CN106906430A - 一种Cu70Zr20Ti10/Cu/Ni‑P非晶合金复合粉末及其制备工艺 - Google Patents

一种Cu70Zr20Ti10/Cu/Ni‑P非晶合金复合粉末及其制备工艺 Download PDF

Info

Publication number
CN106906430A
CN106906430A CN201710273042.6A CN201710273042A CN106906430A CN 106906430 A CN106906430 A CN 106906430A CN 201710273042 A CN201710273042 A CN 201710273042A CN 106906430 A CN106906430 A CN 106906430A
Authority
CN
China
Prior art keywords
crystaline amorphous
amorphous metal
powder
chemical plating
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710273042.6A
Other languages
English (en)
Other versions
CN106906430B (zh
Inventor
蔡安辉
胡优生
安琪
周国君
罗云
李小松
丁超义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Institute of Science and Technology
Original Assignee
Hunan Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Institute of Science and Technology filed Critical Hunan Institute of Science and Technology
Priority to CN201710273042.6A priority Critical patent/CN106906430B/zh
Publication of CN106906430A publication Critical patent/CN106906430A/zh
Application granted granted Critical
Publication of CN106906430B publication Critical patent/CN106906430B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/001Amorphous alloys with Cu as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • C23C18/1834Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Powder Metallurgy (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本发明公开了一种Cu70Zr20Ti10/Cu/Ni‑P非晶合金复合粉末及其制备工艺。该复合粉末是通过球磨与化学镀方法联动制备,其形状为片状,平均厚度为300nm,由平均尺寸为20nm的Cu晶粒、Cu70Zr20Ti10非晶合金基体和Ni‑P非晶合金镀层组成,其分布方式为Cu晶粒均匀分布于Cu70Zr20Ti10非晶合金基体中,而Ni‑P非晶合金镀层均匀包裹在Cu70Zr20Ti10非晶合金基体上。其制备工艺为:将球形Cu70Zr20Ti10晶态合金粉末用盐酸、硝酸和氢氟酸混合溶液进行活化,放入充满化学镀液的球磨罐中,进行球磨而合成。该非晶合金复合粉末的导热系数为15.4W/m·K、电阻率为1.45×10‑3Ω·mm。

Description

一种Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末及其制备工艺
技术领域
本发明涉及一种Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末及其制备工艺。
背景技术
铜基非晶合金由于强度高、耐腐蚀、耐磨损、低温塑性、催化性以及马氏体相变,在结构与功能材料领域具有十分广阔的应用前景,然而,其室温脆性、低的导热导电系数和高温抗氧化性,限制了其应用范围。因此,本发明旨在提高铜基非晶合金的室温塑性、导电导热和高温抗氧化性,具有重要的意义。
发明内容
本发明的目的在于提供一种Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末及其制备工艺。
本发明的目的是通过下述技术方案实现的:一种Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末,其特征在于:所述复合粉末是通过球磨与化学镀方法联动合成,其形状为片状,平均厚度为300nm,由平均尺寸为20nm的Cu晶粒、Cu70Zr20Ti10非晶合金基体和Ni-P非晶合金镀层组成,Cu晶粒均匀分布于Cu70Zr20Ti10非晶合金基体中,而Ni-P非晶合金镀层均匀包裹在Cu70Zr20Ti10非晶合金基体上。
本发明所得非晶合金复合粉末的导热系数为15.4W/m·K、电阻率为1.45×10-3Ω·mm。
本发明所述Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末的制备工艺,其特征在于,包括如下步骤:(1)将适量的Cu70Zr20Ti10球形晶态合金粉末放入烧杯中,加入浓度2%的盐酸、1%的硝酸和0.5%的氢氟酸混合溶液进行活化处理1小时;(2)然后用去离子水将Cu70Zr20Ti10球形晶态合金粉末清洗干净;(3)再将清洗干净的Cu70Zr20Ti10球形晶态合金粉末放入球磨罐中,然后将球磨罐充满PH值为8.0的化学镀液,在球料比为30:1、球磨速度为500转/分钟的条件下,球磨1小时后即可获得片状非晶合金粉末。
本发明所述一种Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末及其制备工艺与现有相关技术相比,具有如下显著的不同特征:(1)将球磨和化学镀两种技术联合一步合成Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末;(2)利用球磨过程所产生的热量保证化学镀所需的温度;(3)利用钢质磨球作为化学镀的引渡源,激发化学镀;(4)采用本发明的球磨化学镀联动技术,克服了传统化学镀方法由于化学镀液的蒸发而引起的化学镀液PH值的变化,在化学镀过程中要随时添加酸液或碱液调整PH值保证化学镀的稳定进行的缺陷。
本发明制成的产品分别用球磨罐球磨,XRD检测Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末的非晶态结构,扫描电子显微镜观察Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末的形貌,透射电子显微镜观察Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末中Cu晶粒的形貌、分布和大小,EDS分析Cu晶粒的成分,激光闪光仪测量导热系数,四电极法测量电阻率。
本发明一种Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末是片状的,其导热系数为15.4W/m·K、电阻率为1.45×10-3Ω·mm。
具体实施方式
下面根据具体实施例对本发明作进一步说明:
实施例1
用天平称取Cu70Zr20Ti10球形非晶粉末5g,放入烧杯中,加入浓度2%的盐酸、1%的硝酸和0.5%的氢氟酸混合溶液进行活化处理1小时,然后用去离子水将Cu70Zr20Ti10球形非晶合金粉末清洗干净,再将清洗干净的Cu70Zr20Ti10球形非晶合金粉末放入球磨罐中,然后将球磨罐充满PH值为8.0的化学镀液,在球料比为30:1、球磨速度为500转/分钟的条件下,球磨1小时后即可获得片状非晶合金粉末。该非晶合金复合粉末的导热系数为15.4W/m·K、电阻率为1.45×10-3Ω·mm。
实施例2
用天平称取Cu70Zr20Ti10球形非晶粉末10g,放入烧杯中,加入浓度2%的盐酸、1%的硝酸和0.5%的氢氟酸混合溶液进行活化处理1小时,然后用去离子水将Cu70Zr20Ti10球形非晶合金粉末清洗干净,再将清洗干净的Cu70Zr20Ti10球形非晶合金粉末放入球磨罐中,然后将球磨罐充满PH值为8.0的化学镀液,在球料比为30:1、球磨速度为500转/分钟的条件下,球磨1小时后即可获得片状非晶合金粉末。该非晶合金复合粉末的导热系数为15.4W/m·K、电阻率为1.45×10-3Ω·mm。
实施例3
用天平称取Cu70Zr20Ti10球形非晶粉末15g,放入烧杯中,加入浓度2%的盐酸、1%的硝酸和0.5%的氢氟酸混合溶液进行活化处理1小时,然后用去离子水将Cu70Zr20Ti10球形非晶合金粉末清洗干净,再将清洗干净的Cu70Zr20Ti10球形非晶合金粉末放入球磨罐中,然后将球磨罐充满PH值为8.0的化学镀液,在球料比为30:1、球磨速度为500转/分钟的条件下,球磨1小时后即可获得片状非晶合金粉末。该非晶合金复合粉末的导热系数为15.4W/m·K、电阻率为1.45×10-3Ω·mm。

Claims (3)

1.一种Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末,其特征在于:所述复合粉末是通过球磨与化学镀方法联动合成,其形状为片状,平均厚度为300nm,由平均尺寸为20nm的Cu晶粒、Cu70Zr20Ti10非晶合金基体和Ni-P非晶合金镀层组成,Cu晶粒均匀分布于Cu70Zr20Ti10非晶合金基体中,而Ni-P非晶合金镀层均匀包裹在Cu70Zr20Ti10非晶合金基体上。
2.权利要求1所述的一种Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末,其特征在于:所述复合粉末的导热系数为15.4W/m·K、电阻率为1.45×10-3Ω·mm。
3.权利要求1所述的一种Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末的制备工艺,其特征在于,包括如下步骤:(1)将适量的Cu70Zr20Ti10球形晶态合金粉末放入烧杯中,加入浓度2%的盐酸、1%的硝酸和0.5%的氢氟酸混合溶液进行活化处理1小时;(2)然后用去离子水将Cu70Zr20Ti10球形晶态合金粉末清洗干净;(3)再将清洗干净的Cu70Zr20Ti10球形晶态合金粉末放入球磨罐中,然后将球磨罐充满PH值为8.0的化学镀液,在球料比为30:1、球磨速度为500转/分钟的条件下,球磨1小时后即可获得片状非晶合金粉末。
CN201710273042.6A 2017-04-25 2017-04-25 一种Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末及其制备工艺 Active CN106906430B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710273042.6A CN106906430B (zh) 2017-04-25 2017-04-25 一种Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710273042.6A CN106906430B (zh) 2017-04-25 2017-04-25 一种Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末及其制备工艺

Publications (2)

Publication Number Publication Date
CN106906430A true CN106906430A (zh) 2017-06-30
CN106906430B CN106906430B (zh) 2019-02-26

Family

ID=59209784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710273042.6A Active CN106906430B (zh) 2017-04-25 2017-04-25 一种Cu70Zr20Ti10/Cu/Ni-P非晶合金复合粉末及其制备工艺

Country Status (1)

Country Link
CN (1) CN106906430B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368659A (en) * 1993-04-07 1994-11-29 California Institute Of Technology Method of forming berryllium bearing metallic glass
US20050205176A1 (en) * 2002-07-18 2005-09-22 Honda Giken Kogyo Kabushiki Kaisha Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method
CN104772455A (zh) * 2015-04-17 2015-07-15 湖南理工学院 一种Cu70Zr20Ti10/Cu非晶合金片状复合粉末及其制备工艺
CN104827044A (zh) * 2015-04-17 2015-08-12 湖南理工学院 一种Cu50Zr40Ti10/Cu非晶合金片状复合粉末及其制备工艺
CN104841931A (zh) * 2015-05-05 2015-08-19 湖南理工学院 一种Cu70Zr20Ti10/Ni-P非晶合金复合粉末及其制备工艺
CN104858424A (zh) * 2015-05-05 2015-08-26 湖南理工学院 一种Cu50Zr40Ti10/Ni-P非晶合金复合粉末及其制备工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368659A (en) * 1993-04-07 1994-11-29 California Institute Of Technology Method of forming berryllium bearing metallic glass
US20050205176A1 (en) * 2002-07-18 2005-09-22 Honda Giken Kogyo Kabushiki Kaisha Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method
CN104772455A (zh) * 2015-04-17 2015-07-15 湖南理工学院 一种Cu70Zr20Ti10/Cu非晶合金片状复合粉末及其制备工艺
CN104827044A (zh) * 2015-04-17 2015-08-12 湖南理工学院 一种Cu50Zr40Ti10/Cu非晶合金片状复合粉末及其制备工艺
CN104841931A (zh) * 2015-05-05 2015-08-19 湖南理工学院 一种Cu70Zr20Ti10/Ni-P非晶合金复合粉末及其制备工艺
CN104858424A (zh) * 2015-05-05 2015-08-26 湖南理工学院 一种Cu50Zr40Ti10/Ni-P非晶合金复合粉末及其制备工艺

Also Published As

Publication number Publication date
CN106906430B (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
Li et al. In vitro degradation and cytocompatibility of a low temperature in-situ grown self-healing Mg-Al LDH coating on MAO-coated magnesium alloy AZ31
Chen et al. Effect of alloy cations on corrosion resistance of LDH/MAO coating on magnesium alloy
Chen et al. Microstructure evolution and corrosion resistance of Ni–Cu–P amorphous coating during crystallization process
Fan et al. Pulse current electrodeposition and properties of Ni-W-GO composite coatings
CN107527702B (zh) 一种铁基非晶态合金粉末及其制备方法和用途
Balaraju et al. Studies on autocatalytic deposition of ternary Ni–W–P alloys using nickel sulphamate bath
CN104264148B (zh) 一种钛合金表面真空钎涂金属陶瓷复合涂层的方法
Jie et al. Effect of Fe content on microstructure and corrosion resistance of Ni-based alloy formed by laser cladding
WO2004092450A1 (en) Compositions and coatings including quasicrystals
CN101899598B (zh) 热浸镀铸铝合金及其制备方法
Wang et al. Effect of mechanical polishing on corrosion behavior of Hastelloy C22 coating prepared by high power diode laser cladding
Ren et al. Experimental study on corrosion-fouling relationship of Ni-WP composite coating surface of heat exchanger
Wang et al. Enhancement in the corrosion resistance of WC coatings by adding a Fe-based alloy in simulated seawater
Song et al. Study on electroless Ni–P–ZrO2 composite coatings on AZ91D magnesium alloys
Cheng et al. Effect of the microstructure on the properties of Ni–P deposits on heat transfer surface
Zhang et al. Corrosion behavior of electroless Ni-P/Ni-B coating on magnesium alloy AZ91D in NaCl environment
Duan et al. In-situ hydrothermal Mg (OH) 2-SiO2-Al (OH) 3 composite coatings on AZ91D magnesium alloy with enhanced corrosion properties
CN106906433A (zh) 一种Cu50Zr40Ti10/Cu/Ni‑P非晶合金复合粉末及其制备工艺
CN106906430A (zh) 一种Cu70Zr20Ti10/Cu/Ni‑P非晶合金复合粉末及其制备工艺
CN104841931B (zh) 一种Cu70Zr20Ti10/Ni‑P非晶合金复合粉末及其制备工艺
Yan et al. Corrosion of Ga-doped Sn-0.7 Cu solder in simulated marine atmosphere
Dalfard Effect of particle size of tungsten carbide on weight percent of carbide in Ni-WC nano-composite
CN103128421A (zh) 一种铁基非晶/纳米晶复合涂层的制备方法
Matsui et al. High tensile ductility in electrodeposited bulk nanocrystalline Ni–W alloys
CN111593272B (zh) 一种耐蚀防污铜基非晶/碳纳米管复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant