CN106897537A - 含三维或曲面外形结构体的温度场与热流同时重构方法 - Google Patents

含三维或曲面外形结构体的温度场与热流同时重构方法 Download PDF

Info

Publication number
CN106897537A
CN106897537A CN201710148855.2A CN201710148855A CN106897537A CN 106897537 A CN106897537 A CN 106897537A CN 201710148855 A CN201710148855 A CN 201710148855A CN 106897537 A CN106897537 A CN 106897537A
Authority
CN
China
Prior art keywords
temperature
dimensional
heat
fluid
curved profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710148855.2A
Other languages
English (en)
Other versions
CN106897537B (zh
Inventor
姜培学
符泰然
祝银海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201710148855.2A priority Critical patent/CN106897537B/zh
Publication of CN106897537A publication Critical patent/CN106897537A/zh
Application granted granted Critical
Publication of CN106897537B publication Critical patent/CN106897537B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Radiation Pyrometers (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本发明涉及一种含三维或曲面外形结构体的温度场与热流同时重构方法,其包括以下步骤:1)获取结构体的三维表面温度场分布,作为导热微分方程的求解边界条件;2)获取结构体的内部局部温度,作为导热微分方程的求解限定条件;3)根据流体与冷却通道壁面的热传递的热流值建立冷却通道壁面上的热平衡方程,作为导热微分方程的求解边界条件;4)利用结构体的受热表面温度,内部边界上的热平衡方程,以及内部局部温度,并结合导热微分方程,获得完整的控制方程组;5)求解上述控制方程组,最后同时确定结构体的温度场和热流密度。

Description

含三维或曲面外形结构体的温度场与热流同时重构方法
技术领域
本发明涉及一种温度场和热流的重构方法,具体涉及一种利用非接触温度测量对含三维或曲面外形结构体的温度场与热流同时重构方法。
背景技术
随着航天航空技术的发展,飞行器的速度不断提升。随着飞行速度的提高,剧烈的气动加热作用使得飞行器承受极高的热流密度,研制高效的热防护系统是高超声速飞行器发展急需解决的问题,而准确获取热流密度和结构体三维温度场是设计热防护系统的前提和基础。
当受热表面热流较高,热流计直接测量壁面的热流密度具有较大的误差。当受热结构的结构简单(如前缘、平板等)时,常规的导热反问题计算方法可以解决这类问题,即可通过非接触测量壁面的温度,借助导热反问题方法,反算出受热壁面的热流密度。但是,由于高超飞行器发动机的结构复杂,外形有曲面形状,并且含有内部冷却通道,此时,常规的导热反问题计算方法无法直接计算。为了实现这种复杂结构体三维温度场和热流密度的预测,需要探索新型的测试方法。
发明内容
针对上述问题,本发明的目的是提供一种利用非接触温度测量对含三维或曲面外形结构体的温度场与热流同时重构方法。
为实现上述目的,本发明采取以下技术方案:一种含三维或曲面外形结构体的温度场与热流同时重构方法,其特征在于,包括以下步骤:
1)获取结构体的三维表面温度场分布W1,作为导热微分方程的求解边界条件:
受热表面温度W1
式中,λ为结构体的导热系数;T为结构体的温度场;t表示计算时间;q1表示结构体的热流密度;n为热流密度的方向;
2)获取结构体的内部局部温度T1,T2,…,作为导热微分方程的求解限定条件:
内部局部温度T1,T2,...:T(Ω1,t)=T1;T(Ω2,t)=T2,...(2)
式中,Ωi表示结构体的计算区域,i=1,2,3,…;
3)根据流体与冷却通道壁面的热传递的热流值建立冷却通道壁面上的热平衡方程,作为导热微分方程的求解边界条件:
内部边界S1,S2,...上的热平衡方程:
式中,S为结构体的内部边界,i=1,2,3,…;hi为结构体不同内部边界上的对流传热系数,i=1,2,3,…;Tf为结构体内部冷却通道的流体温度;
4)利用结构体的受热表面温度W1,内部边界S1,S2,…上的热平衡方程,以及内部局部温度T1,T2,…,并结合导热微分方程,获得完整的控制方程组,即式(1)-式(5):
导热微分方程:
初始条件:T(Ω,t)=T0 (5)
式中,ρ为结构体的密度;cp为结构体的热容;x和y表示结构体的坐标;T0为结构体初始时刻的温度;
5)求解上述控制方程组,最后同时确定结构体的温度场T和热流密度q1
在进行上述步骤1)时,采用基于非接触辐射测量方法获取结构体的受热表面温度。
在一个优选的实施例中,非接触温度测量技术采用的是基于空间与光谱多维融合辐射测量技术,即针对于含三维或曲面外形的结构体外表面,通过在结构体外表面视场范围内的多个不同方位角度布置多个面成像测温传感器,每一个方位角度的面成像传感器均能够获得含三维或曲面外形结构体在该方位角度的二维投影温度场分布;然后通过多个方位角度的多个面成像传感器所获得多个二维投影温度场的融合,利用几何成像重建算法计算获得含三维或曲面外形结构体的三维表面温度场分布。
在一个更优选的实施例中,面成像测温传感器采用8-14μm红外单波段面成像测温传感器或者近红外多光谱成像融合面传感器。
在进行上述步骤2)时,在结构体内部开若干个微孔,插入热电偶或热电阻,通过接触式测得结构体的内部局部温度。
在进行上述步骤3)时,首先根据结构体内部冷却通道的流体种类、温度、压力和流速等状态参数,选择合适的流体对流换热计算准则关联式;然后根据冷却通道壁面边界上的热平衡关系,建立结构体不同内部边界S1,S2,…上的热平衡方程。
在一个优选的实施例中,流体对流换热计算准则关联式采用Dittus-Boelter公式:Nuf=0.023Re0.8Pr0.4
在进行上述步骤5)时,通过根据共轭梯度法求解控制方程组。
本发明由于采取以上技术方案,其具有以下优点:1、本发明采用基于空间与光谱多维融合辐射测量的非接触温度测量方法获取含三维或曲面外形结构体的三维表面温度场分布,避免了传统接触式测温法在温度场测量以及环境适应性等方面的局限性,解决了基于单个成像传感器的传统辐射测温技术无法获得含三维或曲面外形结构体外表面温度场的难点问题。2、本发明中对结构体的内部开一些微孔,用于测量结构体内部的局部温度,此温度将用于导热微分方程求解时的限定条件,可以有效地提升方程的求解精度。3、本发明根据结构体内部冷却通道的流体种类、温度、压力、流速等状态参数,利用流体的对流换热计算准则关联式,建立结构体不同内部边界上的热平衡方程,用于导热微分方程的边界条件,使得方程组满足封闭求解条件。4、本发明利用前述方法,获得结构体的三维表面温度场分布、内部边界上的热平衡方程、壁面内部局部温度,通过求解导热微分方程,即可同时获得结构体的温度场和热流密度。
附图说明
图1本发明提供的含三维或曲面外形结构体的温度场与热流同时重构方法示意图。
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。然而应当理解,附图的提供仅为了更好地理解本发明,它们不应该理解成对本发明的限制。
本发明提供的含三维或曲面外形结构体的温度场与热流同时重构方法,其包括以下步骤:
1)如图1所示,采用基于非接触辐射测量方法获取含三维或曲面外形结构体的三维表面温度场分布W1,作为导热微分方程的求解边界条件:
受热表面温度W1
式中,λ为结构体的导热系数;T为结构体的温度场;t表示计算时间;q1表示结构体的热流密度;n为热流密度的方向。
在一个优选的实施例中,非接触温度测量技术采用的是基于空间与光谱多维融合辐射测量技术,即针对于含三维或曲面外形的结构体外表面,通过在结构体外表面视场范围内的多个不同方位角度布置多个面成像测温传感器(本实施例中为三个面成像测温传感器1-3),每一个方位角度的面成像传感器均可以获得含三维或曲面外形结构体在该方位角度的二维投影温度场分布;然后通过多个方位角度的多个面成像传感器所获得多个二维投影温度场的融合,利用几何成像重建算法计算获得含三维或曲面外形结构体的三维表面温度场分布。
在一个更优选的实施例中,面成像测温传感器可以采用8-14μm红外单波段面成像测温传感器或者近红外多光谱成像融合面传感器。
2)在结构体内部开若干个微孔,插入热电偶或热电阻,通过接触式测得结构体的内部局部温度T1,T2,…,作为导热微分方程的求解限定条件:
内部局部温度T1,T2,...:T(Ω1,t)=T1;T(Ω2,t)=T2,...(2)
式中,Ωi表示结构体的计算区域,i=1,2,3,…。
3)结构体内部冷却通道的壁面与冷却通道内的流体进行热传递,可以根据流体与冷却通道壁面的热传递的热流值建立冷却通道壁面上的热平衡方程,作为导热微分方程的求解边界条件,具体过程为:首先根据结构体内部冷却通道的流体种类、温度、压力和流速等状态参数,选取合适的流体对流换热计算准则关联式(比如Dittus-Boelter公式:Nuf=0.023Re0.8Pr0.4);然后根据冷却通道壁面边界上的热平衡关系,建立结构体不同内部边界S1,S2,…上的热平衡方程:
内部边界S1,S2,...上的热平衡方程:
式中,式中,Si为结构体的内部边界,i=1,2,3,…;hi为结构体不同内部边界上的对流传热系数,i=1,2,3,…;Tf为结构体内部冷却通道的流体温度。
4)利用结构体的三维表面温度场分布W1,内部边界S1,S2,…上的热平衡方程,以及内部局部温度T1,T2,…,并结合导热微分方程,就可以获得完整的控制方程组,即式(1)-式(5):
导热微分方程:
初始条件:T(Ω,t)=T0(5)
式中,ρ为结构体的密度;cp为结构体的热容;x和y表示结构体的坐标;T0为结构体初始时刻的温度。
5)通过根据共轭梯度法(CGM)或者其他算法求解上述完整的控制方程组,最后同时确定结构体的温度场T和热流密度q1。需要说明的是,由于CGM方法为本领域技术人员的公知常识,因此求解过程不再赘述。
上述各实施例仅用于说明本发明,其中各部件的结构、连接方式和制作工艺等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。

Claims (8)

1.一种含三维或曲面外形结构体的温度场与热流同时重构方法,其特征在于,包括以下步骤:
1)获取结构体的三维表面温度场分布W1,作为导热微分方程的求解边界条件:
受热表面温度W1
式中,λ为结构体的导热系数;T为结构体的温度场;t表示计算时间;q1表示结构体的热流密度;n为热流密度的方向;
2)获取结构体的内部局部温度T1,T2,…,作为导热微分方程的求解限定条件:
内部局部温度T1,T2,...:T(Ω1,t)=T1;T(Ω2,t)=T2,... (2)
式中,Ωi表示结构体的计算区域,i=1,2,3,…;
3)根据流体与冷却通道壁面的热传递的热流值建立冷却通道壁面上的热平衡方程,作为导热微分方程的求解边界条件:
内部边界S1,S2,...上的热平衡方程:
式中,S为结构体的内部边界,i=1,2,3,…;hi为结构体不同内部边界上的对流传热系数,i=1,2,3,…;Tf为结构体内部冷却通道的流体温度;
4)利用结构体的受热表面温度W1,内部边界S1,S2,…上的热平衡方程,以及内部局部温度T1,T2,…,并结合导热微分方程,获得完整的控制方程组,即式(1)-式(5):
导热微分方程:
初始条件:T(Ω,t)=T0 (5)
式中,ρ为结构体的密度;cp为结构体的热容;x和y表示结构体的坐标;T0为结构体初始时刻的温度;
5)求解上述控制方程组,最后同时确定结构体的温度场T和热流密度q1
2.如权利要求1所述的含三维或曲面外形结构体的温度场与热流同时重构方法,其特征在于,在进行上述步骤1)时,采用基于非接触辐射测量方法获取结构体的受热表面温度。
3.如权利要求2所述的含三维或曲面外形结构体的温度场与热流同时重构方法,其特征在于,非接触温度测量技术采用的是基于空间与光谱多维融合辐射测量技术,即针对于含三维或曲面外形的结构体外表面,通过在结构体外表面视场范围内的多个不同方位角度布置多个面成像测温传感器,每一个方位角度的面成像传感器均能够获得含三维或曲面外形结构体在该方位角度的二维投影温度场分布;然后通过多个方位角度的多个面成像传感器所获得多个二维投影温度场的融合,利用几何成像重建算法计算获得含三维或曲面外形结构体的三维表面温度场分布。
4.如权利要求2所述的含三维或曲面外形结构体的温度场与热流同时重构方法,其特征在于,面成像测温传感器采用8-14μm红外单波段面成像测温传感器或者近红外多光谱成像融合面传感器。
5.如权利要求1所述的含三维或曲面外形结构体的温度场与热流同时重构方法,其特征在于,在进行上述步骤2)时,在结构体内部开若干个微孔,插入热电偶或热电阻,通过接触式测得结构体的内部局部温度。
6.如权利要求1所述的含三维或曲面外形结构体的温度场与热流同时重构方法,其特征在于,在进行上述步骤3)时,首先根据结构体内部冷却通道的流体种类、温度、压力和流速等状态参数,选择合适的流体对流换热计算准则关联式;然后根据冷却通道壁面边界上的热平衡关系,建立结构体不同内部边界S1,S2,…上的热平衡方程。
7.如权利要求6所述的含三维或曲面外形结构体的温度场与热流同时重构方法,其特征在于,流体对流换热计算准则关联式采用Dittus-Boelter公式:Nuf=0.023Re0.8Pr0.4
8.如权利要求1所述的含三维或曲面外形结构体的温度场与热流同时重构方法,在进行上述步骤5)时,通过根据共轭梯度法求解控制方程组。
CN201710148855.2A 2017-03-14 2017-03-14 含三维或曲面外形结构体的温度场与热流同时重构方法 Active CN106897537B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710148855.2A CN106897537B (zh) 2017-03-14 2017-03-14 含三维或曲面外形结构体的温度场与热流同时重构方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710148855.2A CN106897537B (zh) 2017-03-14 2017-03-14 含三维或曲面外形结构体的温度场与热流同时重构方法

Publications (2)

Publication Number Publication Date
CN106897537A true CN106897537A (zh) 2017-06-27
CN106897537B CN106897537B (zh) 2018-08-28

Family

ID=59193988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710148855.2A Active CN106897537B (zh) 2017-03-14 2017-03-14 含三维或曲面外形结构体的温度场与热流同时重构方法

Country Status (1)

Country Link
CN (1) CN106897537B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843347A (zh) * 2017-11-09 2018-03-27 青岛大学 一种多孔介质三维温度分布测量方法
CN109470363A (zh) * 2018-10-29 2019-03-15 浙江大学 基于红外热像测温技术的曲面薄壁加热热流分布测量方法
CN110348059A (zh) * 2019-06-12 2019-10-18 西安交通大学 一种基于结构化网格的通道内流场重构方法
CN113669740A (zh) * 2021-08-23 2021-11-19 清华大学 一种预测燃烧室内局部最高温度的方法
CN116596824A (zh) * 2023-07-17 2023-08-15 中国空气动力研究与发展中心高速空气动力研究所 多相机三维面模型融合方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258391A (ja) * 2005-03-18 2006-09-28 Nagoya Institute Of Technology 浮力を伴う乱流の流体的及び熱的諸特性の推定方法及び推定プログラム
CN102332040A (zh) * 2011-07-25 2012-01-25 大连理工大学 一种柔性网衣对水流影响的三维数值模拟方法
CN104881535A (zh) * 2015-05-21 2015-09-02 东南大学 改进的火电厂锅炉温度场重建测温算法
CN105046023A (zh) * 2015-08-27 2015-11-11 湘潭大学 涂有热障涂层的器件的工况模拟方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258391A (ja) * 2005-03-18 2006-09-28 Nagoya Institute Of Technology 浮力を伴う乱流の流体的及び熱的諸特性の推定方法及び推定プログラム
CN102332040A (zh) * 2011-07-25 2012-01-25 大连理工大学 一种柔性网衣对水流影响的三维数值模拟方法
CN104881535A (zh) * 2015-05-21 2015-09-02 东南大学 改进的火电厂锅炉温度场重建测温算法
CN105046023A (zh) * 2015-08-27 2015-11-11 湘潭大学 涂有热障涂层的器件的工况模拟方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
韩雯雯等: "基于导热反问题的二维圆管内壁面第三类边界条件的反演", 《机械工程学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843347A (zh) * 2017-11-09 2018-03-27 青岛大学 一种多孔介质三维温度分布测量方法
CN107843347B (zh) * 2017-11-09 2019-07-30 青岛大学 一种多孔介质三维温度分布测量方法
CN109470363A (zh) * 2018-10-29 2019-03-15 浙江大学 基于红外热像测温技术的曲面薄壁加热热流分布测量方法
CN109470363B (zh) * 2018-10-29 2020-04-24 浙江大学 基于红外热像测温技术的曲面薄壁加热热流分布测量方法
CN110348059A (zh) * 2019-06-12 2019-10-18 西安交通大学 一种基于结构化网格的通道内流场重构方法
CN113669740A (zh) * 2021-08-23 2021-11-19 清华大学 一种预测燃烧室内局部最高温度的方法
CN113669740B (zh) * 2021-08-23 2022-08-12 清华大学 一种预测燃烧室内局部最高温度的方法
CN116596824A (zh) * 2023-07-17 2023-08-15 中国空气动力研究与发展中心高速空气动力研究所 多相机三维面模型融合方法
CN116596824B (zh) * 2023-07-17 2023-09-12 中国空气动力研究与发展中心高速空气动力研究所 多相机三维面模型融合方法

Also Published As

Publication number Publication date
CN106897537B (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
CN106897537B (zh) 含三维或曲面外形结构体的温度场与热流同时重构方法
CN106960089B (zh) 含内部复杂边界结构体的温度场和热流同时重构方法
Beckwith et al. Local heat transfer and recovery temperatures on a yawed cylinder at a Mach number of 4.15 and high Reynolds numbers
CN106772682B (zh) 一种动目标的红外辐射光谱特性仿真分析方法
Drela Flight vehicle aerodynamics
CN104925269B (zh) 一种高超速飞行器舱段热环境的试验装置及方法
CN106682392B (zh) 复杂高超声速飞行器烧蚀效应快速计算方法
CN102353478B (zh) 半透明介质环境下非接触测温的校正方法
Lu et al. Investigation of thermal protection system by forward-facing cavity and opposing jet combinatorial configuration
CN109145388A (zh) 航空发动机部件的热分析方法
CN105424972B (zh) 一种近壁面流速测量方法及装置
CN109142434A (zh) 一种导热系数、热扩散率的瞬态体热源测量方法
CN106840464A (zh) 一种水冷戈登量热计
CN103973171A (zh) 一种温差发电系统电动势计算方法
Hożejowska et al. Equalizing calculus in Trefftz method for solving two-dimensional temperature field of FC-72 flowing along the minichannel
CN107843405B (zh) 试验件和发动机燃气对飞行器底部辐射热流的获取方法
Villafañe et al. Aerodynamic impact of finned heat exchangers on transonic flows
Liu et al. Investigation of heat transfer characteristics of high-altitude intercooler for piston aero-engine based on multi-scale coupling method
CN105675646B (zh) 基于本征光热信息同时测量高温半透明介质热导率及吸收系数的方法
CN109489745A (zh) 一种基于数据迭代的流量计量方法
Li et al. Secondary instability of stationary crossflow vortices in Mach 6 boundary layer over a circular cone
Critoph et al. Comparison of steady state and transient methods for measurement of local heat transfer in plate fin-tube heat exchangers using liquid crystal thermography with radiant heating
Elnajjar et al. Numerical analysis and experimental validation of the jet impingement cooling of a turbine-blade leading edge at different rotation speeds
Goodro et al. Mach number, Reynolds number, jet spacing variations: full array of impinging jets
JP3702658B2 (ja) 風向風速計測装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant