CN106772682B - 一种动目标的红外辐射光谱特性仿真分析方法 - Google Patents

一种动目标的红外辐射光谱特性仿真分析方法 Download PDF

Info

Publication number
CN106772682B
CN106772682B CN201611268829.5A CN201611268829A CN106772682B CN 106772682 B CN106772682 B CN 106772682B CN 201611268829 A CN201611268829 A CN 201611268829A CN 106772682 B CN106772682 B CN 106772682B
Authority
CN
China
Prior art keywords
target
moving
model
infrared
infrared radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611268829.5A
Other languages
English (en)
Other versions
CN106772682A (zh
Inventor
张天序
王凤林
姚守悝
李欢
杨柳
周灿新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201611268829.5A priority Critical patent/CN106772682B/zh
Priority to PCT/CN2017/077103 priority patent/WO2018120444A1/zh
Publication of CN106772682A publication Critical patent/CN106772682A/zh
Application granted granted Critical
Publication of CN106772682B publication Critical patent/CN106772682B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V13/00Manufacturing, calibrating, cleaning, or repairing instruments or devices covered by groups G01V1/00 – G01V11/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Radiation Pyrometers (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

本发明公开了一种动目标的红外辐射光谱特性仿真分析方法,该方法首先为动目标三维几何建模并将目标按区域划分;之后建立目标温度分布模型,计算不同观测角度下目标表面各点的温度;然后建立红外大气传输模型,计算大气透过率及大气路程辐射;之后设定测量系统及动目标的各参数;再利用已建立的目标温度分布模型及红外辐射传输模型计算动目标像方的辐射能量;最后分别计算点目标及面目标的红外辐射能量并绘制相应的辐射光谱曲线。本发明技术方案方法简单、考虑因素较为全面且可为目标的后续检测跟踪与识别提供数据。

Description

一种动目标的红外辐射光谱特性仿真分析方法
技术领域
本发明属于红外辐射测量领域,更具体地,涉及一种动目标的红外辐射光谱特性仿真分析方法。
背景技术
光谱立方体又称高光谱图像数据,它是在获得目标二维空间图像信息的同时,还获取目标的连续光谱信息。其获取的数据形成一个三维数据集,可表达成数据立方体的形式f(x,y,λ)。通常图像像素的横坐标和纵坐标分别用x和y来表示,z轴以光谱的波长信息λ表示。对光谱图像立方体作多维切面,可得到不同类型的光谱特征,如任意像元点处的光谱特征、任意空问剖面线上某一光谱区间的光谱变化、光谱维上任意波段的空间图像等。
这使我们既可以在空间切面依据图像特征对地物做图像分析和鉴别,又可以在光谱维上根据光谱特征对地物做光谱特征分析,利用其红外红外特性进行目标的检测识别与跟踪,这对人类生活以及军事方面具有十分重要的意义。但是在实际中由于设备限制、探测所处条件影响、光谱数据获取成本大等原因使得人们往往难以获得一些目标的真实辐射特性,这就迫切需要提出一种能够获得目标辐射光谱曲线及光谱立方体的简单有效方法。
目前,国内外对目标的光谱特性分析也有一定的研究,但已有的研究大多是针对静止的目标进行红外图像的仿真,且在分析时过于简化目标模型,对目标不同部位的温度分布简单予以平均温度处理。另外并未考虑目标在不同观测立体角下所测得的光谱数据也不一样这一影响因素,从而使得计算得到的像方的辐射数据并未较大程度上反映真实情况。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种动目标的红外辐射光谱特性仿真分析方法,其目的在于提出了动目标不同部位在不同状态、不同观测立体角下表面温度及辐射特性的计算方法;提出了当动目标分别成像为点目标及面目标时随空间分布的光谱特性数据计算方法;由此解决现有技术只能针对静止的目标进行红外辐射光谱分析,且分析模型过于简单的问题。
为实现上述目的,本发明提供了一种动目标的红外辐射光谱特性仿真分析方法,该方法包括以下步骤:
(1)建立动目标的三维几何模型;
(2)对动目标的三维几何模型建立动目标温度分布模型;
(3)建立探测系统观测目标在大气层内的红外辐射传输模型;
(4)利用已建的动目标温度分布模型和红外辐射传输模型构建目标像方辐射能量模型;
(5)仿真目标红外探测成像,仿真过程中利用目标像方辐射能量模型计算得到目标像方的辐射亮度;
(6)依据仿真成像大小判定目标是点目标或面目标;
(7)根据目标像方的辐射亮度,按照点目标或面目标分别绘制相应的辐射光谱。
进一步地,所述步骤(4)目标像方辐射能量模型的构建过程为:
(41)根据物方温度分布模型构建目标物方的辐射特性表达式Lb(T):在波段λ1~λ2,动目标点的辐射亮度为:
其中,λ为波长,T为动目标点的温度;
(42)在目标物方的辐射特性表达式的基础上考虑大气衰减构建在目标像方的辐射特性表达式L(T):
L(T)=ε·ρ·Lb(T)+Lr
其中,ε为目标表面材料的红外发射率,ρ为大气透过率,Lr为大气路径程辐射。
进一步地,所述步骤(2)的具体实现过程为:
首先采集动目标不同区域的温度数据,针对不同区域对其温度数据进行插值拟合处理,得到各区域内随空间位置变化的温度分布函数,建立动目标温度分布模型。
进一步地,所述步骤(3)中系统观测动目标的红外辐射传输模型具体分为两类:测量系统位于大气层内;测量系统位于大气层外。
进一步地,所述步骤(3)分为以下子步骤:
(31)由探测系统观测动目标的红外辐射传输模型确定辐射传输路径穿过大气的路程长度;大气层最高高度、地球半径、红外波段、目标高度;地球半径为目标所处纬度处的半径值;
(32)输入以上参数到大气传输软件获得大气层内测量系统观测大气层内目标在相应观测条件下的大气透过率ρ和大气路径程辐射Lr
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下技术特征及有益效果:
(1)本技术方案解决了动目标不同部位在不同状态、不同观测立体角下表面温度及辐射特性的计算问题;
(2)本技术方案解决了目标分别成像为点目标及面目标时随空间分布的光谱特性数据的计算问题。
(3)本技术方案流程简易,可操作性强。
附图说明
图1是本发明方法流程图;
图2是本发明方法实施例三维几何模型;
图3是本发明方法实施例划分区域示意图;
图4是本发明方法中观测系统位于大气层内观测示意图;
图5是本发明方法中观测系统位于大气层外观测示意图;
图6是本发明方法中目标成点源目标后绘制光谱曲线;
图7是本发明方法中目标为面目标,选取飞机尾部单独绘制光谱曲线。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如本发明流程图1所示本发明包括以下步骤:
(1)建立动目标的三维几何模型并划分区域:
本实施例中,以F22作为动目标,根据搜查到F22隐形飞机自身的尺寸及材质信息,利用3dsmax软件建立飞机的三维模型,如图2所示;按飞机不同部位和不同部位的材质区分飞机的不同部位,如图3所示俯视角度下飞机区域划分;
(2)建立动目标温度分布模型,计算不同观测角下目标表面各点的温度:
采集动目标各部位在不同高度的温度数据,建立动目标温度分布模型,如表1所示为飞机各部位在各高度条件下在加力状态下的温度分布:
表1
根据已采集到的飞机温度数据,针对不同区域对其温度数据进行插值拟合处理,从而近似得到各区域内随空间位置变化的温度分布函数,然后根据拟合得到的函数计算各区域内其它位置的目标点的温度;
动目标物方的温度分布可表达为Tobject(x,y,z),该式表明动目标是三维的,目标的不同部位具有随空间位置不同的温度分布。其中Tobject为目标表面的温度,(x,y,z)为目标表面上各点的空间位置坐标;当目标投影到像方时由于观测角度的不同导致测得得目标温度也不同,此时像方的温度Timge(i,j)=Timge(Tobject,λ,θ),其中θ为观测方位角,λ为波长,i,j分别为像面上像素坐标;由此可知像方上任一像素点的温度特性函数可表示为Timage(i,j)=T(x,y,z,λ,θ)。
(3)建立测量系统观测动目标的红外辐射传输模型,计算不同观测条件下的大气程辐射以及大气透过率:
由于观测系统位置不同,其造成的空间分辨率所处的量级也不同,从而使得计算光谱的方式也不同,因此,需要针对不同的红外辐射传输路径进行划分,具体划分如下:
测量系统位于大气层内的辐射传输路径,如图4所示:大气层内的测量系统的位置由A点表示,被观测的大气层内目标的位置由B点表示,被观测目标的辐射能量由B点向A点传播;
测量系统位于大气层外的辐射传输路径,如图5所示:太空中的测量系统的位置由A点表示,被观测的大气层内目标的位置由B点表示,被观测目标的辐射能量由B点向A点传播。
测量系统位于大气层内时:
红外辐射传输特性参数计算方法如下:大气传输软件Modtran的输入参数为:测量系统高度、大气层最高高度、目标高度、天顶角、地球半径和红外波段,其中测量系统高度和红外波段依据实际情况确定;地球半径为测量系统所处纬度处的半径值;大气层最高高度设定为100公里;天顶角为如图3中的∠CAB,其计算公式为
其中分别为测量系统和被观测目标距地心的高度,为测量系统和被观测目标之间的距离;输入以上参数即可获得大气层内测量系统观测太空目标在相应观测条件下的大气透过率ρ和大气程辐射Lr;经计算:高度49.5km的测量系统对高度10km和距离其1km空间目标探测时大气红外传输时从空载红外系统到空间目标的大气红外8~12μm的大气透过率ρ=0.9977和大气程辐射L=0.001905(W·m-2·sr-1)。
测量系统位于大气层外时:
红外辐射传输特性参数计算方法如下:大气传输软件Modtran的输入参数为:辐射传输路径上穿过大气的路程长度、大气层最高高度、被观测目标高度、地球半径和红外波段,其中被观测目标高度和红外波段依据实际情况确定;地球半径为目标所处纬度处的半径值;大气层最高高度设定为100公里;辐射传输路径上穿过大气的路程为如图4中的线段所示,其长度的计算公式为
其中,为被观测目标的高度,设定为100公里,∠ABO可由A点、B点、O点的相对位置关系确定;输入以上参数即可获得大气层内测量系统观测太空目标在相应观测条件下的透过率ρ和程辐射Lr;通过计算得到从高度500km太空测量系统到大气层内高度10km目标的大气红外4.2~4.45μm的透过率ρ=0.2014和大气路程辐射Lr=1.364×10-2(W·m-2·sr-1)。
(4)利用已建的动目标温度分布模型和红外辐射传输模型构建目标像方辐射能量模型:
(5)仿真目标红外探测成像,仿真过程中利用目标像方辐射能量模型计算得到目标像方的辐射亮度:
红外探测器探测得到的量是辐亮度,辐亮度即是辐射源单位面积上的辐射强度。因此飞机各部位的辐亮度计算如下所示:
(51)发动机辐射计算:
假定发动机区域内某一位置(x,y,z)在某种条件下的温度为Tengine_1,则发动机某一视角下投影面其它位置的温度可用Tengine=Tengine(Tengine_1,x,y,z,θ)来计算,θ为观测立体角;取飞机发动机尾喷管的发射率ε1=0.9,然后根据公式来计算发动机尾喷管处的辐射亮度,其中Δλ=λ21可为积分步长,λ1、λ2表示动目标所处波段;λ表示波长;T表示发动机表面温度;
(52)飞机蒙皮辐射计算:
飞机表面温度同飞行高度和速度有关,对于在对流层中飞行速度不是很高,即M≤2.5的飞机,飞机表面温度T2计算公式为:
其中,T2为飞行目标某位置的表面温度;T0为周围大气温度;k为恢复系数,通常在0.8~0.94,对于层流取k=0.82;γ为空气的定压热容量和定容热容量之比,γ=1.4;M为飞行马赫数;
同样,由于空间位置及观测立体角的改变使得目标的温度随之改变,对此某一视角下飞机蒙皮表面任意位置的温度Tsurface计算表达式为:
Tsurface(T2,x,y,z,θ)
其中,(x,y,z)为蒙皮表面任一点的空间位置坐标;θ为观测立体角;然后按公式计算飞机蒙皮的辐射亮度值,其中,ε2表示蒙皮表面红外发射率;
(53)飞机尾焰辐射计算:
假定飞机尾焰区域内某一位置(x,y,z)在某种条件下的温度为Tplume1,则尾焰其它位置的温度可用Tplume=Tplume(Tplume1,x,y,z,θ)来计算,然后按公式计算尾焰辐射亮度;其中,取飞机尾焰的发射率ε3=0.8;
(6)依据探测距离分别计算点目标及面目标的红外辐射能量并绘制相应的辐射光谱:
(61)对于空间分辨率低的情况下,目标成点源目标,此时计算飞机总的辐射亮度,即求和,然后绘制光谱曲线,如图6;
(62)对于空间分辨率高的情况下,目标为面目标,此时按照典型部位分别计算不同部位的辐射能量值,并分别绘制不同部位的光谱曲线,如图7。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种动目标的红外辐射光谱特性仿真分析方法,其特征在于,该方法包括以下步骤:
(1)建立动目标的三维几何模型;
(2)对动目标的三维几何模型建立动目标温度分布模型;
(3)建立探测系统观测目标在大气层内的红外辐射传输模型;
(4)利用已建的动目标温度分布模型和红外辐射传输模型构建目标像方辐射能量模型;
(5)仿真目标红外探测成像,仿真过程中利用目标像方辐射能量模型计算得到目标像方的辐射亮度;
(6)依据仿真成像大小判定目标是点目标或面目标;
(7)根据目标像方的辐射亮度,按照点目标或面目标分别绘制相应的辐射光谱。
2.根据权利要求1所述的一种动目标的红外辐射光谱特性仿真分析方法,其特征在于,所述步骤(4)目标像方辐射能量模型的构建过程为:
(41)根据物方温度分布模型构建目标物方的辐射特性表达式Lb(T):
在波段λ1~λ2,动目标点的辐射亮度为:
<mrow> <msub> <mi>L</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> </msubsup> <mfrac> <mrow> <mn>1.1910</mn> <mo>&amp;times;</mo> <msup> <mn>10</mn> <mn>8</mn> </msup> </mrow> <msup> <mi>&amp;lambda;</mi> <mn>5</mn> </msup> </mfrac> <mo>&amp;CenterDot;</mo> <mfrac> <mn>1</mn> <mrow> <msup> <mi>e</mi> <mfrac> <mn>14388</mn> <mrow> <mi>&amp;lambda;</mi> <mi>T</mi> </mrow> </mfrac> </msup> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <mi>d</mi> <mi>&amp;lambda;</mi> <mo>,</mo> </mrow>
其中,λ为波长,T为动目标点的温度;
(42)在目标物方的辐射特性表达式的基础上考虑大气衰减构建在目标像方的辐射特性表达式L(T):
L(T)=ε·ρ·Lb(T)+Lr
其中,ε为目标表面材料的红外发射率,ρ为大气透过率,Lr为大气路径程辐射。
3.根据权利要求1所述的一种动目标的红外辐射光谱特性仿真分析方法,其特征在于,所述步骤(2)的具体实现过程为:
首先采集动目标不同区域的温度数据,针对不同区域对其温度数据进行插值拟合处理,得到各区域内随空间位置变化的温度分布函数,建立动目标温度分布模型。
4.根据权利要求1所述的一种动目标的红外辐射光谱特性仿真分析方法,其特征在于,所述步骤(3)中系统观测动目标的红外辐射传输模型具体分为两类:测量系统位于大气层内;测量系统位于大气层外。
5.根据权利要求1所述的一种动目标的红外辐射光谱特性仿真分析方法,其特征在于,所述步骤(3)分为以下子步骤:
(31)由探测系统观测动目标的红外辐射传输模型确定辐射传输路径穿过大气的路程长度;大气层最高高度、地球半径、红外波段、目标高度;地球半径为目标所处纬度处的半径值;
(32)输入以上参数到大气传输软件获得大气层内测量系统观测大气层内目标在相应观测条件下的大气透过率ρ和大气路径程辐射Lr
CN201611268829.5A 2016-12-31 2016-12-31 一种动目标的红外辐射光谱特性仿真分析方法 Active CN106772682B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201611268829.5A CN106772682B (zh) 2016-12-31 2016-12-31 一种动目标的红外辐射光谱特性仿真分析方法
PCT/CN2017/077103 WO2018120444A1 (zh) 2016-12-31 2017-03-17 一种动目标的红外辐射光谱特性仿真分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611268829.5A CN106772682B (zh) 2016-12-31 2016-12-31 一种动目标的红外辐射光谱特性仿真分析方法

Publications (2)

Publication Number Publication Date
CN106772682A CN106772682A (zh) 2017-05-31
CN106772682B true CN106772682B (zh) 2017-10-31

Family

ID=58952627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611268829.5A Active CN106772682B (zh) 2016-12-31 2016-12-31 一种动目标的红外辐射光谱特性仿真分析方法

Country Status (2)

Country Link
CN (1) CN106772682B (zh)
WO (1) WO2018120444A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109238336A (zh) * 2018-09-12 2019-01-18 东莞市奕冠塑胶五金电子有限公司 一种全自动红外线感应器测试室
CN109446559A (zh) * 2018-09-20 2019-03-08 中国人民解放军63653部队 一种浮空器辐射热环境特性估算方法
CN109255198B (zh) * 2018-09-30 2019-11-08 上海机电工程研究所 基于数据模型的空天环境建模方法及系统
CN109376488A (zh) * 2018-12-07 2019-02-22 中国民航大学 圆锥体构型的电磁波空间传输模型构建方法
CN109990902B (zh) * 2018-12-29 2020-02-14 华中科技大学 一种图谱关联的分谱段估计目标亮温的方法
CN109829204B (zh) * 2019-01-08 2023-04-14 上海卫星工程研究所 基于时间序列的空间目标遥感特性建模方法
CN109977609B (zh) * 2019-04-16 2022-08-23 哈尔滨工业大学 一种基于真实遥感数据的地面高温热源红外图像仿真方法
CN110083972B (zh) * 2019-05-10 2022-02-01 西北工业大学 飞机目标的红外拉偏仿真方法
CN110108303B (zh) * 2019-05-24 2023-03-03 山东航天电子技术研究所 一种在轨空间目标探测识别仿真系统及方法
CN111400658B (zh) * 2020-03-31 2024-01-26 中国科学院空天信息创新研究院 超光谱热红外数据反演气体廓线的通道选择方法
CN111476287A (zh) * 2020-04-02 2020-07-31 中国人民解放军战略支援部队信息工程大学 一种高光谱影像小样本分类方法及装置
CN111563962B (zh) * 2020-04-09 2024-01-26 中国科学院空天信息创新研究院 一种基于几何辐射一体化采样的遥感图像仿真方法
CN111460687B (zh) * 2020-04-23 2022-10-11 中国人民解放军63983部队 一种基于仿真评估分析的伪装方案辅助设计系统及方法
CN111695170B (zh) * 2020-06-15 2023-01-13 北京环境特性研究所 一种目标可见光特性实时仿真方法及装置
CN111829666B (zh) * 2020-07-17 2022-12-06 中国人民解放军火箭军工程大学 一种目标红外成像仿真模型的四级验证方法
CN112215957A (zh) * 2020-09-16 2021-01-12 哈尔滨新光光电科技股份有限公司 一种空中目标红外特性仿真方法
CN112630174B (zh) * 2020-12-14 2023-04-28 中国科学院合肥物质科学研究院 一种星载超光谱成像仪气体探测条带效应修正方法
CN113092368B (zh) * 2021-03-16 2022-12-13 上海机电工程研究所 一种基于无人机的红外波段大气透过率测量方法及系统
CN113533262B (zh) * 2021-03-24 2022-11-04 北京航空航天大学 一种大气气溶胶红外散射透过率确定方法
CN113378419B (zh) * 2021-08-16 2021-11-23 成都众享天地网络科技有限公司 一种基于modtran优化的红外成像仿真方法
CN114359136B (zh) * 2021-11-24 2023-10-31 北京航天发射技术研究所 一种基于地面成像数据的隐身效果评估方法和系统
CN114112069B (zh) * 2022-01-27 2022-04-26 华中科技大学 地质约束的城市深埋条带通道红外成像探测方法及系统
CN115795781B (zh) * 2022-09-23 2023-07-18 北京大学 一种基于地面红外辐射计的大气水汽含量估算方法和系统
CN116910962A (zh) * 2022-12-07 2023-10-20 中国人民解放军63850部队 一种近红外目标仿真模型制作系统
CN115841048B (zh) * 2023-02-13 2023-05-12 中国人民解放军火箭军工程大学 一种基于目标机理模型的多模仿真数据集制备方法
CN116258932A (zh) * 2023-03-09 2023-06-13 中国人民解放军海军潜艇学院 一种用于水下运动目标尾迹的红外融合探测方法及系统
CN117315411B (zh) * 2023-10-18 2024-04-09 自然资源部国土卫星遥感应用中心 一种高光谱卫星影像辐射定标数据的仿真模拟方法
CN117131312B (zh) * 2023-10-20 2024-01-26 西安电子科技大学 一种雨后环境下的红外场景数值计算方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288158A (ja) * 1996-04-19 1997-11-04 Mitsubishi Electric Corp 赤外模擬画像発生方法
JP2008070059A (ja) * 2006-09-14 2008-03-27 Toshiba Corp シミュレータ
JP2008224193A (ja) * 2007-03-15 2008-09-25 Toshiba Corp 赤外線撮像装置を内蔵したタレットおよびこのタレットを備えた飛翔体
CN101976275B (zh) * 2010-09-21 2012-11-07 北京航空航天大学 飞机红外辐射与大气透过率建模方法
CN102270355A (zh) * 2011-04-28 2011-12-07 华中科技大学 一种基于景物分类的红外场景图像生成方法
CN102564589B (zh) * 2011-12-20 2013-07-24 华中科技大学 一种多波段动目标光谱特征探测识别方法和装置
CN103247069B (zh) * 2013-05-16 2016-08-10 中国电子科技集团公司第四十一研究所 基于辐射能量特性和光谱特性的紫外场景仿真方法及系统
CN103675794B (zh) * 2013-12-04 2016-01-20 北京空间机电研究所 基于时空统一特性的航天光学遥感器成像仿真方法
CN104121992B (zh) * 2014-07-10 2017-02-15 上海宇航系统工程研究所 空间目标红外辐射全任务空域动态特性分析方法
CN105243289B (zh) * 2015-11-17 2018-03-06 上海无线电设备研究所 复杂目标红外辐射特性一体化建模方法
CN106055751A (zh) * 2016-05-23 2016-10-26 北京航空航天大学 一种高超声速飞行器蒙皮红外辐射强度分散性评估方法

Also Published As

Publication number Publication date
WO2018120444A1 (zh) 2018-07-05
CN106772682A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106772682B (zh) 一种动目标的红外辐射光谱特性仿真分析方法
CN105243289B (zh) 复杂目标红外辐射特性一体化建模方法
CN106706133B (zh) 一种点斑状目标姿态估计方法及系统
CN104121992B (zh) 空间目标红外辐射全任务空域动态特性分析方法
Bauknecht et al. Three-dimensional reconstruction of helicopter blade–tip vortices using a multi-camera BOS system
CN104867179B (zh) 一种全谱段光学成像仪遥感影像仿真方法
Coiro Global illumination technique for aircraft infrared signature calculations
CN107832532A (zh) 一种气动光传输效应对高速飞行器成像质量数值计算方法
CN107368617B (zh) 基于Lowtran7大气软件的地空探测红外成像系统作用距离计算方法
Xu et al. Spinning projectile’s attitude measurement with LW infrared radiation under sea-sky background
Huang et al. Effect of environmental radiation on the long-wave infrared signature of cruise aircraft
Hecht et al. Maui Mesosphere and Lower Thermosphere (Maui MALT) observations of the evolution of Kelvin‐Helmholtz billows formed near 86 km altitude
Pan et al. Infrared radiation and stealth characteristics prediction for supersonic aircraft with uncertainty
Choudhari et al. Streak instabilities on HIFiRE-5 elliptic cone
CN106055751A (zh) 一种高超声速飞行器蒙皮红外辐射强度分散性评估方法
CN112733347B (zh) 一种导体-介质复合目标与环境电磁散射快速计算方法
Stout et al. Evaluation of numerical predictions of sonic boom level variability due to atmospheric turbulence
Zhou et al. A novel detection performance modular evaluation metric of space-based infrared system
CN107294620A (zh) 基于最小相位系统的临近空间毫米波信道测量方法
Li et al. A real-time infrared radiation imaging simulation method of aircraft skin with aerodynamic heating effect
Sun et al. Fiber optic distributed temperature sensing for fire source localization
Li et al. Secondary instability of stationary crossflow vortices in Mach 6 boundary layer over a circular cone
Zhou et al. A numerical simulation method for aircraft infrared imaging
CN110992399B (zh) 一种高精度目标大气扰动检出方法
US20230213684A1 (en) Method and system for inverted detection and positioning of strip-like subterranean tunnel in mountain mass

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant