CN106907877A - 一种双蒸发器交替除霜空气源热泵机组及其除霜方法 - Google Patents

一种双蒸发器交替除霜空气源热泵机组及其除霜方法 Download PDF

Info

Publication number
CN106907877A
CN106907877A CN201710140965.4A CN201710140965A CN106907877A CN 106907877 A CN106907877 A CN 106907877A CN 201710140965 A CN201710140965 A CN 201710140965A CN 106907877 A CN106907877 A CN 106907877A
Authority
CN
China
Prior art keywords
air
valve
way reversing
interface
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710140965.4A
Other languages
English (en)
Other versions
CN106907877B (zh
Inventor
余延顺
陈杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201710140965.4A priority Critical patent/CN106907877B/zh
Publication of CN106907877A publication Critical patent/CN106907877A/zh
Application granted granted Critical
Publication of CN106907877B publication Critical patent/CN106907877B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles

Abstract

本发明公开了一种双蒸发器交替除霜空气源热泵机组及其除霜方法,在空气源热泵系统中设置两个并联的风冷式蒸发器,当其中一个风冷式蒸发器结霜并进入除霜模式时,通过该空气源热泵系统中的四通换向阀及节流机构的功能切换将需要除霜的蒸发器切换为过冷器,并利用该空气源热泵系统中的冷凝器出口高压高温液体制冷剂将需要除霜的蒸发器表面的霜层融化去除,实现除霜目的;另一风冷式蒸发器从环境吸热,实现持续制热。本发明具有了除霜过程中冷媒不换向的优势,可靠性较高;同时除霜过程中制热继续进行,提高了使用过程中的舒适性;并且该热泵机组除霜过程的耗能几乎可以忽略,大大提高了除霜效率。

Description

一种双蒸发器交替除霜空气源热泵机组及其除霜方法
技术领域
本发明属于制冷、空调和热泵技术领域,特别是一种双蒸发器交替除霜空气源热泵机组及其除霜方法。
背景技术
在我国长江中下游等地区,空气源热泵在室外低温条件下运行时,当室外侧换热器表面温度低于周围空气露点温度且低于0℃时,会导致换热器表面结霜,需要定期融霜。蒸发器表面结霜会给机组带来诸多问题,首先致使室外换热器的传热热阻增加、空气流通通道面积减小,从而导致室外换热器通风量降低,最终导致热泵机组制热量降低、制热性能下降,甚至出现低压报警及排气温度过大等故障。因此,对热泵机组室外侧换热器进行定期除霜十分重要。
目前最广泛使用的除霜方式是四通换向阀换向融霜方式,及热泵空调器按制冷循环方式运行,压缩机排气进入室外换热器,吸收霜层热量而冷凝,再经节流装置进入室内换热器,从室内吸收部分热量后返回压缩机,完成除霜循环。这种除霜方式最大的问题就是会导致室内温度下降,影响室内的舒适性,并且制冷剂逆向流动,高低压转换所带来的一系列问题可能使除霜过程缓慢,除霜效率较低。近几年来,旁通节流装置的逆向融霜方式,带制冷剂补偿器的逆向融霜方式等几种对传统融霜方式的改良取得了较好的效果,但是仍然无法避免除霜时从室内吸热影响舒适性的问题。几种新型的融霜方式,能很好解决舒适性的问题,比如蓄热融霜、热气旁通融霜以及回气加热融霜这几种融霜方式,均能避免除霜运行时从室内取热而使室内温度降低问题的出现。但也存在着一些问题,比如蓄热除霜所使用的相变材料需要与融霜所需的热量进行较好地匹配,而热气旁通除霜以及回气加热除霜则需要在系统中设置容量较大的气液分离器,间接地增加了除霜的成本。并且这几种方式仅能保证融霜时室内侧换热器不从室内吸取热量,并不能保证融霜时冷凝器仍然在制热。近年来,有专家学者提出采用两组蒸发器交替进行除霜的机组,大大提高了除霜效率,但设计制造以及控制的复杂性使得此种技术难以大面积推广(李树松.交替分流除霜空气源热泵系统.公开号:CN203413881U);此外两蒸发器交替除霜时需要对压缩机负荷进行能量调节以适应蒸发器负荷,若缺乏可靠的能量调节手段则易导致蒸发压力过低而影响整个热泵系统(黄德祥、周志慧、戴金平.一种双蒸发器空气源热泵.公开号:CN204202231U)。
综上所述,由于技术以及成本等诸多问题,目前所述的空气源热泵除霜方式仍几乎是四通换向阀换向融霜方式,难以保证除霜时制热不间断,无法实现除霜时室内温度或加热的热水水温保持平稳,不出现大幅度的降低,并且极端气候条件下除霜效率低、耗能大,严重影响了使用的舒适性。
发明内容
本发明的目的在于提供一种双蒸发器交替除霜空气源热泵机组及其除霜方法,以实现除霜时制热不间断,制冷剂不换向,并有效提高除霜效率。
实现本发明目的的技术解决方案为:一种双蒸发器交替除霜空气源热泵机组及其除霜方法,在空气源热泵系统中设置两个并联的风冷式蒸发器,当其中一个风冷式蒸发器结霜并进入除霜模式时,通过该空气源热泵系统中的四通换向阀及节流机构的功能切换将需要除霜的蒸发器切换为过冷器,并利用该空气源热泵系统中的冷凝器出口高压高温液体制冷剂将需要除霜的蒸发器表面的霜层融化去除,实现除霜目的;另一风冷式蒸发器从环境吸热,实现持续制热;在除霜运行时,对该空气源热泵系统中的压缩机进行变容量调节或排气旁通实现能量调节,以适应蒸发器负荷需要。
本发明与现有技术相比,其显著优点:(1)除霜过程中,冷媒无需逆向流动,避免了逆向融霜的诸多问题,提高了整个系统的可靠性。(2)除霜过程中,冷凝器仍然冷凝压缩机高温高压排气并继续制热,不会使室温或所加热的水温出现大幅降低,提高了使用的舒适性。(3)除霜过程中由于使用冷凝器出口冷凝后的高温液态冷媒,被除霜的蒸发器充当了过冷器的功能,使得除霜过程中的能耗可忽略,并提高了除霜效率及降低了结霜除霜损失系数。(4)现有技术结霜除霜损失大、结霜工况制热性能与可靠性低等问题,并能够在交替除霜时有效地对压缩机进行能量调节,防止蒸发压力降低而影响机组性能。(5)结构复杂性降低,控制简单高效。
下面结合附图对本发明实施过程作进一步的说明。
附图说明
图1为本发明的双蒸发器交替除霜方法及空气源热泵机组的实施例1原理图。
图2为本发明的双蒸发器交替除霜方法及空气源热泵机组的实施例2原理图。
图3为本发明的双蒸发器交替除霜方法及空气源热泵机组的实施例3原理图。
具体实施方式
结合图1、图2和图3,本发明的双蒸发器交替除霜方法,在空气源热泵系统中设置两个并联的风冷式蒸发器,当其中一个风冷式蒸发器结霜并进入除霜模式时,通过该空气源热泵系统中的四通换向阀及节流机构的功能切换将需要除霜的蒸发器切换为过冷器,并利用该空气源热泵系统中的冷凝器出口高压高温液体制冷剂将需要除霜的蒸发器表面的霜层融化去除,实现除霜目的;另一风冷式蒸发器从环境吸热,实现持续制热,大大提高了除霜效率;为保障除霜运行可靠性,对压缩机进行能量调节,即通过压缩机排气量的调节,包括后面的三种实施方式的不同技术方案,主要有压缩机变容量调节和压缩机排气旁通调节,以适应蒸发器负荷需要。
其中,四通换向阀的功能切换:改变制冷剂的流向,使该空气源热泵系统在(a)正常制热模式、(b)第一蒸发器除霜运行模式、(c)第二蒸发器除霜运行模式三种模式下进行切换;节流机构的功能切换:该空气源热泵系统中的节流机构通过切换全开或非全开两种状态来切换无节流功能和具有节流功能。
结合图1,本发明一种双蒸发器交替除霜空气源热泵机组,特别适用于空气源热泵除霜结霜损失较大的热泵制热应用场合,包括一个用于吸入气态制冷剂并进行压缩输出的压缩机1,一个出口与压缩机1吸气口连接的气液分离器10,一个入口与压缩机1出口连接的冷凝器2,还包括第一四通换向阀3、第二四通换向阀7、单向阀4、第一节流阀组件5、第二节流阀组件8、第一风冷式蒸发器6及第二风冷式蒸发器9。
所述的压缩机1为变容量压缩机,除霜运行时压缩机1采用变容量方式进行能量调节。
所述的第一四通换向阀3的第一接口3-1与冷凝器2的出口连接;第一四通换向阀3的第二接口3-2接有一个单向阀4,该单向阀4的出口有两个并联支路,其一支路依次接有第一节流阀组件5和第一风冷式蒸发器6,另一支路依次接有第二节流阀组件8和第二风冷式蒸发器9,所述第一风冷式蒸发器6和第二风冷式蒸发器9的风机单独配置。
所述的第二四通换向阀7的第七接口7-3与第一风冷式蒸发器6的出口连接;第二四通换向阀7的第五接口7-1与第二风冷式蒸发器9的出口连接;第二四通换向阀7的第六接口7-2与第一四通换向阀3的第四接口3-4相连;第二四通换向阀7的第八接口7-4与第一四通换向阀3的第三接口3-3并联后接至气液分离器10的入口。
结合图2,本发明第二种双蒸发器交替除霜空气源热泵机组,包括一个用于吸入气态制冷剂并进行压缩输出的压缩机1,一个出口与压缩机1吸气口连接的气液分离器10,还包括一个冷凝器2,还包括第一四通换向阀3、第二四通换向阀7、单向阀4、第一能量调节阀11、第二能量调节阀12、第一节流阀组件5、第二节流阀组件8、第一风冷式蒸发器6及第二风冷式蒸发器9。
所述的压缩机1为定容量压缩机,该压缩机1的出口分为并联的两个支路,一个支路与冷凝器2的入口连接,另一支路分为两个并联的分支路,分别与第一能量调节阀11及第二能量调节阀12的入口连接。
所述的第一四通换向阀3的第一接口3-1与冷凝器2的出口连接;第一四通换向阀3的第二接口3-2接有一个单向阀4,该单向阀4的出口有两个并联支路,其一支路依次接有第一节流阀组件5和第一风冷式蒸发器6,另一支路依次接有第二节流阀组件8和第二风冷式蒸发器9,第一风冷式蒸发器6和第二风冷式蒸发器9的风机单独配置。
所述的第二四通换向阀7的第七接口7-3与第一风冷式蒸发器6的出口连接;第二四通换向阀7的第五接口7-1与第二风冷式蒸发器9的出口连接;第二四通换向阀7的第六接口7-2与第一四通换向阀3的第四接口3-4相连;第二四通换向阀7的第八接口7-4与第一四通换向阀3的第三接口3-3并联后接至气液分离器10的入口。
所述的第一能量调节阀11的出口连接于第二风冷式蒸发器9及第二节流阀组件8之间的管路上;所述的第二能量调节阀12的出口连接于第一风冷式蒸发器6及第一节流阀组件5之间的管路上。
结合图3,本发明第三种双蒸发器交替除霜空气源热泵机组,包括一个用于吸入气态制冷剂并进行压缩输出的压缩机1,一个出口与压缩机1吸气口连接的气液分离器10,一个冷凝器2,还包括一个旁通能量调节阀15、一个热力膨胀阀13、电磁阀14、第一四通换向阀3、第二四通换向阀7、单向阀4、第一节流阀组件5、第二节流阀组件8、第一风冷式蒸发器6及第二风冷式蒸发器9。
所述的压缩机1为定容量压缩机,该压缩机1的出口分为两个并联支路,一个支路与冷凝器2的入口连接,另一支路与旁通能量调节阀15的入口连接。
所述的冷凝器2的出口分为两个并联支路,一个支路依次与电磁阀14及热力膨胀阀13连接,另一支路与第一四通换向阀3的第一接口3-1连接。
所述的第一四通换向阀3的第二接口3-2接有一个单向阀4,单向阀4的出口有两个并联支路,其一支路依次接有第一节流阀组件5和第一风冷式蒸发器6,另一支路依次接有第二节流阀组件8和第二风冷式蒸发器9,第一风冷式蒸发器6和第二风冷式蒸发器9的风机单独配置。
所述的第二四通换向阀7的第七接口7-3与第一风冷式蒸发器6的出口连接;第二四通换向阀7的第五接口7-1与第二风冷式蒸发器9的出口连接;第二四通换向阀7的第六接口7-2与第一四通换向阀3的第四接口3-4相连;第二四通换向阀7的第八接口7-4与第一四通换向阀3的第三接口3-3、热力膨胀阀13的出口、旁通能量调节阀15的出口并联后接至气液分离器10的入口。
上述双蒸发器交替除霜空气源热泵机组中,所述的第一节流阀组件5及第二节流阀组件8采用双向电子膨胀阀或双向热力膨胀阀,也可以采用毛细管或孔板或单向热力膨胀阀与电磁阀并联的方式。
上述三种双蒸发器交替除霜空气源热泵机组均在传统空气源热泵系统基础上加以改进而成,结构上均设有两个并联的风冷式蒸发器、两个四通换向阀以及两组节流阀组件。原理上两蒸发器通过两个四通换向阀和两组节流阀组件的功能切换来完成交替除霜的任务,并创造性地利用冷凝器出口高温高压冷媒液体的热量对需要除霜的蒸发器进行除霜,此时处于除霜状态的蒸发器功能相当于过冷器,而未处于除霜状态的蒸发器则继续从外界环境蒸发吸热。不同之处在于三种实施方式采用不同能量调节方式防止系统中只有单个蒸发器进行蒸发吸热所导致的蒸发压力过低的问题。
下面结合具体实施例对本发明作进一步说明。
实施例1
结合图1,本发明双蒸发器交替除霜方法及空气源热泵机组,通过系统四通换向阀及节流机构的功能切换将需要除霜的蒸发器切换为过冷器,并利用冷凝器出口高压高温液体制冷剂将蒸发器表面霜层融化去除,实现除霜目的;另一风冷式蒸发器从环境吸热,实现持续制热。包括一个用于吸入气态制冷剂并进行压缩输出的压缩机1,一个出口与压缩机1吸气口连接的气液分离器10,一个入口与压缩机1出口连接的冷凝器2,还包括第一四通换向阀3、第二四通换向阀7、单向阀4、第一节流阀组件5、第二节流阀组件8、第一风冷式蒸发器6及第二风冷式蒸发器9。
所述的压缩机1为变容量压缩机,除霜运行时压缩机1采用变容量方式进行能量调节。
所述的第一四通换向阀3的第一接口3-1与冷凝器2的出口连接;第一四通换向阀3的第二接口3-2接有一个单向阀4,单向阀4的出口有两个并联支路,其一支路依次接有第一节流阀组件5和第一风冷式蒸发器6,另一支路依次接有第二节流阀组件8和第二风冷式蒸发器9,第一风冷式蒸发器6和第二风冷式蒸发器9的风机单独配置。
所述的第二四通换向阀7的第七接口7-3与第一风冷式蒸发器6的出口连接;第二四通换向阀7的第五接口7-1与第二风冷式蒸发器9的出口连接;第二四通换向阀7的第六接口7-2与第一四通换向阀3的第四接口3-4相连;第二四通换向阀7的第八接口7-4与第一四通换向阀3的第三接口3-3并联后接至气液分离器10的入口。
双蒸发器交替除霜空气源热泵机组各运行模式如下:
(a)正常制热运行模式
压缩机1出口高温高压冷媒气体先进入冷凝器2冷凝放热,冷凝后高温高压液态冷媒经过第一四通换向阀3和单向阀后分为两支路,分别经过第一节流阀组件5、第二节流阀组件8节流后,依次进入第一风冷式蒸发器6及第二风冷式蒸发器9蒸发吸热成低温低压气态,最后经过第二四通换向阀7流入气液分离器10。
(b)第一风冷式蒸发器6除霜运行模式-第一风冷式蒸发器6作为过冷器
此时热泵机组处于正常制热运行模式(a),当第一风冷式蒸发器6表面霜层达到一定厚度时,降低压缩机1的容量进行能量调节,第一四通换向阀3换向,第一接口3-1与第四接口3-4接通,第二接口3-2与第三接口3-3接通,压缩机1出口高温高压冷媒气体经冷凝器2冷凝放热后变为高温高压液态冷媒,然后经过换向后的第一四通换向阀3和第二四通换向阀7直接进入需要进行除霜的第一风冷式蒸发器6进一步放热过冷,融化表面的霜层。融霜后过冷状态下的液态冷媒流经全开的第一节流阀组件5,经过第二节流阀组件8节流膨胀,然后进入第二风冷式蒸发器9蒸发吸热,最后低温低压气态冷媒经过第二四通换向阀7进入气液分离器10。
(c)第二风冷式蒸发器9除霜运行模式-第二风冷式蒸发器9作为过冷器
此时热泵机组处于正常制热运行模式a,当第二风冷式蒸发器9表面霜层达到一定厚度时,降低压缩机1的容量进行能量调节,第一四通换向阀3换向,第一接口3-1与第四接口3-4接通,第二接口3-2与第三接口3-3接通,第二四通换向阀7也换向,第五接口7-1与第六接口7-2接通,第七接口7-3与第八接口7-4接通,此时压缩机1出口高温高压冷媒气体经冷凝器2冷凝放热后变为高温高压液态冷媒,然后经过换向后的第一四通换向阀3和第二四通换向阀7直接进入需要进行除霜的第二风冷式蒸发器9进一步放热过冷,融化表面的霜层。融霜后过冷状态下的液态冷媒流经全开的第二节流阀组件8,经过第一节流阀组件5节流膨胀,然后进入第一风冷式蒸发器6蒸发吸热,最后低温低压气态冷媒经过第二四通换向阀7进入气液分离器10。
实施例2
结合图2,本发明双蒸发器交替除霜方法及空气源热泵机组,通过系统四通换向阀及节流机构的功能切换将需要除霜的蒸发器切换为过冷器,并利用冷凝器出口高压高温液体制冷剂将蒸发器表面霜层融化去除,实现除霜目的;另一风冷式蒸发器从环境吸热,实现持续制热。包括一个用于吸入气态制冷剂并进行压缩输出的压缩机1,一个出口与压缩机1吸气口连接的气液分离器10,还包括一个冷凝器2,还包括第一四通换向阀3、第二四通换向阀7、单向阀4、第一能量调节阀11、第二能量调节阀12、第一节流阀组件5、第二节流阀组件8、第一风冷式蒸发器6及第二风冷式蒸发器9。
所述的压缩机1为定容量压缩机,压缩机1的出口分为并联的两个支路,一个支路与冷凝器2的入口连接,另一支路分为两个并联的分支路,分别与第一能量调节阀11及第二能量调节阀12的入口连接。
所述的第一四通换向阀3的第一接口3-1与冷凝器2的出口连接;第一四通换向阀3的第二接口3-2接有一个单向阀4,单向阀4的出口有两个并联支路,其一支路依次接有第一节流阀组件5和第一风冷式蒸发器6,另一支路依次接有第二节流阀组件8和第二风冷式蒸发器9,第一风冷式蒸发器6和第二风冷式蒸发器9的风机单独配置。
所述的第二四通换向阀7的第七接口7-3与第一风冷式蒸发器6的出口连接;第二四通换向阀7的第五接口7-1与第二风冷式蒸发器9的出口连接;第二四通换向阀7的第六接口7-2与第一四通换向阀3的第四接口3-4相连;第二四通换向阀7的第八接口7-4与第一四通换向阀3的第三接口3-3并联后接至气液分离器10的入口。
所述的第一能量调节阀11的出口连接于第二风冷式蒸发器9及第二节流阀组件8之间的管路上;所述的第二能量调节阀12的出口连接于第一风冷式蒸发器6及第一节流阀组件5之间的管路上。
(a)正常制热运行模式
压缩机1出口高温高压冷媒气体先进入冷凝器2冷凝放热,冷凝后高温高压液态冷媒经过第一四通换向阀3和单向阀后分为两支路,分别经过第一节流阀组件5、第二节流阀组件8节流后,依次进入第一风冷式蒸发器6及第二风冷式蒸发器9蒸发吸热成低温低压气态,最后经过第二四通换向阀7流入气液分离器10。
(b)第一风冷式蒸发器6除霜运行模式-第一风冷式蒸发器6作为过冷器
此时热泵机组处于正常制热运行模式a,当第一风冷式蒸发器6表面霜层达到一定厚度时,打开第一能量调节阀11,第一四通换向阀3换向,第一接口3-1与第四接口3-4接通,第二接口3-2与第三接口3-3接通,压缩机1出口高温高压冷媒气体经冷凝器2冷凝放热后变为高温高压液态冷媒,然后经过换向后的第一四通换向阀3和第二四通换向阀7直接进入需要进行除霜的第一风冷式蒸发器6进一步放热过冷,融化表面的霜层。融霜后过冷状态下的液态冷媒流经全开的第一节流阀组件5,经过第二节流阀组件8节流膨胀后与经过第一能量调节阀11的压缩机旁通排气混合后,然后进入第二风冷式蒸发器9蒸发吸热,最后低温低压气态冷媒经过第二四通换向阀7进入气液分离器10。
(c)第二风冷式蒸发器9除霜运行模式-第二风冷式蒸发器9作为过冷器
此时热泵机组处于正常制热运行模式a,当第二风冷式蒸发器9表面霜层达到一定厚度时,打开第二能量调节阀12,第一四通换向阀3换向,第一接口3-1与第四接口3-4接通,第二接口3-2与第三接口3-3接通,第二四通换向阀7也换向,第五接口7-1与第六接口7-2接通,第七接口7-3与第八接口7-4接通,此时压缩机1出口高温高压冷媒气体经冷凝器2冷凝放热后变为高温高压液态冷媒,然后经过换向后的第一四通换向阀3和第二四通换向阀7直接进入需要进行除霜的第二风冷式蒸发器9进一步放热过冷,融化表面的霜层。融霜后过冷状态下的液态冷媒流经全开的第二节流阀组件8,经过第一节流阀组件5节流膨胀与经过第二能量调节阀12的压缩机旁通排气混合后,然后进入第一风冷式蒸发器6蒸发吸热,最后低温低压气态冷媒经过第二四通换向阀7进入气液分离器10。
实施例3
结合图3,本发明双蒸发器交替除霜方法及空气源热泵机组,通过系统四通换向阀及节流机构的功能切换将需要除霜的蒸发器切换为过冷器,并利用冷凝器出口高压高温液体制冷剂将蒸发器表面霜层融化去除,实现除霜目的;另一风冷式蒸发器从环境吸热,实现持续制热。包括一个用于吸入气态制冷剂并进行压缩输出的压缩机1,一个出口与压缩机1吸气口连接的气液分离器10,一个冷凝器2,还包括一个旁通能量调节阀15、一个热力膨胀阀13、电磁阀14、第一四通换向阀3、第二四通换向阀7、单向阀4、第一节流阀组件5、第二节流阀组件8、第一风冷式蒸发器6及第二风冷式蒸发器9。
所述的压缩机1为定容量压缩机,压缩机1的出口分为两个并联支路,一个支路与冷凝器2的入口连接,另一支路与旁通能量调节阀15的入口连接;
所述的冷凝器2的出口分为两个并联支路,一个支路依次与电磁阀14及热力膨胀阀13连接,另一支路与第一四通换向阀3的第一接口3-1连接;
所述的第一四通换向阀3的第二接口3-2接有一个单向阀4,单向阀4的出口有两个并联支路,其一支路依次接有第一节流阀组件5和第一风冷式蒸发器6,另一支路依次接有第二节流阀组件8和第二风冷式蒸发器9,第一风冷式蒸发器6和第二风冷式蒸发器9的风机单独配置;
所述的第二四通换向阀7的第七接口7-3与第一风冷式蒸发器6的出口连接;第二四通换向阀7的第五接口7-1与第二风冷式蒸发器9的出口连接;第二四通换向阀7的第六接口7-2与第一四通换向阀3的第四接口3-4相连;第二四通换向阀7的第八接口7-4与第一四通换向阀3的第三接口3-3、热力膨胀阀13的出口、旁通能量调节阀15的出口并联后接至气液分离器10的入口。
(a)正常制热运行模式
压缩机1出口高温高压冷媒气体先进入冷凝器2冷凝放热,冷凝后高温高压液态冷媒经过第一四通换向阀3和单向阀后分为两支路,分别经过第一节流阀组件5、第二节流阀组件8节流后,依次进入第一风冷式蒸发器6和第二风冷式蒸发器9蒸发吸热成低温低压气态,最后经过第二四通换向阀7流入气液分离器10。
(b)第一风冷式蒸发器6除霜运行模式-第一风冷式蒸发器6作为过冷器
此时热泵机组处于正常制热运行模式a,当第一风冷式蒸发器6表面霜层达到一定厚度时,打开能量调节阀15与电磁阀14,第一四通换向阀3换向,第一接口3-1与第四接口3-4接通,第二接口3-2与第三接口3-3接通,压缩机1出口高温高压冷媒气体经冷凝器2冷凝放热后变为高温高压液态冷媒,然后经过换向后的第一四通换向阀3和第二四通换向阀7直接进入需要进行除霜的第一风冷式蒸发器6进一步放热过冷,融化表面的霜层。融霜后过冷状态下的液态冷媒流经全开的第一节流阀组件5,经过第二节流阀组件8节流膨胀,然后进入第二风冷式蒸发器9蒸发吸热,最后低温低压气态冷媒经过第二四通换向阀7后,与经热力膨胀阀13节流的冷凝器2旁通液态冷媒以及流经能量调节阀15的压缩机1高温高压旁通排气一并混合后,进入气液分离器10。
(c)第二风冷式蒸发器9除霜运行模式-第二风冷式蒸发器9作为过冷器
此时热泵机组处于正常制热运行模式a,当第二风冷式蒸发器9表面霜层达到一定厚度时,打开能量调节阀15与电磁阀14,第一四通换向阀3换向,第一接口3-1与第四接口3-4接通,第二接口3-2与第三接口3-3接通,第二四通换向阀7也换向,第五接口7-1与第六接口7-2接通,第七接口7-3与第八接口7-4接通,此时压缩机1出口高温高压冷媒气体经冷凝器2冷凝放热后变为高温高压液态冷媒,然后经过换向后的第一四通换向阀3和第二四通换向阀7直接进入需要进行除霜的第二风冷式蒸发器9进一步放热过冷,融化表面的霜层。融霜后过冷状态下的液态冷媒流经全开的第二节流阀组件8,经过第一节流阀组件5节流膨胀,然后进入第一风冷式蒸发器6蒸发吸热,最后低温低压气态冷媒经过第二四通换向阀7后,与经热力膨胀阀13节流的冷凝器2旁通液态冷媒以及流经能量调节阀15的压缩机1高温高压旁通排气一并混合后进入气液分离器10。

Claims (5)

1.一种双蒸发器交替除霜方法,其特征在于:在空气源热泵系统中设置两个并联的风冷式蒸发器,当其中一个风冷式蒸发器结霜并进入除霜模式时,通过该空气源热泵系统中的四通换向阀及节流机构的功能切换将需要除霜的蒸发器切换为过冷器,并利用该空气源热泵系统中的冷凝器出口高压高温液体制冷剂将需要除霜的蒸发器表面的霜层融化去除,实现除霜目的;另一风冷式蒸发器从环境吸热,实现持续制热;在除霜运行时,对该空气源热泵系统中的压缩机进行变容量调节或排气旁通实现能量调节,以适应蒸发器负荷需要。
2.一种双蒸发器交替除霜空气源热泵机组,包括冷凝器(2)、用于吸入气态制冷剂并进行压缩输出的压缩机(1)、一个出口与压缩机(1)吸气口连接的气液分离器(10),其特征在于:还包括第一四通换向阀(3)、第二四通换向阀(7)、单向阀(4)、第一能量调节阀(11)、第二能量调节阀(12)、第一节流阀组件(5)、第二节流阀组件(8)、第一风冷式蒸发器(6)及第二风冷式蒸发器(9);
所述的压缩机(1)为定容量压缩机,该压缩机(1)的出口分为并联的两个支路,一个支路与冷凝器(2)的入口连接,另一支路分为两个并联的分支路,该分支路分别与第一能量调节阀(11)及第二能量调节阀(12)的入口连接;
所述的第一四通换向阀(3)的第一接口(3-1)与冷凝器(2)的出口连接;第一四通换向阀(3)的第二接口(3-2)接有一个单向阀(4),该单向阀(4)的出口有两个并联支路,其中一支路依次接有第一节流阀组件(5)和第一风冷式蒸发器(6),另一支路依次接有第二节流阀组件(8)和第二风冷式蒸发器(9),所述第一风冷式蒸发器(6)和第二风冷式蒸发器(9)的风机单独配置;
所述的第二四通换向阀(7)的第七接口(7-3)与第一风冷式蒸发器(6)的出口连接;第二四通换向阀(7)的第五接口(7-1)与第二风冷式蒸发器(9)的出口连接;第二四通换向阀(7)的第六接口(7-2)与第一四通换向阀(3)的第四接口(3-4)相连;第二四通换向阀(7)的第八接口(7-4)与第一四通换向阀(3)的第三接口(3-3)并联后接至气液分离器(10)的入口;
所述的第一能量调节阀(11)的出口连接于第二风冷式蒸发器(9)及第二节流阀组件(8)之间的管路上;所述的第二能量调节阀(12)的出口连接于第一风冷式蒸发器(6)及第一节流阀组件(5)之间的管路上。
3.一种双蒸发器交替除霜空气源热泵机组,包括用于吸入气态制冷剂并进行压缩输出的压缩机(1)、一个出口与压缩机(1)吸气口连接的气液分离器(10)、一个入口与压缩机(1)出口连接的冷凝器(2),其特征在于:还包括第一四通换向阀(3)、第二四通换向阀(7)、单向阀(4)、第一节流阀组件(5)、第二节流阀组件(8)、第一风冷式蒸发器(6)及第二风冷式蒸发器(9);
所述的压缩机(1)为变容量压缩机,除霜运行时压缩机(1)采用变容量方式进行能量调节;
所述的第一四通换向阀(3)的第一接口(3-1)与冷凝器(2)的出口连接;第一四通换向阀(3)的第二接口(3-2)接有一个单向阀(4),该单向阀(4)的出口有两个并联支路,其一支路依次接有第一节流阀组件(5)和第一风冷式蒸发器(6),另一支路依次接有第二节流阀组件(8)和第二风冷式蒸发器(9),所述第一风冷式蒸发器(6)和第二风冷式蒸发器(9)的风机单独配置;
所述的第二四通换向阀(7)的第七接口(7-3)与第一风冷式蒸发器(6)的出口连接;第二四通换向阀(7)的第五接口(7-1)与第二风冷式蒸发器(9)的出口连接;第二四通换向阀(7)的第六接口(7-2)与第一四通换向阀(3)的第四接口(3-4)相连;第二四通换向阀(7)的第八接口(7-4)与第一四通换向阀(3)的第三接口(3-3)并联后接至气液分离器(10)的入口。
4.一种双蒸发器交替除霜空气源热泵机组,包括冷凝器(2)、用于吸入气态制冷剂并进行压缩输出的压缩机(1)、一个出口与压缩机(1)吸气口连接的气液分离器(10),其特征在于:还包括旁通能量调节阀(15)、热力膨胀阀(13)、电磁阀(14)、第一四通换向阀(3)、第二四通换向阀(7)、单向阀(4)、第一节流阀组件(5)、第二节流阀组件(8)、第一风冷式蒸发器(6)及第二风冷式蒸发器(9);
所述的压缩机(1)为定容量压缩机,该压缩机(1)的出口分为两个并联支路,一个支路与冷凝器(2)的入口连接,另一支路与旁通能量调节阀(15)的入口连接;
所述的冷凝器(2)的出口分为两个并联支路,一个支路依次与电磁阀(14)及热力膨胀阀(13)连接,另一支路与第一四通换向阀(3)的第一接口(3-1)连接;
所述的第一四通换向阀(3)的第二接口(3-2)接有一个单向阀(4),该单向阀(4)的出口有两个并联支路,其一支路依次接有第一节流阀组件(5)和第一风冷式蒸发器(6),另一支路依次接有第二节流阀组件(8)和第二风冷式蒸发器(9),所述第一风冷式蒸发器(6)和第二风冷式蒸发器(9)的风机单独配置;
所述的第二四通换向阀(7)的第七接口(7-3)与第一风冷式蒸发器(6)的出口连接;第二四通换向阀(7)的第五接口(7-1)与第二风冷式蒸发器(9)的出口连接;第二四通换向阀(7)的第六接口(7-2)与第一四通换向阀(3)的第四接口(3-4)相连;第二四通换向阀(7)的第八接口(7-4)与第一四通换向阀(3)的第三接口(3-3)、热力膨胀阀(13)的出口、旁通能量调节阀(15)的出口并联后接至气液分离器(10)的入口。
5.根据权利要求2至4任一项所述的双蒸发器交替除霜空气源热泵机组,其特征在于:所述的第一节流阀组件(5)及第二节流阀组件(8)采用双向电子膨胀阀或双向热力膨胀阀,或者采用毛细管或孔板或单向热力膨胀阀与电磁阀并联的方式。
CN201710140965.4A 2017-03-10 2017-03-10 一种双蒸发器交替除霜空气源热泵机组及其除霜方法 Expired - Fee Related CN106907877B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710140965.4A CN106907877B (zh) 2017-03-10 2017-03-10 一种双蒸发器交替除霜空气源热泵机组及其除霜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710140965.4A CN106907877B (zh) 2017-03-10 2017-03-10 一种双蒸发器交替除霜空气源热泵机组及其除霜方法

Publications (2)

Publication Number Publication Date
CN106907877A true CN106907877A (zh) 2017-06-30
CN106907877B CN106907877B (zh) 2019-05-07

Family

ID=59187271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710140965.4A Expired - Fee Related CN106907877B (zh) 2017-03-10 2017-03-10 一种双蒸发器交替除霜空气源热泵机组及其除霜方法

Country Status (1)

Country Link
CN (1) CN106907877B (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107388665A (zh) * 2017-08-22 2017-11-24 广东美的暖通设备有限公司 热泵组件、除霜控制方法和存储介质
CN107782030A (zh) * 2017-10-24 2018-03-09 澳柯玛股份有限公司 一种降负荷保冷热气融霜系统和制冷设备
CN108759443A (zh) * 2018-05-25 2018-11-06 广东芬尼克兹节能设备有限公司 一种物料烘干系统
CN108800687A (zh) * 2018-05-21 2018-11-13 顺德职业技术学院 具有化霜功能的双室外换热器热泵及化霜方法
CN108917219A (zh) * 2018-07-19 2018-11-30 广东芬尼克兹节能设备有限公司 热泵机组除霜系统及其除霜方法
CN109405324A (zh) * 2018-11-06 2019-03-01 广东建设职业技术学院 一种双蒸发器空调机组及其控制方法
CN109442606A (zh) * 2018-12-10 2019-03-08 广州同方瑞风节能科技股份有限公司 一种低露点深度除湿系统
CN109668348A (zh) * 2018-11-28 2019-04-23 中原工学院 一种具有液体脉冲除霜功能的高效空气源热泵热水器
CN110081640A (zh) * 2019-05-30 2019-08-02 天津商业大学 一种具有双蒸发器利用显热不停机除霜的空气源热泵系统
CN110455021A (zh) * 2019-09-02 2019-11-15 广州同方瑞风节能科技股份有限公司 一种蓄热式热泵融霜系统
CN111520958A (zh) * 2020-05-12 2020-08-11 珠海格力电器股份有限公司 制冷装置及冷库
CN111536719A (zh) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 一种采用融霜后的制冷剂直接喷液蒸发的融霜方法及装置
CN111536724A (zh) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 一种利用融霜介质对主管道制冷剂过冷的融霜方法及装置
CN111649500A (zh) * 2020-06-17 2020-09-11 南京天加环境科技有限公司 一种连续制热的空调系统
CN112229097A (zh) * 2020-11-02 2021-01-15 赛诺浦新能源(江苏)有限公司 带有化霜功能的空气源热泵系统及其操作方法
CN112781268A (zh) * 2021-03-04 2021-05-11 成都绿建工程技术有限公司 一种交替除霜的空气源热泵机组及其运行控制方法
CN113654273A (zh) * 2021-08-07 2021-11-16 仲恺农业工程学院 一种工质非混合式热气旁通融霜热泵系统
CN114593477A (zh) * 2022-03-09 2022-06-07 同济大学 多运行模式的蓄热增效型空气源热泵系统及其控制方法
US20220221186A1 (en) * 2021-01-11 2022-07-14 Rheem Manufacturing Company Devices and systems for air conditioning units having a subcooling line
US11435124B2 (en) 2018-02-28 2022-09-06 Carrier Corporation Refrigeration system with leak detection
CN115235154A (zh) * 2022-03-31 2022-10-25 浙江中广电器集团股份有限公司 一种空气源热泵及其化霜装置
US11619431B2 (en) 2018-04-13 2023-04-04 Carrier Corporation Method of defrosting a multiple heat absorption heat exchanger refrigeration system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371733U (zh) * 1989-11-16 1991-07-19
JP2002188873A (ja) * 2000-12-20 2002-07-05 Fujitsu General Ltd 空気調和機の冷凍装置
CN101435638A (zh) * 2008-12-26 2009-05-20 哈尔滨工业大学 利用制冷剂过冷除霜的可连续供热的空气源热泵系统
CN103759456A (zh) * 2014-01-27 2014-04-30 平武臣 一种空调或热泵的换热系统及其除霜方法
CN204202231U (zh) * 2014-09-12 2015-03-11 江苏辛普森新能源有限公司 一种双蒸发器空气源热泵

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371733U (zh) * 1989-11-16 1991-07-19
JP2002188873A (ja) * 2000-12-20 2002-07-05 Fujitsu General Ltd 空気調和機の冷凍装置
CN101435638A (zh) * 2008-12-26 2009-05-20 哈尔滨工业大学 利用制冷剂过冷除霜的可连续供热的空气源热泵系统
CN103759456A (zh) * 2014-01-27 2014-04-30 平武臣 一种空调或热泵的换热系统及其除霜方法
CN204202231U (zh) * 2014-09-12 2015-03-11 江苏辛普森新能源有限公司 一种双蒸发器空气源热泵

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107388665A (zh) * 2017-08-22 2017-11-24 广东美的暖通设备有限公司 热泵组件、除霜控制方法和存储介质
CN107388665B (zh) * 2017-08-22 2021-02-23 广东美的暖通设备有限公司 热泵组件、除霜控制方法和存储介质
CN107782030A (zh) * 2017-10-24 2018-03-09 澳柯玛股份有限公司 一种降负荷保冷热气融霜系统和制冷设备
US11435124B2 (en) 2018-02-28 2022-09-06 Carrier Corporation Refrigeration system with leak detection
US11619431B2 (en) 2018-04-13 2023-04-04 Carrier Corporation Method of defrosting a multiple heat absorption heat exchanger refrigeration system
CN108800687A (zh) * 2018-05-21 2018-11-13 顺德职业技术学院 具有化霜功能的双室外换热器热泵及化霜方法
CN108759443A (zh) * 2018-05-25 2018-11-06 广东芬尼克兹节能设备有限公司 一种物料烘干系统
CN108917219A (zh) * 2018-07-19 2018-11-30 广东芬尼克兹节能设备有限公司 热泵机组除霜系统及其除霜方法
CN109405324B (zh) * 2018-11-06 2023-08-15 广东建设职业技术学院 一种双蒸发器空调机组及其控制方法
CN109405324A (zh) * 2018-11-06 2019-03-01 广东建设职业技术学院 一种双蒸发器空调机组及其控制方法
CN109668348A (zh) * 2018-11-28 2019-04-23 中原工学院 一种具有液体脉冲除霜功能的高效空气源热泵热水器
CN109668348B (zh) * 2018-11-28 2023-04-25 中原工学院 一种具有液体脉冲除霜功能的高效空气源热泵热水器
CN109442606A (zh) * 2018-12-10 2019-03-08 广州同方瑞风节能科技股份有限公司 一种低露点深度除湿系统
CN110081640A (zh) * 2019-05-30 2019-08-02 天津商业大学 一种具有双蒸发器利用显热不停机除霜的空气源热泵系统
CN110455021A (zh) * 2019-09-02 2019-11-15 广州同方瑞风节能科技股份有限公司 一种蓄热式热泵融霜系统
CN110455021B (zh) * 2019-09-02 2024-02-23 广州同方瑞风节能科技股份有限公司 一种蓄热式热泵融霜系统
CN111520958A (zh) * 2020-05-12 2020-08-11 珠海格力电器股份有限公司 制冷装置及冷库
CN111536724A (zh) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 一种利用融霜介质对主管道制冷剂过冷的融霜方法及装置
CN111536719A (zh) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 一种采用融霜后的制冷剂直接喷液蒸发的融霜方法及装置
CN111649500A (zh) * 2020-06-17 2020-09-11 南京天加环境科技有限公司 一种连续制热的空调系统
CN112229097A (zh) * 2020-11-02 2021-01-15 赛诺浦新能源(江苏)有限公司 带有化霜功能的空气源热泵系统及其操作方法
US20220221186A1 (en) * 2021-01-11 2022-07-14 Rheem Manufacturing Company Devices and systems for air conditioning units having a subcooling line
CN112781268A (zh) * 2021-03-04 2021-05-11 成都绿建工程技术有限公司 一种交替除霜的空气源热泵机组及其运行控制方法
CN113654273A (zh) * 2021-08-07 2021-11-16 仲恺农业工程学院 一种工质非混合式热气旁通融霜热泵系统
CN114593477A (zh) * 2022-03-09 2022-06-07 同济大学 多运行模式的蓄热增效型空气源热泵系统及其控制方法
CN114593477B (zh) * 2022-03-09 2023-07-04 同济大学 多运行模式的蓄热增效型空气源热泵系统及其控制方法
CN115235154A (zh) * 2022-03-31 2022-10-25 浙江中广电器集团股份有限公司 一种空气源热泵及其化霜装置

Also Published As

Publication number Publication date
CN106907877B (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
CN106907877B (zh) 一种双蒸发器交替除霜空气源热泵机组及其除霜方法
CN103335463B (zh) 一种热泵型风冷空调器分区域功能化除霜系统
CN203231419U (zh) 空调器
CN200955881Y (zh) 一种可连续除霜和制热的空气源热泵
CN101713599B (zh) 空调热泵装置
CN203132224U (zh) 空调器
CN201535589U (zh) 热泵空调系统
CN104654461A (zh) 一种可连续制热化霜的空调器及其控制方法
CN102654324A (zh) 一种带有热气旁通除霜装置的双级压缩热泵系统
CN204693603U (zh) 一种可连续制热化霜的空调器
CN108679747A (zh) 一种新风除湿空调系统
CN213841111U (zh) 空调器
CN110966797A (zh) 一种车辆热泵空调系统及其控制方法
CN105758061B (zh) 车辆及其空调系统
CN207019330U (zh) 一种空调系统
CN201314725Y (zh) 一种热泵型房间空调器
CN107120831B (zh) 一种连续制热空气源热泵热水机组
CN101943503B (zh) 空调制冷设备
CN208901671U (zh) 一种低温空气源热泵机组
CN107192056B (zh) 一种空调机组与观赏性鱼缸的组合节能系统
CN203550270U (zh) 空调系统
CN202581632U (zh) 一种蒸发式冷凝器热泵空调机组
CN1884940B (zh) 发动机驱动式空调机的除霜装置
CN208124664U (zh) 一种复叠式超低温热泵冷热水机组
CN102116541B (zh) 制冷设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190507

Termination date: 20210310