CN106908240B - 一种用于机床主轴热误差的在线测试装置及测试方法 - Google Patents

一种用于机床主轴热误差的在线测试装置及测试方法 Download PDF

Info

Publication number
CN106908240B
CN106908240B CN201710292461.4A CN201710292461A CN106908240B CN 106908240 B CN106908240 B CN 106908240B CN 201710292461 A CN201710292461 A CN 201710292461A CN 106908240 B CN106908240 B CN 106908240B
Authority
CN
China
Prior art keywords
main shaft
thermal
temperature
machine tool
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710292461.4A
Other languages
English (en)
Other versions
CN106908240A (zh
Inventor
杨泽青
韩靖
杨伟东
刘丽冰
张俊峰
王军伟
张艳蕊
李莉
彭凯
成玉飞
陈英姝
谭飏
李增强
张炳寅
范敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201710292461.4A priority Critical patent/CN106908240B/zh
Publication of CN106908240A publication Critical patent/CN106908240A/zh
Application granted granted Critical
Publication of CN106908240B publication Critical patent/CN106908240B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/058Safety, monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/16Plc to applications
    • G05B2219/163Domotique, domestic, home control, automation, smart, intelligent house

Abstract

本发明公开了一种用于机床主轴热误差的在线测试装置及测试方法。该测试方法通过电涡流传感器和热像仪实时测量机床在实际工况下主轴温度敏感点的温度和主轴前端轴向和径向的热变形,然后分别通过热像仪、PLC将温度和热变形数据传送到计算机,经热误差测试软件的数据处理部分得到温度敏感点温升‑时间曲线、主轴轴向热变形‑时间曲线、主轴径向热变形‑时间曲线,最后经过计算得到主轴热误差模型。该测试装置包括热像仪、电涡流传感器、传感器信号调理器、PLC、PLC模拟量单元、计算机和支架;利用热像仪代替温度传感器测量主轴温度敏感点的温度数据,解决了在实际测量中温度传感器数目较多、布线繁琐、安装困难的问题。

Description

一种用于机床主轴热误差的在线测试装置及测试方法
技术领域
本发明涉及机床主轴性能测试领域,具体是一种用于机床主轴热误差的在线测试装置及测试方法。
背景技术
机床热误差是指在加工过程中机床部件由于受到摩擦热、切削热和环境温度等因素的影响形成的非均匀温度场,致使各个部件发生不同程度的热变形,这将引起工件和刀具之间产生相对位移,对工件加工精度产生影响。文献表明,热误差占机床总误差的40%~70%左右,一般热误差模型中包含机床温度敏感点的温升和热变形。主轴系统作为机床的关键部件之一,由于受轴承摩擦热、电动机发热及切削热的影响产生热误差,其热误差严重影响着机床整体的加工精度,所以如何在实际加工过程中准确、快速、高效地获得机床主轴热误差,提高机床的加工精度具有重要意义。
目前对机床热误差的测试中,主要利用贴片式温度传感器测量机床温度敏感点的温度,利用电感式或者电涡流传感器测量机床的热变形。
申请号201511020629.3公开了一种精密数控机床热误差测量及温度补偿系统,该热误差测量系统包括若干电感式位移传感器和若干温度传感器,每个电感式位移传感器和每个温度传感器均通过磁吸附件吸附在数控机床上,该热误差测量系统通过温度传感器和电感式位移传感器获取机床各位置的实际热位移量和温度差。但是该系统利用温度传感器测量机床各位置的温度,忽略了在实际测量中传感器布线繁琐、安装固定比较困难。
申请号201510781183.X公开了一种电主轴温度与热变形试验装置,它包括依次连接的工业PC机与主轴驱动装置,测试加载装置,电主轴上安装有测试棒,冷却水循环装置和油气润滑装置分别与电主轴的两端连接,温度检测装置沿轴向布置在电主轴的轴体一侧,热位移检测装置布置在测试棒的端部和周向。但该发明利用数据采集卡控制位移传感器采集热变形信号,忽略了数据采集卡实时处理能力弱、实时响应度慢的问题。
申请号200510094543.5公开了一种数控机床热机阶段的热变形的测试方法,该发明通过运行试验G代码采集待补偿部件X轴、Y轴、Z轴和主轴在热机阶段的热变形量,找出热变形量与部件工作时间和停止时间的关系后,分别建立基于时间和所述变形量之间的关系模型,从而实现对热机阶段的热变形的预测。该方法能够实现对热机阶段的热变形的时间预测,但是该建立预测模型方法的智能化程度较低,不能够实时科学的反应机床的热变形。
发明内容
针对现有技术的不足,本发明拟解决的技术问题是,提供一种用于机床主轴热误差的在线测试装置及测试方法。该测试方法通过电涡流传感器和热像仪实时测量机床在实际工况下主轴温度敏感点的温度和主轴前端轴向和径向的热变形,然后分别通过热像仪、PLC将温度和热变形数据传送到计算机,经热误差测试软件的数据处理部分得到温度敏感点温升-时间曲线、主轴轴向热变形-时间曲线、主轴径向热变形-时间曲线,最后经过计算得到主轴热误差模型。
本发明解决所述测试方法技术问题的技术方案是,提供一种用于机床主轴热误差的测试方法,其特征在于该方法包括以下步骤:
1)启动并检查数控机床设备,使之处于正常状态;
2)安装测试装置,所述支架位于主轴的正前方;所述热像仪安装在支架上,用于采集主轴上的温度敏感点的温度信号;所述主轴前端安装有三个电涡流传感器,电涡流传感器用于测量主轴前端面轴向和两个径向的热变形;其中两个电涡流传感器分别安装在主轴前端的两个径向位置,两个电涡流传感器相互垂直;另一个电涡流传感器安装在主轴前端的轴向位置;三个电涡流传感器的探头都朝向主轴的前端面,0<电涡流传感器的探头距离主轴前端面的距离<1mm;所述电涡流传感器的输出端与传感器信号调理器的输入端连接;所述传感器信号调理器的输出端与PLC模拟量单元连接;所述PLC模拟量单元安装在PLC上;所述计算机分别与热像仪和PLC连接,计算机中安装有热误差测试软件;
3)启动与调整热像仪、电涡流传感器、传感器信号调理器、PLC、PLC模拟量单元和计算机中的热误差测试软件,使测试装置处于正常工作状态;
4)设定机床运行工况参数和输入机床运行工况程序代码,在热误差测试软件中设定PLC的采集模式、采集通道和采样频率与热像仪的工作模式、采样频率、温度范围以及实验采集数据的存储位置和存储文件的格式;
5)进行工况运转加工,采集初始时刻主轴各个温度敏感点的温度值(X1,X2,…,Xk)、主轴前端轴向的变形值Y(1)与主轴前端两个径向的变形值Y(2)和Y(3),并在热误差测试软件界面中显示;
6)机床运行过程中,实时采集各个时刻主轴各个温度敏感点的温度值(Xi1,Xi2,…,Xik)、主轴前端轴向的变形值Yi(1)与主轴前端两个径向的变形值Yi(2)和Yi(3),直至机床主轴达到热平衡,并在热误差测试软件界面中实时显示;
7)数据采集完毕后,利用热误差测试软件对采集的温度敏感点的温度数据和热变形数据进行后处理,绘制温度敏感点温升-时间曲线、主轴轴向热变形-时间曲线和主轴径向热变形-时间曲线,并得到主轴轴向热变形信号、主轴径向热变形信号与温度敏感点温升信号的热误差模型;再用机床运行过程中的各个时刻采集的主轴各个温度敏感点的温度值(Xi1,Xi2,…,Xik)、主轴前端轴向的变形值Yi(1)与主轴前端两个径向的变形值Yi(2)和Yi(3)分别对应减去初始时刻采集的主轴各个温度敏感点的温度值(X1,X2,…,Xk)、主轴前端轴向的变形值Y(1)与主轴前端两个径向的变形值Y(2)和Y(3),得到主轴各个温度敏感点的温升值(xi1,xi2,…,xik)、主轴前端轴向的热变形值yi(1)与主轴前端两个径向的热变形值yi(2)和yi(3);然后通过改进的多元线性分析法建立的热误差模型为公式(1):
Figure BDA0001282237170000041
式中:(xi1,xi2,…,xik)为温度敏感点温升,bn(n=1,2,……k)为温度变量系数,bpq(p,q∈I,p≠q,I={1,2……k})为温度变量的耦合系数,yi为热变形变量,ei是与实际测量值yi存在的偏差。
本发明解决所述测试装置技术问题的技术方案是,提供一种用于机床主轴热误差的在线测试装置,其特征在于该测试装置包括热像仪、电涡流传感器、传感器信号调理器、PLC、PLC模拟量单元、计算机和支架;所述支架放置于水平面上,位于主轴的正前方;所述热像仪安装在支架上,用于采集主轴上的温度敏感点的温度信号;所述主轴前端安装有三个电涡流传感器;其中两个电涡流传感器分别安装在主轴前端的两个径向位置,两个电涡流传感器相互垂直;另一个电涡流传感器安装在主轴前端的轴向位置;三个电涡流传感器的探头都朝向主轴的前端面,0<电涡流传感器的探头距离主轴前端面的距离<1mm;所述电涡流传感器的输出端与传感器信号调理器的输入端连接;所述传感器信号调理器的输出端与PLC模拟量单元连接,PLC模拟量单元用于接收传感器信号调理器的热变形信号;所述PLC模拟量单元安装在PLC上;所述计算机分别与热像仪和PLC连接,计算机中安装有热误差测试软件。
与现有技术相比,本发明有益效果在于:
(1)该测试装置利用热像仪代替温度传感器测量主轴温度敏感点的温度数据,热像仪不仅测量精度高,而且实现了非接触、在机测量主轴温度敏感点的温度,解决了在实际测量中温度传感器数目较多、布线繁琐、安装困难的问题;
(2)该测试装置用PLC代替数据采集卡控制电涡流传感器采集热变形数据,PLC与数据采集卡相比实时处理能力强、实时响应度快。
(3)该测试方法通过电涡流传感器和热像仪实时测量机床在实际工况下主轴温度敏感点的温度和主轴前端轴向和径向的热变形,然后分别通过热像仪、PLC将温度和热变形数据传送到计算机,经热误差测试软件的数据处理部分得到温度敏感点温度增量-时间曲线、主轴轴向热变形-时间曲线、主轴径向热变形-时间曲线,最后经过计算得到主轴热误差模型。
(4)该测试方法是在机床实际加工过程中,利用热误差测试软件直接在机测试加工过程中的主轴温度敏感点温度信号及主轴前端的轴向与径向热变形信号,并利用改进的多元线性回归法对实验数据进行分析得到热误差模型,该方法解决了普通测试方法不能够实时、科学的反应机床的热变形和温度问题且利用一般方法建立预测模型智能化程度较低的问题,不仅智能化程度高,而且还能够真实反映主轴在实际加工过程中机床的热误差,所以通过本装置及方法测得的热误差比在静态加载状态下测得的数据更能科学地反映主轴的热误差。
附图说明
图1为本发明用于机床主轴热误差的在线测试装置及测试方法一种实施例的测试装置的整体结构主视示意图;
图2为本发明用于机床主轴热误差的在线测试装置及测试方法一种实施例的测试装置的整体结构右视示意图;(图中:1、主轴;2、热像仪;3、电涡流传感器;4、传感器信号调理器;5、PLC;6、PLC模拟量单元;7、计算机;8、支架)
具体实施方式
下面给出本发明的具体实施例。具体实施例仅用于进一步详细说明本发明,不限制本申请权利要求的保护范围。
本发明提供了一种用于机床主轴热误差的在线测试装置(简称测试装置,参见图1-2),包括热像仪2、电涡流传感器3、传感器信号调理器4、PLC5、PLC模拟量单元6、计算机7和支架8;所述支架8放置于水平面上,位于主轴1的正前方;所述热像仪2安装在支架8上,热像仪2能够拍摄到主轴1的全景,同时采集主轴1上的温度敏感点的温度信号;所述主轴1前端安装有三个电涡流传感器3,电涡流传感器3用于测量主轴前端面轴向和两个径向的热变形;其中两个电涡流传感器3安装在主轴1前端的两个径向位置,即分别安装在主轴1前端的X方向和Y方向,且两个电涡流传感器相互垂直;另一个电涡流传感器3安装在主轴1前端的轴向位置,即主轴1前端的Z方向;三个电涡流传感器3的探头都朝向主轴的前端面,0<电涡流传感器3的探头距离主轴前端面的距离<1mm;所述电涡流传感器3的输出端与传感器信号调理器4的输入端连接,传感器信号调理器4用于对电涡流位移传感器3采集的信号分别进行调理;所述传感器信号调理器4的输出端与PLC模拟量单元6连接,PLC模拟量单元6用于接收传感器信号调理器4的热变形信号,并把信号传输给PLC5;所述PLC模拟量单元6安装在PLC5上;所述计算机7通过数据线分别与热像仪2和PLC5连接,PLC5把热变形信号传输给计算机7,且计算机7中安装有热误差测试软件。
所述热误差测试软件的界面包括数据采集部分、数据回放部分和数据处理部分;
所述数据采集部分接收热像仪2所输出的温度敏感点的温度信号和PLC5中输出的电涡流传感器3中的热变形信号,并将采集的热变形数据和温度数据进行保存;数据采集部分包括采集参数设置界面、波形显示界面和数据存储界面;采集参数设置界面中可以分别设置PLC5的采集模式、采集通道、采样频率、和热像仪2的工作模式、采样频率、温度范围等;波形显示界面用于显示实时采集的热变形数据和温度数据,即分别热变形数据和温度数据随时间的变化;数据存储界面用于设置热变形数据和温度数据的存储位置和存储文件的格式;
数据回放部分用来读取已存储的数据文件,将数据以波形形式或数组形式显示给用户查看,供用户后期离线统计分析;
数据处理部分中主要是对采集的温度敏感点的温度数据和热变形数据进行后处理,此处的后处理主要包括两部分:一是绘制并显示温度敏感点温升-时间曲线、主轴轴向热变形-时间曲线和主轴径向热变形-时间曲线;二是采用改进的多元线性分析法分别建立主轴轴向热变形信号、主轴径向热变形信号与温度敏感点温升信号的热误差模型,并显示最终的热误差模型。
本发明同时提供了一种用于机床主轴热误差的测试方法,其特征在于该方法包括以下步骤:
1)启动并检查数控机床设备,使之处于正常状态;
2)安装测试装置,所述支架8位于主轴1的正前方;所述热像仪2安装在支架8上,用于采集主轴1上的温度敏感点的温度信号;所述主轴1前端安装有三个电涡流传感器3,电涡流传感器3用于测量主轴前端面轴向和两个径向的热变形;其中两个电涡流传感器3分别安装在主轴1前端的两个径向位置,两个电涡流传感器相互垂直;另一个电涡流传感器3安装在主轴1前端的轴向位置;三个电涡流传感器3的探头都朝向主轴的前端面,0<电涡流传感器3的探头距离主轴前端面的距离<1mm;所述电涡流传感器3的输出端与传感器信号调理器4的输入端连接;所述传感器信号调理器4的输出端与PLC模拟量单元6连接;所述PLC模拟量单元6安装在PLC5上;所述计算机7分别与热像仪2和PLC5连接,计算机7中安装有热误差测试软件;
3)启动与调整热像仪2、电涡流传感器3、传感器信号调理器4、PLC5、PLC模拟量单元6和计算机7中的热误差测试软件,使测试装置处于正常工作状态;
4)设定机床运行工况参数和输入机床运行工况程序代码,在热误差测试软件中设定PLC5的采集模式、采集通道和采样频率与热像仪2的工作模式、采样频率、温度范围以及实验采集数据的存储位置和存储文件的格式;
5)进行工况运转加工,采集初始时刻主轴各个温度敏感点的温度值(X1,X2,…,Xk)、主轴前端轴向的变形值Y(1)与主轴前端两个径向的变形值Y(2)和Y(3),并在热误差测试软件界面中显示;
6)机床运行过程中,实时采集各个时刻主轴各个温度敏感点的温度值(Xi1,Xi2,…,Xik)、主轴前端轴向的变形值Yi(1)与主轴前端两个径向的变形值Yi(2)和Yi(3),直至机床主轴达到热平衡,并在热误差测试软件界面中实时显示;
7)数据采集完毕后,利用热误差测试软件对采集的温度敏感点的温度数据和热变形数据进行后处理,绘制温度敏感点温升-时间曲线、主轴轴向热变形-时间曲线和主轴径向热变形-时间曲线,并得到主轴轴向热变形信号、主轴径向热变形信号与温度敏感点温升信号的热误差模型;再用机床运行过程中的各个时刻采集的主轴各个温度敏感点的温度值(Xi1,Xi2,…,Xik)、主轴前端轴向的变形值Yi(1)与主轴前端两个径向的变形值Yi(2)和Yi(3)分别对应减去初始时刻采集的主轴各个温度敏感点的温度值(X1,X2,…,Xk)、主轴前端轴向的变形值Y(1)与主轴前端两个径向的变形值Y(2)和Y(3),得到主轴各个温度敏感点的温升值(xi1,xi2,…,xik)、主轴前端轴向的热变形值yi(1)与主轴前端两个径向的热变形值yi(2)和yi(3);然后通过改进的多元线性分析法建立的热误差模型为公式(1):
Figure BDA0001282237170000081
式中:(xi1,xi2,…,xik)为温度敏感点温升,bn(n=1,2,……k)为温度变量系数,bpq(p,q∈I,p≠q,I={1,2……k})为温度变量的耦合系数,yi为热变形变量,ei是与实际测量值yi存在的偏差。
本发明借助热像仪和电涡流传感器提出了一种用于机床主轴热误差的在线测试装置及测试方法。热像仪和电涡流传感器都是高精度的测量仪器,已广泛应用于各种精密测量中,不仅灵敏度和准确度较高,而且测量数据的采集和处理均由计算机完成,方便快捷。经实例证明,该装置及测试方法对于在线测量机床主轴热误差有着高效、快速、高精度的优点。
本发明未述及之处适用于现有技术。

Claims (2)

1.一种用于机床主轴热误差的测试方法,其特征在于该方法包括以下步骤:
1)启动并检查数控机床设备,使之处于正常状态;
2)安装测试装置:所述测试装置包括热像仪、电涡流传感器、传感器信号调理器、PLC、PLC模拟量单元、计算机和支架;支架放置于水平面上,位于主轴的正前方;热像仪安装在支架上,用于采集主轴上的温度敏感点的温度信号;主轴前端安装有三个电涡流传感器,电涡流传感器用于测量主轴前端面轴向和两个径向的热变形;其中两个电涡流传感器分别安装在主轴前端的两个径向位置,两个电涡流传感器相互垂直;另一个电涡流传感器安装在主轴前端的轴向位置;三个电涡流传感器的探头都朝向主轴的前端面,0<电涡流传感器的探头距离主轴前端面的距离<1mm;电涡流传感器的输出端与传感器信号调理器的输入端连接;传感器信号调理器的输出端与PLC模拟量单元连接,PLC模拟量单元用于接收传感器信号调理器的热变形信号;PLC模拟量单元安装在PLC上;计算机分别与热像仪和PLC连接,计算机中加载有热误差测试软件;
3)启动与调整热像仪、电涡流传感器、传感器信号调理器、PLC、PLC模拟量单元和计算机中的热误差测试软件,使测试装置处于正常工作状态;
4)设定机床运行工况参数和输入机床运行工况程序代码,在热误差测试软件中设定PLC的采集模式、采集通道和采样频率与热像仪的工作模式、采样频率、温度范围以及实验采集数据的存储位置和存储文件的格式;
5)进行工况运转加工,采集初始时刻主轴各个温度敏感点的温度值(X1,X2,…,Xk)、主轴前端轴向的变形值Y(1)与主轴前端两个径向的变形值Y(2)和Y(3),并在热误差测试软件界面中显示;
6)机床运行过程中,实时采集各个时刻主轴各个温度敏感点的温度值(Xi1,Xi2,…,Xik)、主轴前端轴向的变形值Yi(1)与主轴前端两个径向的变形值Yi(2)和Yi(3),直至机床主轴达到热平衡,并在热误差测试软件界面中实时显示;
7)数据采集完毕后,利用热误差测试软件对采集的温度敏感点的温度数据和热变形数据进行后处理,绘制温度敏感点温升-时间曲线、主轴轴向热变形-时间曲线和主轴径向热变形-时间曲线,并得到主轴轴向热变形信号、主轴径向热变形信号与温度敏感点温升信号的热误差模型;再用机床运行过程中的各个时刻采集的主轴各个温度敏感点的温度值(Xi1,Xi2,…,Xik)、主轴前端轴向的变形值Yi(1)与主轴前端两个径向的变形值Yi(2)和Yi(3)分别对应减去初始时刻采集的主轴各个温度敏感点的温度值(X1,X2,…,Xk)、主轴前端轴向的变形值Y(1)与主轴前端两个径向的变形值Y(2)和Y(3),得到主轴各个温度敏感点的温升值(xi1,xi2,…,xik)、主轴前端轴向的热变形值yi(1)与主轴前端两个径向的热变形值yi(2)和yi(3);然后通过改进的多元线性分析法建立的热误差模型为公式(1):
Figure FDA0004037106880000021
式中:(xi1,xi2,…,xik)为温度敏感点温升,bn(n=1,2,……k)为温度变量系数,bpq(p,q∈I,p≠q,I={1,2……k})为温度变量的耦合系数,yi为热变形变量,ei是与实际测量值yi存在的偏差。
2.根据权利要求1所述的用于机床主轴热误差的测试方法,其特征在于热误差测试软件的界面包括数据采集部分、数据回放部分和数据处理部分。
CN201710292461.4A 2017-04-28 2017-04-28 一种用于机床主轴热误差的在线测试装置及测试方法 Active CN106908240B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710292461.4A CN106908240B (zh) 2017-04-28 2017-04-28 一种用于机床主轴热误差的在线测试装置及测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710292461.4A CN106908240B (zh) 2017-04-28 2017-04-28 一种用于机床主轴热误差的在线测试装置及测试方法

Publications (2)

Publication Number Publication Date
CN106908240A CN106908240A (zh) 2017-06-30
CN106908240B true CN106908240B (zh) 2023-04-18

Family

ID=59210082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710292461.4A Active CN106908240B (zh) 2017-04-28 2017-04-28 一种用于机床主轴热误差的在线测试装置及测试方法

Country Status (1)

Country Link
CN (1) CN106908240B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108062071B (zh) * 2017-12-20 2020-02-21 天津大学 参数曲线轨迹伺服轮廓误差的实时测定方法
CN108897271A (zh) * 2018-06-15 2018-11-27 四川川润液压润滑设备有限公司 一种流体设备多路数据采集处理装置
KR102163751B1 (ko) * 2019-10-30 2020-10-08 선계은 열화상 계측기
CN110889091B (zh) * 2019-11-18 2023-04-11 重庆理工大学 基于温度敏感区间分段的机床热误差预测方法与系统
CN111273605B (zh) * 2020-03-04 2022-01-04 上海交通大学 数控机床智能电主轴系统
CN113515089B (zh) * 2021-06-18 2023-01-20 汉涘姆(上海)精密机械有限公司 一种五轴联动叉式摆头温度补偿的方法
CN114152238B (zh) * 2021-11-03 2023-10-27 东风汽车集团股份有限公司 加工中心热变形补偿方法、装置、设备以及可读存储介质
CN114571284B (zh) * 2022-04-28 2023-12-22 江西佳时特精密机械有限责任公司 一种精密机床电主轴热伸长误差测试及主动控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759900A (zh) * 2012-06-29 2012-10-31 上海三一精机有限公司 一种机床主轴热误差的测试系统及测试方法
CN103713578A (zh) * 2013-12-03 2014-04-09 西安交通大学 一种检测与主轴热变形有关的热敏感点是否存在的方法
CN103801988A (zh) * 2014-02-25 2014-05-21 南通大学 机床主轴热误差监测系统
CN103823991A (zh) * 2014-03-11 2014-05-28 华中科技大学 一种考虑环境温度的重型机床热误差预测方法
CN105759719A (zh) * 2016-04-20 2016-07-13 合肥工业大学 一种基于无偏估计拆分模型的数控机床热误差预测方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201021959A (en) * 2008-12-11 2010-06-16 Ind Tech Res Inst A thermal error compensation method for machine tools

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759900A (zh) * 2012-06-29 2012-10-31 上海三一精机有限公司 一种机床主轴热误差的测试系统及测试方法
CN103713578A (zh) * 2013-12-03 2014-04-09 西安交通大学 一种检测与主轴热变形有关的热敏感点是否存在的方法
CN103801988A (zh) * 2014-02-25 2014-05-21 南通大学 机床主轴热误差监测系统
CN103823991A (zh) * 2014-03-11 2014-05-28 华中科技大学 一种考虑环境温度的重型机床热误差预测方法
CN105759719A (zh) * 2016-04-20 2016-07-13 合肥工业大学 一种基于无偏估计拆分模型的数控机床热误差预测方法及系统

Also Published As

Publication number Publication date
CN106908240A (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
CN106908240B (zh) 一种用于机床主轴热误差的在线测试装置及测试方法
Jiang et al. A method of testing position independent geometric errors in rotary axes of a five-axis machine tool using a double ball bar
US5111590A (en) Measuring method of machine tool accuracy using a computer aided kinematic transducer link and its apparatus
CN106736848A (zh) 数控车床热误差测量补偿系统及补偿方法
CN110470242B (zh) 一种大型零件内孔圆度在位测量装置及方法
CN201993202U (zh) 压力传感器或变送器的检定装置
CN105269404A (zh) 数控机床刀尖动态特性精度检测装置及其方法
CN109794805A (zh) 一种锥孔加工母线偏差自动检测装置及其检测方法
CN108188821B (zh) 一种数控机床滚珠丝杠进给系统热误差预测方法
CN108188835B (zh) 基于机器视觉的数控机床主轴热伸长测试装置及测试方法
CN106705823A (zh) 一种线位移传感器现场校准方法
CN110398304A (zh) 一种温度传感器批量测试系统
CN104166373A (zh) 数控机床加工误差在线检测方法及系统
TW201832030A (zh) 工具機環境溫度影響之熱補償方法
CN106705816A (zh) 内花键与外圆同轴度测量装置及测量方法
CN106123939B (zh) 一种磁悬浮传感器刚度测试系统及测试方法
CN104197985B (zh) 数控刀架检测系统及其工作方法
CN103913479A (zh) 一种用于检测光栅尺热膨胀系数的装置
JERZY et al. Calibration of 5 axis CNC machine tool with 3D quickSET measurement system.
CN108919746A (zh) 一种转摆台的热误差测试与分析方法
CN109282742A (zh) 盲孔深度大于2米的孔内径测量装置及测量方法
CN110375677B (zh) 相机探测器指向和焦面组件安装面夹角的检测装置及方法
EP3101384B1 (en) Calibration method for calibrating the drive axis of a machine tool
CN114354017B (zh) 一种温场特征参数检测装置及其检测方法
CN116718098B (zh) 直升机主减撑杆同轴度在线测量装置及应用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant