CN106897473A - 一种位姿不确定度评定方法 - Google Patents
一种位姿不确定度评定方法 Download PDFInfo
- Publication number
- CN106897473A CN106897473A CN201510965329.6A CN201510965329A CN106897473A CN 106897473 A CN106897473 A CN 106897473A CN 201510965329 A CN201510965329 A CN 201510965329A CN 106897473 A CN106897473 A CN 106897473A
- Authority
- CN
- China
- Prior art keywords
- uncertainty
- pose
- measurement
- target point
- coordinate system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 14
- 238000005259 measurement Methods 0.000 claims abstract description 86
- 238000005070 sampling Methods 0.000 claims abstract description 13
- 238000004458 analytical method Methods 0.000 claims abstract description 6
- 238000004364 calculation method Methods 0.000 claims abstract 2
- 239000011159 matrix material Substances 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 24
- 239000013598 vector Substances 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 3
- 238000012847 principal component analysis method Methods 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 238000013519 translation Methods 0.000 claims description 3
- 238000013076 uncertainty analysis Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 210000001503 joint Anatomy 0.000 description 4
- 238000011161 development Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012356 Product development Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/28—Fuselage, exterior or interior
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
本发明公开了一种位姿不确定度评定方法。包括如下步骤:1)给出位姿不确定度的定义、几何表示、代数表示以及其物理意义;2)依据计算位姿的解析算法建立位姿不确定度与测量目标点位置不确定度间的解析关系,确定位姿不确定度的解析算法;3)分析位姿不确定度来源,将其分为目标点测量不确定度和目标点实际位置波动不确定度两大类;4)针对位姿测量和不确定度评定需求,确定测量系统选型方案与采样策略,采集目标点测量数据样本;5)采用主成分分析法分析目标点测量数据样本,分离出目标点位置波动不确定度与目标点测量不确定度;6)依据位姿不确定度的解析算法,利用目标点位置波动不确定度计算出位姿不确定度。
Description
技术领域
本发明涉及一种针对大部件装配过程的部件位姿不确定度评定方法。
背景技术
在航空、航天、船舶等复杂产品制造领域,为完成产品装配并保证质量,需要对飞机机身、卫星舱段、船体分段等大尺度部件进行位姿精确调整;通过测量大尺度部件结构上的特征点坐标并拟合得到部件实测位姿,是实现大尺度部件位姿调整的前提。传统的大部件对接装配过程中,通常在部件结构上设置几个关键特征点,对这些特征点进行测量,通过比较它们之间的相对位置确定部件姿态的偏移形式和调整方向。以飞机机身与机翼对接装配为例,在机身和机翼上分别设置有多个水平测量点,在对接之间,采用经纬仪测量各水平测量点的高度,基于它们之间的高度差计算机翼的上反角、安装角等参数是否满足要求,并确定机身与机翼当前位姿,进而通过手动调整工装将机身与机翼调至水平,最终实现对接。显然,上述过程不仅效率低下,而且准确度难以保证,通常需要多次重复调整,才能保证对接质量满足产品要求。随着数字化设计、制造和装配技术的发展,复杂产品大部件装配也朝着数字化的方向发展。
国外先进数字化装配技术的一个主要特征就是,在装配阶段越来越多地采用数字化测量技术,以获取特征点在三维空间的坐标,进而基于这些特征点坐标数据求解大尺度部件实测位姿。基于数字化测量数据求解部件位姿,不仅具有高效率高精度的特点,而且便于与自动化装配系统进行集成,是复杂产品装配技术发展的趋势。在国外,波音、空客等公司已广泛采用基于数字化测量的自动装配技术,以提高装配质量,缩短装配周期(于勇,陶剑,范玉青,航空制造技术,2009年14期);国内航空航天制造企业也逐步引进类似技术,在产品研制过程中展开应用探索(雷源忠,机械工程学报,2009年第5期)。
不确定度是一个与测量结果相关联的、表征被测量之合理赋值的分散程度的参量。任何测量结果均存在一定的不确定性,表现为采用相同手段进行多次重复测量的测量结果各不相同,测量结果只有在与相应的测量不确定度同时出现时,才具有可信性和完整性。由于测量不确定度的存在,使得单次测量结果无法完全准确地反映被测量对象的实际状态,即存在测量误差;与零件的制造误差、部件的装配误差一样,测量误差同样对装配协调性产生影响。因此,需要对位姿的测量不确定度进行研究,为位姿数据的合理应用提供支持。
目前,尚未有针对位姿不确定度的相关研究成果;本发明研究并实现了一种位姿不确定 度评定方法。
发明内容
本发明的目的是克服现有技术的不足,提供一种位姿不确定度评定方法。
位姿不确定度评定方法包括如下步骤:
1)给出位姿不确定度的定义、几何表示、代数表示以及其物理意义;
2)依据计算位姿的解析算法建立位姿不确定度与测量目标点位置不确定度间的解析关系,确定位姿不确定度的解析算法;
3)分析位姿不确定度来源,将其分为目标点测量不确定度和目标点实际位置波动不确定度两大类;
4)针对位姿测量和不确定度评定需求,确定测量系统选型方案与采样策略,采集目标点测量数据样本;
5)采用主成分分析法分析目标点测量数据样本,分离出目标点位置波动不确定度与目标点测量不确定度;
6)依据位姿不确定度的解析算法,利用目标点位置波动不确定度计算出位姿不确定度。
所述的位姿不确定度的几何表示与代数表示:
1)几何表示:在几何形式上,位姿反映了装配基准局部坐标系原点在空间全局坐标系中的位置,以及局部坐标系各轴绕全局坐标系各轴的旋转角度,位姿的不确定性则表现为局部坐标系原点在空间全局坐标系中位置的不确定性,以及局部坐标系各轴指向的不确定性,而且这二者之间并不是完全独立的。位姿所描述的对象是具有几何边界的实体,在三维空间中,其位姿不确定度最终表现为该实体的接口几何特征在某个范围内随机存在,该范围存在一个最大边界和最小边界,构成了位姿所描述的实体的几何特征的最小包络范围。
2)代数表示:在代数形式上,位姿是由局部坐标系绕全局坐标系各坐标轴的旋转角度以及局部坐标系原点相对全局坐标系原点的平移量所构成的六维矢量,因此,位姿不确定度的数学形式可以采用六个维度变量的协方差矩阵表示为式(1):
所述的位姿不确定度的解析算法:
1)首先,将位姿矩阵与目标点坐标之间的关系表示为函数g(·),如式(2)所示:
2)使用位姿矩阵的六维参数代替其位姿矩阵,将式(2)转化为式(3):
其中,h=(α,β,γ,dx,dy,dz)T (3)
3)设hest为式(3)的一个较优解,将函数g(·)在处进行二元的一阶泰勒展开,得到式(4):
4)因此,其中Mi为函数g(·)的雅各比矩阵。
5)假设存在n个目标点,且n≥3,则有式(5):
6)对上式进行求解,得到:Δh=(MTM)-1MTΔPG,则,h的协方差矩阵表示为式(6):
其中,n为点的个数。
所述的测量系统选型方案和采样策略:
1)测量系统选择:为实现对3个或3个以上目标点的并行快速测量,采用多台激光跟踪仪、照相测量系统或iGPS测量系统构建测量场,其中,在满足动态测量精度要求的前提下,照相测量系统的成本最低。
2)采样策略:为分析某一过程或某一时间段内的装配对象定位不确定度特性,在t分钟内,每隔半分钟对每一个测量目标点同时采集两组坐标数据,记为为其中下标j表示测量数据的顺序编号,j=1,2,…,2t,下标k表示在第j次测量时所采集的数据编号,k=1,2。 数据采集过程结束后,将得到4t×n个坐标数据样本。
所述的目标点位置波动不确定度计算步骤:
1)采用权利要求4中所述的采样策略,得到测量目标点Pi的两组测量数据:
其中,j=1,2,…,2t,k=1,2
2)分别对Pi的X、Y、Z坐标测量结果进行主成分分离,以其X坐标为例,令Σ为两组测量数据和的协方差矩阵,则存在单位正交矩阵A,使得:
其中,为特征矩阵,λ1和λ2为协方差矩阵的特征值,A1和A2分别为其对应的特征向量。
3)基于特征矩阵可以计算出目标点Pi的X坐标的主成分:
其中,反映了测量目标点Pi自身位置波动的特性,而则反映了测量系统不确定度的特性。
4)同理,可以求解出目标点Pi的Y、Z坐标主成分,分别表示为和
5)目标点位置波动不确定度由X、Y、Z三个方向的协方差矩阵构成,即:
本发明的优点在于:
1)可以基于大部件装配过程中的实时测量数据快速评定部件位姿的不确定性;
2)位姿不确定度评定与位姿监测采用相同样本,能够实现实时评定,对大部件装配过程 控制更有指导意义;
3)提出位姿不确定度的几何表示方式、代表方式及物理意义,确立位姿不确定度的工程意义和对装配过程的作用;
4)分析大部件位姿测量与控制过程中的位姿不确定度来源,依据原始目标点测量数据分离出位姿测量不确定度和位姿波动不确定度。
附图说明
下面结合附图及实施方式对本发明作进一步详细的说明:
图1为位姿不确定度的几何表示;
图2为位姿不确定度的来源分析。
具体实施方式
位姿不确定度评定方法包括如下步骤:
1)给出位姿不确定度的定义、几何表示、代数表示以及其物理意义;
2)依据计算位姿的解析算法建立位姿不确定度与测量目标点位置不确定度间的解析关系,确定位姿不确定度的解析算法;
3)分析位姿不确定度来源,将其分为目标点测量不确定度和目标点实际位置波动不确定度两大类;
4)针对位姿测量和不确定度评定需求,确定测量系统选型方案与采样策略,采集目标点测量数据样本;
5)采用主成分分析法分析目标点测量数据样本,分离出目标点位置波动不确定度与目标点测量不确定度;
6)依据位姿不确定度的解析算法,利用目标点位置波动不确定度计算出位姿不确定度。
所述的位姿不确定度的几何表示与代数表示:
1)几何表示:在几何形式上,位姿反映了装配基准局部坐标系原点在空间全局坐标系中的位置,以及局部坐标系各轴绕全局坐标系各轴的旋转角度,位姿的不确定性则表现为局部坐标系原点在空间全局坐标系中位置的不确定性,以及局部坐标系各轴指向的不确定性,而且这二者之间并不是完全独立的。位姿所描述的对象是具有几何边界的实体,在三维空间中,其位姿不确定度最终表现为该实体的接口几何特征在某个范围内随机存在,该范围存在一个最大边界和最小边界,构成了位姿所描述的实体的几何特征的最小包络范围。如附图1 所示。
2)代数表示:在代数形式上,位姿是由局部坐标系绕全局坐标系各坐标轴的旋转角度以及局部坐标系原点相对全局坐标系原点的平移量所构成的六维矢量,因此,位姿不确定度的数学形式可以采用六个维度变量的协方差矩阵表示为式(1):
所述的位姿不确定度的解析算法:
1)首先,将位姿矩阵与目标点坐标之间的关系表示为函数g(·),如式(2)所示:
2)使用位姿矩阵的六维参数代替其位姿矩阵,将式(2)转化为式(3):
其中,h=(α,β,γ,dx,dy,dz)T (3)
3)设hest为式(3)的一个较优解,将函数g(·)在处进行二元的一阶泰勒展开,得到式(4):
4)因此,其中Mi为函数g(·)的雅各比矩阵。
5)假设存在n个目标点,且n≥3,则有式(5):
6)对上式进行求解,得到:Δh=(MTM)-1MTΔPG,则,h的协方差矩阵表示为式(6):
其中,n为点的个数。
所述的位姿不确定度来源分析、测量系统选型方案和采样策略:
1)从总体上将位姿测量不确定度分为两大部分:a)对关键测量特性进行定位之后,其实际的位姿由于受定位过程、工装、自身结构变形、环境等因素影响,而存在一定的不稳定性,表现为微小的扰动,称为位姿的定位不确定度;b)对已定位的部件进行测量的过程中,由测量过程造成的位姿测量结果不确定度,或称为测量不确定度。位姿测量结果的最终不确定度由这两部分叠加而成;如附图2所示。
2)测量系统选择:为实现对3个或3个以上目标点的并行快速测量,采用多台激光跟踪仪、照相测量系统或iGPS测量系统构建测量场,其中,在满足动态测量精度要求的前提下,照相测量系统的成本最低。
3)采样策略:为分析某一过程或某一时间段内的装配对象定位不确定度特性,在t分钟内,每隔半分钟对每一个测量目标点同时采集两组坐标数据,记为为其中下标j表示测量数据的顺序编号,j=1,2,…,2t,下标k表示在第j次测量时所采集的数据编号,k=1,2。数据采集过程结束后,将得到4t×n个坐标数据样本。
所述的目标点位置波动不确定度计算步骤:
1)采用权利要求4中所述的采样策略,得到测量目标点Pi的两组测量数据:
其中,j=1,2,…,2t,k=1,2
2)分别对Pi的X、Y、Z坐标测量结果进行主成分分离,以其X坐标为例,令Σ为两组测量数据和的协方差矩阵,则存在单位正交矩阵A,使得:
其中,为特征矩阵,λ1和λ2为协方差矩阵的特征值,A1和A2分别为其对应的特征向量。
3)基于特征矩阵可以计算出目标点Pi的X坐标的主成分:
其中,反映了测量目标点Pi自身位置波动的特性,而则反映了测量系统不确定度的特性。
4)同理,可以求解出目标点Pi的Y、Z坐标主成分,分别表示为和
5)目标点位置波动不确定度由X、Y、Z三个方向的协方差矩阵构成,即:
Claims (5)
1.一种位姿不确定度评定方法,其特征在于包括如下步骤:
1)给出位姿不确定度的定义、几何表示、代数表示以及其物理意义;
2)依据计算位姿的解析算法建立位姿不确定度与测量目标点位置不确定度间的解析关系,确定位姿不确定度的解析算法;
3)分析位姿不确定度来源,将其分为目标点测量不确定度和目标点实际位置波动不确定度两大类;
4)针对位姿测量和不确定度评定需求,确定测量系统选型方案与采样策略,采集目标点测量数据样本;
5)采用主成分分析法分析目标点测量数据样本,分离出目标点位置波动不确定度与目标点测量不确定度;
6)依据位姿不确定度的解析算法,利用目标点位置波动不确定度计算出位姿不确定度。
2.根据权利要求1所述的一种不确定度评定方法,其特征在于所述的位姿不确定度的几何表示与代数表示:
1)几何表示:在几何形式上,位姿反映了装配基准局部坐标系原点在空间全局坐标系中的位置,以及局部坐标系各轴绕全局坐标系各轴的旋转角度,位姿的不确定性则表现为局部坐标系原点在空间全局坐标系中位置的不确定性,以及局部坐标系各轴指向的不确定性,而且这二者之间并不是完全独立的。位姿所描述的对象是具有几何边界的实体,在三维空间中,其位姿不确定度最终表现为该实体的接口几何特征在某个范围内随机存在,该范围存在一个最大边界和最小边界,构成了位姿所描述的实体的几何特征的最小包络范围。
2)代数表示:在代数形式上,位姿是由局部坐标系绕全局坐标系各坐标轴的旋转角度以及局部坐标系原点相对全局坐标系原点的平移量所构成的六维矢量,因此,位姿不确定度的数学形式可以采用六个维度变量的协方差矩阵表示为式(1):
3.根据权利要求1所述的一种不确定度评定方法,其特征在于所述的位姿不确定度的解析算法:
1)首先,将位姿矩阵与目标点坐标之间的关系表示为函数g(·),如式(2)所示:
2)使用位姿矩阵的六维参数代替其位姿矩阵,将式(2)转化为式(3):
其中,h=(α,β,γ,dx,dy,dz)T (3)
3)设hest为式(3)的一个较优解,将函数g(·)在处进行二元的一阶泰勒展开,得到式(4):
4)因此,Δh=MiΔh,其中Mi为函数g(·)的雅各比矩阵。
5)假设存在n个目标点,且n≥3,则有式(5):
6)对上式进行求解,得到:Δh=(MTM)-1MTΔPG,则,h的协方差矩阵表示为式(6):
其中,n为点的个数。
4.根据权利要求1所述的一种不确定度评定方法,其特征在于所述的测量系统选型方案和采样策略:
1)测量系统选择:为实现对3个或3个以上目标点的并行快速测量,采用多台激光跟踪仪、照相测量系统或iGPS测量系统构建测量场,其中,在满足动态测量精度要求的前提下,照相测量系统的成本最低。
2)采样策略:为分析某一过程或某一时间段内的装配对象定位不确定度特性,在t分钟内,每隔半分钟对每一个测量目标点同时采集两组坐标数据,记为为其中下标j表示测量数据的顺序编号,j=1,2,…,2t,下标k表示在第j次测量时所采集的数据编号,k=1,2。数据采集过程结束后,将得到4t×n个坐标数据样本。
5.根据权利要求1所述的一种不确定度评定方法,其特征在于所述的目标点位置波动不确定度计算步骤:
1)采用权利要求4中所述的采样策略,得到测量目标点Pi的两组测量数据:
(7)
其中,j=1,2,…,2t,k=1,2
2)分别对Pi的X、Y、Z坐标测量结果进行主成分分离,以其X坐标为例,令Σ为两组测量数据和的协方差矩阵,则存在单位正交矩阵A,使得:
其中,为特征矩阵,λ1和λ2为协方差矩阵的特征值,A1和A2分别为其对应的特征向量。
3)基于特征矩阵可以计算出目标点Pi的X坐标的主成分:
其中,反映了测量目标点Pi自身位置波动的特性,而则反映了测量系统不确定度的特性。
4)同理,可以求解出目标点Pi的Y、Z坐标主成分,分别表示为和
5)目标点位置波动不确定度由X、Y、Z三个方向的协方差矩阵构成,即:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510965329.6A CN106897473A (zh) | 2015-12-21 | 2015-12-21 | 一种位姿不确定度评定方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510965329.6A CN106897473A (zh) | 2015-12-21 | 2015-12-21 | 一种位姿不确定度评定方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106897473A true CN106897473A (zh) | 2017-06-27 |
Family
ID=59190326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510965329.6A Pending CN106897473A (zh) | 2015-12-21 | 2015-12-21 | 一种位姿不确定度评定方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106897473A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109540058A (zh) * | 2018-11-21 | 2019-03-29 | 北京航天新风机械设备有限责任公司 | 一种基于点集测量的刚体位置与姿态测量不确定度评估方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102183205A (zh) * | 2011-01-19 | 2011-09-14 | 北京航空航天大学 | 一种大型零部件最佳装配位姿匹配的方法 |
CN102374847A (zh) * | 2011-09-14 | 2012-03-14 | 天津大学 | 工作空间六自由度位姿动态测量设备及方法 |
CN103862459A (zh) * | 2012-12-11 | 2014-06-18 | 天津工业大学 | 一种用于机载并联平台的位姿观测器设计方法 |
CN103983224A (zh) * | 2014-05-29 | 2014-08-13 | 上海飞机制造有限公司 | 一种大尺度部件实测位姿拟合方法 |
CN104850615A (zh) * | 2015-05-14 | 2015-08-19 | 西安电子科技大学 | 一种基于g2o的SLAM后端优化算法方法 |
US20150348264A1 (en) * | 2012-12-28 | 2015-12-03 | Korea Aerospace Research Institute | Method for calibrating absolute misalignment between linear array image sensor and attitude control sensor |
-
2015
- 2015-12-21 CN CN201510965329.6A patent/CN106897473A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102183205A (zh) * | 2011-01-19 | 2011-09-14 | 北京航空航天大学 | 一种大型零部件最佳装配位姿匹配的方法 |
CN102374847A (zh) * | 2011-09-14 | 2012-03-14 | 天津大学 | 工作空间六自由度位姿动态测量设备及方法 |
CN103862459A (zh) * | 2012-12-11 | 2014-06-18 | 天津工业大学 | 一种用于机载并联平台的位姿观测器设计方法 |
US20150348264A1 (en) * | 2012-12-28 | 2015-12-03 | Korea Aerospace Research Institute | Method for calibrating absolute misalignment between linear array image sensor and attitude control sensor |
CN103983224A (zh) * | 2014-05-29 | 2014-08-13 | 上海飞机制造有限公司 | 一种大尺度部件实测位姿拟合方法 |
CN104850615A (zh) * | 2015-05-14 | 2015-08-19 | 西安电子科技大学 | 一种基于g2o的SLAM后端优化算法方法 |
Non-Patent Citations (2)
Title |
---|
杜福洲等: "基于位姿测量不确定度的飞机对接质量评估", 《北京航空航天大学学报》 * |
杜福洲等: "激光跟踪仪现场测点不确定度建模及试验分析", 《制造业自动化》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109540058A (zh) * | 2018-11-21 | 2019-03-29 | 北京航天新风机械设备有限责任公司 | 一种基于点集测量的刚体位置与姿态测量不确定度评估方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108955679B (zh) | 一种变电站智能巡检机器人高精度定位方法 | |
CN111137468B (zh) | 多约束条件的飞机蒙皮调姿方法及系统 | |
CN103106632B (zh) | 一种基于均值漂移的不同精度三维点云数据的融合方法 | |
CN104515478A (zh) | 一种高精度的航空发动机叶片自动三维测量方法和系统 | |
CN105868498A (zh) | 基于扫描线点云的蒙皮边界特征重构方法 | |
CN103673916A (zh) | 一种水火弯板成型在线检测方法 | |
CN111860520A (zh) | 基于深度学习的大飞机点云模型自监督语义分割方法 | |
CN103983224A (zh) | 一种大尺度部件实测位姿拟合方法 | |
CN114115123B (zh) | 航空大型薄壁类非刚体零件的参数化数控加工方法和系统 | |
CN111947595A (zh) | 一种基于三维激光扫描的船舶外板逆向建模实现方法 | |
CN113587807A (zh) | 一种飞机壁板加工特征面的扫描路径生成方法 | |
CN106568365A (zh) | 一种球面孔系复合位置度误差的检测与评定方法 | |
Li et al. | A novel path generation method of onsite 5-axis surface inspection using the dual-cubic NURBS representation | |
CN204269086U (zh) | 一种高精度的航空发动机叶片自动三维测量系统 | |
CN109202539B (zh) | 一种复合材料弱刚度异形结构在线检测方法 | |
CN110370287B (zh) | 基于视觉引导的地铁列检机器人路径规划系统及方法 | |
CN106897473A (zh) | 一种位姿不确定度评定方法 | |
CN110569539B (zh) | 基于实测点云分形融合的带几何误差虚拟模型构建方法 | |
Wu et al. | A Systematic Point Cloud Edge Detection Framework for Automatic Aircraft Skin Milling | |
Yu et al. | An approach for machining distortion measurements and evaluation of thin-walled blades with small datum | |
Zhou et al. | Automated inspection planning of freeform surfaces for manufacturing applications | |
CN114742765A (zh) | 一种基于激光点云测量的隧道断面特征点精确提取方法 | |
Chen et al. | Measuring the profile of aircraft engine blades using spectral confocal sensors | |
CN111754567A (zh) | 飞机复材构件机器人磨抛加工静动态误差综合补偿方法 | |
Li et al. | Optimization of abnormal point cloud recognition in robot vision grinding system based on multidimensional improved eigenvalue method (MIEM) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170627 |
|
WD01 | Invention patent application deemed withdrawn after publication |