制备过程中,不可避免地还可能无意掺进一些金属杂质。过渡金属杂质在砷化镓中往往表现为深能级中心,并且对材料的性能有明显影响。深能级中心还可以影响砷化镓器件的性能和可靠性。金属杂质的存在有利有弊,有些金属杂质会补偿决定材料导电类型和导电率的浅杂质,并降低非平衡载流子寿命,对砷化镓材料和器件的性能有不利影响。然而,在有些砷化镓器件的制造过程中,引入某些金属杂质在砷化镓中是不可少的一步。例如砷化镓中铬的能级位于禁带中央附近,掺入后可补偿浅杂质,使GaAs变成电阻率很高的半绝缘GaAs。
金属杂质在砷化镓中的室温扩散系数很小,室温下,几乎观察不到砷化镓中金属杂质的扩散。金属杂质在高温才有明显的扩散,扩散的温度往往高达七八百摄氏度。由于砷化镓中的砷易挥发性,当温度接近700摄氏度时,砷的挥发使砷化镓中产生大量砷空位,可能导致砷化镓材料和器件的性能严重退化。为了在砷化镓中进行杂质的高温扩散,需在其表面生长一层二氧化硅或氮化硅等介质保护膜。即使这样,高温下,砷化镓中的镓和砷容易和氧发生反应,另外,杂质和缺陷之间也可能发生相互作用,从而引入了新的杂质-缺陷复合物,影响砷化镓材料和器件的性能。
发明内容
本发明的目的在于提供一种不需高温加热,在室温环境中简单便捷的激励砷化镓中金属原子扩散的方法。
本发明的技术方案如下:
一种激励砷化镓中金属原子扩散的方法,在室温环境下先对砷化镓材料或砷化镓器件引入表面缺陷,再对砷化镓材料或砷化镓器件进行一定剂量的伽马射线辐照,激励砷化镓内的金属杂质扩散。
一般来说,上述伽马射线辐照的剂量很小,在10~10000Gy范围内,优选在50~1000Gy,对砷化镓材料和器件性能没有负面影响。
在室温环境下对砷化镓材料或器件引入表面缺陷的方法包括但不限于:对砷化镓材料或器件的表面进行低功率的感应耦合等离子体(ICP)处理,氧等离子体轰击,或者其他的能够制造表面缺陷的处理方法。
其中,对砷化镓材料或器件的表面进行ICP处理的功率为1~200W,优选为10~100W;处理时间30sec~10min,优选为1~5min。上述ICP处理的载气为惰性气体,例如氦气,真空度至少为1E-2Pa,通常在5E-3Pa左右。
所述金属原子包括过渡金属原子和非过渡金属原子,过渡金属原子包括Ti、Cr、Fe、Cu等过渡金属原子,非过渡金属原子包括Al、Ca、Mg、Li等非过渡金属原子。
本发明通过伽马射线辐照具有表面缺陷的砷化镓材料或器件,激励砷化镓体内金属原子的扩散,其原理可能如下:
在砷化镓中金属杂质主要以代位形式存在。若杂质原子M处于Ga原子位,记为MGa;若M处于砷原子位,记为MAs。杂质原子处于间隙时记为MI,镓和砷的自间隙分别记为IGa和IAs。M处于代位的浓度[MGa]﹢[MAs]>>M处于间隙的浓度[MI]。在砷化镓中MI的扩散系数远大于MS的扩散系数,这是因为MS的扩散以近邻存在空位为前提,而MI的扩散不需要此前提。在伽马辐照下,在砷化镓中发生康普顿散射。在入射光子的散射过程中产生高能电子,该电子在砷化镓中产生弗伦克尔(Frekle)对,即I-V对,其中空位V可相互结合,成为双多空位和多空位。室温下,IGa和IAs在砷化镓中就可扩散,当IGa和IAs扩散到MGa和MAs旁,可能会发生如下四种Kick-Out过程,反应式如下:
IGa+MGa→MI (1)
IAs﹢MGa→MI﹢AsGa (2)
IGa﹢MAs→MI﹢GaAs (3)
IAs﹢MAs→MI (4)
其中,过程(2)和(3)分别产生反位缺陷AsGa和GaAs,AsGa起施主作用,GaAs起受主作用。总之,四个过程都产生了间隙原子MI,这样在伽马射线辐照下,MI的浓度明显增加,由于MI的扩散系数远远大于MGa和MAs,室温下,金属杂质扩散成为可能。
以小功率ICP制造表面缺陷为例,ICP中13.6MHz射频和磁场将电子加速,电子与载气中He原子碰撞,将其离化成He+离子和电子等离子体。砷化镓片受He+离子轰击,其表面形成许多空位型缺陷。引入这些空位型缺陷在本发明方法中起如下两方面重要作用:
1.表面的MI可进入这些空位型缺陷内,因此,砷化镓表面[MI]比体内低,这就导致MI由体内向表面扩散。但这并不表明本专利提出的室温扩散只能从体内到表面。若空位型缺陷或氧在GaAs体内有浓度高峰,金属也可能从表面向体内扩散。
2.相较于砷化镓内部的完整晶格,ICP缺陷区原子排列松散,γ辐照下在这里更易于产生IAs和IGa。即:经小功率ICP处理的砷化镓,γ辐照产生的[IAs]和[IGa]都远较未经ICP处理的砷化镓为大。这导致前者的[MI]也远为较大,γ辐照激励下金属杂质室温扩散现象也更明显。
需要指出的是,伽马射线辐照通常在半导体晶格中引入点缺陷,少数载流子寿命和载流子浓度随之下降,会带来负面影响,造成器件性能下降。但本发明提出的伽马射线辐照结合引入表面缺陷来激励金属杂质室温扩散的方案中,由于伽马射线辐照剂量很低,带来的负面影响很小,通常可忽略。
本发明在室温环境下利用伽马射线辐照结合引入表面缺陷来处理砷化镓样品,激活了室温环境下金属杂质的扩散。由于不需高温,该方法不仅可用于改善砷化镓晶片的性能,还可用于改善砷化镓器件的性能。
附图说明
图1.实施例1对n型砷化镓进行ICP和伽马射线辐照处理与不做任何处理的砷化镓中Mn原子浓度分布的SIMS测量结果对比图。
图2.实施例2对n型砷化镓进行ICP和伽马射线辐照处理与不做任何处理的砷化镓中Cr原子浓度分布的SIMS测量结果对比图。
图3.实施例3对n型砷化镓进行ICP和伽马射线辐照处理与不做任何处理的砷化镓中Mg原子浓度分布的SIMS测量结果对比图。
具体实施方式
下面结合实施例对本发明作进一步说明,但不以任何方式限制本发明的范围。
实施例1:
选用液封直拉法生长的n型砷化镓单晶,单面抛光,电阻率106Ω·cm。首先将砷化镓用丙酮、乙醇、去离子水分别进行超声清洗10min。接着对砷化镓片的抛光面进行ICP处理,载气为氦气,流量22sccm,真空度5E-3Pa左右,处理时间2min,功率选用50W。再对砷化镓抛光面进行伽马射线正面照射,剂量为100Gy。之后利用SIMS手段得到经ICP处理伽马射线辐照后的样品中Mn杂质浓度随深度的分布,结果如图1所示。由图1可以看出表面附近的Mn浓度大大增加,说明体内的Mn在ICP处理和伽马射线辐照激励下从体内扩散到表面,从而实现了室温环境下砷化镓中Mn杂质的扩散。
实施例2:
选用液封直拉法生长的n型砷化镓单晶,单面抛光,电阻率106Ω·cm。首先将砷化镓用丙酮、乙醇、去离子水分别进行超声清洗10min。接着对砷化镓片的抛光面进行ICP处理,载气为氦气,流量22sccm,真空度5E-3Pa左右,处理时间2min,功率选用50W。再对砷化镓抛光面进行伽马射线正面照射,剂量为100Gy。之后利用SIMS手段得到经ICP处理和伽马射线辐照后的样品中Cr杂质浓度随深度的分布,结果如图2所示。由图2可以看出表面附近的Cr浓度大大增加,说明体内的Cr在ICP处理和伽马射线辐照激励下从体内扩散到表面,从而实现了室温环境下砷化镓中Cr的扩散。
实施例3:
选用液封直拉法生长的n型砷化镓单晶,单面抛光,电阻率106Ω·cm。首先将砷化镓用丙酮、乙醇、去离子水分别进行超声清洗10min。接着对砷化镓片的抛光面进行ICP处理,载气为氦气,流量22sccm,真空度5E-3Pa左右,处理时间2min,功率选用50W。再对砷化镓抛光面进行伽马射线正面照射,剂量为100Gy。之后利用SIMS手段得到经ICP处理和伽马射线辐照后的样品中Mg杂质浓度随深度的分布,结果如图3所示。由图3可以看出表面附近的Mg浓度大大增加,说明体内的Mg在ICP处理和伽马射线辐照激励下从体内扩散到表面,从而实现了室温环境下砷化镓中Mg的扩散。

Claims (10)

1.一种激励砷化镓中金属原子扩散的方法,在室温环境下先对砷化镓材料或砷化镓器件引入表面缺陷,再对砷化镓材料或砷化镓器件进行一定剂量的伽马射线辐照。
2.如权利要求1所述的方法,其特征在于,所述伽马射线辐照的剂量为10~10000Gy。
3.如权利要求1所述的方法,其特征在于,所述伽马射线辐照的剂量为50~1000Gy。
4.如权利要求1所述的方法,其特征在于,对砷化镓材料或砷化镓器件引入表面缺陷的方法包括:对砷化镓材料或器件的表面进行低功率的感应耦合等离子体处理,或氧等离子体轰击,或其他的能够制造表面缺陷的处理方法。
5.如权利要求4所述的方法,其特征在于,对砷化镓材料或器件的表面进行感应耦合等离子体处理的功率为1~200W,时间为30sec~10min。
6.如权利要求5所述的方法,其特征在于,对砷化镓材料或器件的表面进行感应耦合等离子体处理的功率为10~100W。
7.如权利要求5所述的方法,其特征在于,对砷化镓材料或器件的表面进行感应耦合等离子体处理的时间为1~5min。
8.如权利要求4所述的方法,其特征在于,对砷化镓材料或器件的表面进行感应耦合等离子体处理的载气为惰性气体,真空度至少为1E-2Pa。
9.如权利要求1~8任意一项所述的方法,其特征在于,所述金属原子包括过渡金属原子和非过渡金属原子。
10.如权利要求9所述的方法,其特征在于,所述过渡金属原子包括Ti、Cr、Fe和Cu;所述非过渡金属原子包括Al、Ca、Mg和Li。
CN201510976237.8A 2015-12-23 2015-12-23 室温环境下激励砷化镓中金属原子扩散的方法 Pending CN106910680A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510976237.8A CN106910680A (zh) 2015-12-23 2015-12-23 室温环境下激励砷化镓中金属原子扩散的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510976237.8A CN106910680A (zh) 2015-12-23 2015-12-23 室温环境下激励砷化镓中金属原子扩散的方法

Publications (1)

Publication Number Publication Date
CN106910680A true CN106910680A (zh) 2017-06-30

Family

ID=59199981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510976237.8A Pending CN106910680A (zh) 2015-12-23 2015-12-23 室温环境下激励砷化镓中金属原子扩散的方法

Country Status (1)

Country Link
CN (1) CN106910680A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1700484A (zh) * 2004-05-17 2005-11-23 深圳大学 一种新型的白光led结构
US20110256724A1 (en) * 2010-04-15 2011-10-20 Novellus Systems, Inc. Gas and liquid injection methods and apparatus
CN103794473A (zh) * 2014-01-28 2014-05-14 北京大学 一种室温下吸除硅晶片或硅器件中过渡金属杂质的方法
CN104183676A (zh) * 2014-08-15 2014-12-03 中国科学院上海技术物理研究所 γ辐照降低LED效率崩塌效应及增强发光强度的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1700484A (zh) * 2004-05-17 2005-11-23 深圳大学 一种新型的白光led结构
US20110256724A1 (en) * 2010-04-15 2011-10-20 Novellus Systems, Inc. Gas and liquid injection methods and apparatus
CN103794473A (zh) * 2014-01-28 2014-05-14 北京大学 一种室温下吸除硅晶片或硅器件中过渡金属杂质的方法
CN104183676A (zh) * 2014-08-15 2014-12-03 中国科学院上海技术物理研究所 γ辐照降低LED效率崩塌效应及增强发光强度的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU ZHANG: ""Gamma-ray irradiation hardness of arrayed silicon microhole-based radical p-n junction solar cells"", 《JOURNAL OF PHYSICS D: APPLIED PHYSICS》 *

Similar Documents

Publication Publication Date Title
US9847370B2 (en) Method of producing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method of producing solid-state image sensing device
US20240297201A1 (en) Method of producing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method of producing solid-state image sensing device
US20240282801A1 (en) Method of producing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method of producing solid-state image sensing device
CN111508819B (zh) 硅晶片及其制造方法
JP6075307B2 (ja) シリコン単結晶中の炭素濃度評価方法及び半導体デバイスの製造方法
US20170256668A1 (en) Semiconductor epitaxial wafer and method of producing the same, and method of producing solid-state image sensing device
US10396120B2 (en) Method for producing semiconductor epitaxial wafer and method of producing solid-state imaging device
CN103794473A (zh) 一种室温下吸除硅晶片或硅器件中过渡金属杂质的方法
KR20160089461A (ko) 에피택셜 웨이퍼의 제조방법 및 에피택셜 웨이퍼
CN105931951B (zh) 一种在室温环境下向砷化镓材料引入杂质的方法
Nakamura et al. Size and dopant-concentration dependence of photoluminescence properties of ion-implanted phosphorus-and boron-codoped Si nanocrystals
Elsayed et al. Identification of As-vacancy complexes in Zn-diffused GaAs
KR20200044930A (ko) 에피택셜 실리콘 웨이퍼의 제조 방법, 에피택셜 실리콘 웨이퍼, 및 고체 촬상 소자의 제조 방법
CN106910680A (zh) 室温环境下激励砷化镓中金属原子扩散的方法
Muminov et al. Developing Si (Li) nuclear radiation detectors by pulsed electric field treatment
EP3734644A1 (en) Control method for recombination lifetimes
JP6787268B2 (ja) 半導体エピタキシャルウェーハおよびその製造方法、ならびに固体撮像素子の製造方法
Izhnin et al. Defects in Arsenic Implanted р+–n-and n+–p-Structures Based on MBE Grown CdHgTe Films
CN106328474A (zh) 一种在室温环境下向氮化镓中引入杂质的方法
US11626492B2 (en) Semiconductor epitaxial wafer and method of producing the same
CN108885998A (zh) 外延晶圆的制造方法及外延晶圆
CN104882377A (zh) 一种室温下吸除硅材料中金属杂质的方法
CN106910681A (zh) 一种室温环境下激励砷化镓中金属原子扩散的方法
Gueorguiev et al. Impurity gettering by high-energy ion implantation in silicon beyond the projected range
Pociask et al. Ion milling-induced conductivity-type conversion in p-type HgCdTe MBE-grown films with graded-gap surface layers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170630