CN106896105B - 一种检测单晶叶片小角度晶界取向差的方法 - Google Patents

一种检测单晶叶片小角度晶界取向差的方法 Download PDF

Info

Publication number
CN106896105B
CN106896105B CN201710004551.9A CN201710004551A CN106896105B CN 106896105 B CN106896105 B CN 106896105B CN 201710004551 A CN201710004551 A CN 201710004551A CN 106896105 B CN106896105 B CN 106896105B
Authority
CN
China
Prior art keywords
single crystal
angle
crystal blade
low
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710004551.9A
Other languages
English (en)
Other versions
CN106896105A (zh
Inventor
喻健
韩梅
岳晓岱
李嘉荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Guiyang Hangfa Precision Casting Co Ltd
Original Assignee
BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp filed Critical BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp
Priority to CN201710004551.9A priority Critical patent/CN106896105B/zh
Publication of CN106896105A publication Critical patent/CN106896105A/zh
Application granted granted Critical
Publication of CN106896105B publication Critical patent/CN106896105B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8477Investigating crystals, e.g. liquid crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明属于单晶高温合金涡轮叶片制造技术,涉及一种检测单晶叶片小角度晶界取向差的方法,该方法尤其适用于15°以内的单晶叶片小角度晶界取向差检测,也可适用于15°以上大角度晶界取向差的检测。第一步:采用可显晶腐蚀剂对单晶叶片进行腐蚀;第二步:采用目视或放大镜观察沿着单晶叶片生长方向单晶叶片侧面的小角度晶界两侧一次枝晶杆;第三步:采用目视或放大镜观察垂直于单晶叶片生长方向单晶叶片横截面的小角度晶界两侧二次枝晶杆;第四步:采用公式或者计算单晶叶片小角度晶界的取向差。本发明方法根据单晶叶片的实际情况,能准确检测单晶叶片小角度晶界取向差的实际大小。该方法通过测量一次枝晶杆夹角和二次枝晶杆夹角,实际操作方便。

Description

一种检测单晶叶片小角度晶界取向差的方法
技术领域
本发明属于单晶高温合金涡轮叶片制造技术,涉及一种检测单晶叶片小角度晶界取向差的方法,该方法尤其适用于15°以内的单晶叶片小角度晶界取向差检测,也可适用于15°以上大角度晶界取向差的检测。
背景技术
单晶叶片是单晶高温合金采用定向凝固工艺浇铸只有一个晶粒组成零件。由于单晶叶片内部的原子和组织按照预定的方向生长而形成的单一柱状晶粒,单晶叶片的热强性能显著提高,综合性能优异。目前,先进航空发动机涡轮工作叶片和导向叶片普遍采用单晶叶片
单晶叶片结构十分复杂,存在壁厚突变以及较大的横向缘板,在定向凝固过程中,温度场、溶质场、温度梯度场稳定性受影响,凝固过程不可避免地在叶片不同位置合金的原子和组织按照各自不同的预定方向生长而形成不同的柱状晶粒,由于柱状晶粒的原子排列和组织不同,使得相邻柱状晶粒之间形成晶界,晶界两侧柱状晶粒原子排列的位相差称为取向差。通常由于单晶叶片晶界的两侧柱状晶粒取向差小于15°而称为小角度晶界。
根据计算方法不同,单晶叶片小角度晶界取向差计算可以分为R-1cos、R-2cos、R-2RMS、R-3cos、R-3RMS,其中R-2cos和R-2RMS是目前国际上单晶叶片小角度晶界取向差常用计算方法。其中R-2cos等于 为两个晶粒最邻近的<001>方向夹角,如图1所示,τ为两个晶粒最邻近的<001>方向旋转重合后,平行于重合<001>方向的两个晶粒的{001}面的最小夹角,如图2所示。当和τ角度较小的时候,晶界的取向差可以近似用R-2RMS计算,R-2RMS等于
由于单晶高温合金一般不含或者少含晶界强化元素,小角度晶界取向差大小影响单晶叶片的安全使用。因此,单晶叶片小角度晶界取向差的测量对单晶叶片使用是不可或缺的。
目前,检测单晶叶片小角度晶界取向差的可以采用目视判断衬度、EBSD(电子背散射衍射)、X射线等方法。
目视判断衬度方法根据单晶叶片表面小角度晶界两侧晶粒不同的原子排列,腐蚀后在叶片表面产生反射衬度差来判断角度大小,由于小角度晶界是一个立体三维结构,根据叶片表面产生反射衬度差无法检测小角度晶界取向差;
EBSD采用电子束照射叶片小角度晶界两侧的晶粒,确定晶界两侧晶粒的原子排布方向,采用R-1cos计算方法获得小角度晶界的取向差。EBSD能检测微区的小角度晶界取向差,但是EBSD方法要求试样表面的应力较小,存在制样困难,该方法主要用于科学研究,很难用于单晶叶片的实际生产过程。
X射线是目前检测单晶叶片小角度晶界取向差最准确的方法,该方法采X射线照射叶片小角度晶界两侧的晶粒获得晶粒两侧的原子排布方向,采用R-1cos、R-2cos、R-2RMS、R-3cos、R-3RMS其中任何一种计算出小角度晶界的取向差。该方法可以准确检测单晶叶片的小角度晶界取向差,但是X射线检测方法需要采用X射线设备,存在增加单晶叶片的检测工序,增加叶片的检测成本。
发明内容
本发明是针对现有技术中不足而设计的采用目视检测单晶叶片小角度晶界取向差的方法。其目的是快速准确检测单晶叶片小角度晶界取向差。
本发明的目的是通过以下技术方案来实现的:第一步:采用可显晶腐蚀剂对单晶叶片进行腐蚀;第二步:采用目视或放大镜观察沿着单晶叶片生长方向单晶叶片侧面的小角度晶界两侧一次枝晶杆,采用量角器测量单晶叶片侧面的小角度晶界两侧一次枝晶杆夹角第三步:采用目视或放大镜观察垂直于单晶叶片生长方向单晶叶片横截面的小角度晶界两侧二次枝晶杆,采用量角器测量单晶叶片横截面的小角度晶界两侧二次枝晶杆最小夹角τ′;第四步:采用公式或者计算单晶叶片小角度晶界的取向差。
本发明具有的优点和有益效果是:本发明方法根据单晶叶片的一次枝晶杆方向和二次枝晶杆方向分别近似平行于叶片内部横向和纵向原子的<001>方向,沿着生长方向的单晶叶片侧面晶界两侧的一次枝晶杆之间的夹角可以近似等于最邻近的两晶粒原子的<001>夹角垂直叶片生长方向叶片横截面的二次枝晶杆之间最小夹角τ′可以近似等于平行于<001>方向的{001}最小夹角τ。因此,通过测量单晶叶片晶界两侧的一次枝晶杆之间的夹角和二次枝晶杆之间的最小夹角τ′,依据或者可以比较准确测量该叶片的小角度晶界取向差。本发明方法根据单晶叶片的实际情况,能准确检测单晶叶片小角度晶界取向差的实际大小。该方法通过测量一次枝晶杆夹角和二次枝晶杆夹角,实际操作方便。此外,该方法采用目视检测,避免采用设备检测,具有速度快,易于操作,节省叶片成本。
附图说明
图1是角的定义示意图。
图2是τ角的定义示意图。
图3单晶叶片上角的定义示意图。
图4单晶叶片上τ'角的定义示意图。
具体实施方式
采用目视或放大镜根据小角度晶界1两侧的一次枝晶杆2夹角和二次枝晶杆3夹角判断小角度晶界取向差。
第一步:采用可显晶腐蚀剂对单晶叶片进行腐蚀;第二步:观察沿着单晶叶片生长方向单晶叶片表面小角度晶界1两侧的一次枝晶杆2,采用量角器测量单晶叶片表面晶界两侧的一次枝晶杆2夹角第三步:观察垂直于生长方向单晶叶片横截面的小角度晶界1两侧二次枝晶杆3,采用量角器测量单晶叶片横截面晶界两侧二次枝晶杆3最小夹角τ′;第四步:采用公式或者计算单晶叶片小角度晶界1的取向差。
实施例1某单晶叶片叶身小角度晶界取向差测量
第一步:采用HCl:H2O2体积为10:1的腐蚀剂对单晶叶片进行腐蚀;第二步:观察沿着单晶叶片生长方向单晶叶片侧面小角度晶界1两侧的一次枝晶杆2,采用量角器测量单晶叶片侧面小角度晶界1两侧的一次枝晶杆2夹角为0°;第三步:观察垂直于生长方向单晶叶片横截面的小角度晶界1两侧的二次枝晶杆3,采用量角器测量单晶叶片横截面小角度晶界两侧的二次枝晶杆3最小夹角τ′为6°;第四步:采用公式计算该单晶叶片小角度晶界1的取向差为6°。
采用X射线设备测得该单晶叶片的小角度晶界1取向差为5.6°,与目视检测结果一致。
实施例2某单晶叶片缘板A晶粒、B晶粒、C晶粒晶界取向差测量
第一步:采用HCl:H2O2体积为10:1的腐蚀剂对单晶叶片进行腐蚀;观察到叶片缘板存在三个晶粒,分别称A晶粒、B晶粒、C晶粒;第二步:观察沿着单晶叶片生长方向单晶叶片侧面小角度晶界1两侧的一次枝晶杆2,采用量角器测量单晶叶片侧面A晶粒和B晶粒的一次枝晶杆2夹角为8°,B晶粒和C晶粒的一次枝晶杆2夹角为20°,A晶粒和C晶粒的一次枝晶杆2夹角为27°,;第三步:观察垂直于生长方向单晶叶片横截面的小角度晶界1两侧的二次枝晶杆3,采用量角器测量单晶叶片横截面A晶粒和B晶粒的二次枝晶杆3最小夹角τ′为12°,B晶粒和C晶粒的二次枝晶杆3最小夹角τ′为14°,A晶粒和C晶粒的二次枝晶杆3最小夹角τ′为23°;第四步:采用公式计算该单晶叶片A晶粒和B晶粒晶界取向差为14.4°,B晶粒和C晶粒晶界取向差为24.2°,A晶粒和C晶粒晶界取向差为34.9°。
采用X射线设备,测得该叶片缘板A晶粒和B晶粒晶界取向差为14.1°,B晶粒和C晶粒晶界取向差为29.3°,A晶粒和C晶粒晶界取向差为33.6°。本发明方法目检的结果与X射线设备检测结果一致。

Claims (1)

1.一种检测单晶叶片小角度晶界取向差的方法,其特征在于:第一步:采用可显晶腐蚀剂对单晶叶片进行腐蚀;第二步:采用目视或放大镜观察沿着单晶叶片生长方向单晶叶片侧面的小角度晶界两侧一次枝晶杆,采用量角器测量单晶叶片侧面的小角度晶界两侧一次枝晶杆夹角第三步:采用目视或放大镜观察垂直于单晶叶片生长方向单晶叶片横截面的小角度晶界两侧二次枝晶杆,采用量角器测量单晶叶片横截面的小角度晶界两侧二次枝晶杆最小夹角τ′;第四步:采用公式或者计算单晶叶片小角度晶界的取向差。
CN201710004551.9A 2017-01-04 2017-01-04 一种检测单晶叶片小角度晶界取向差的方法 Active CN106896105B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710004551.9A CN106896105B (zh) 2017-01-04 2017-01-04 一种检测单晶叶片小角度晶界取向差的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710004551.9A CN106896105B (zh) 2017-01-04 2017-01-04 一种检测单晶叶片小角度晶界取向差的方法

Publications (2)

Publication Number Publication Date
CN106896105A CN106896105A (zh) 2017-06-27
CN106896105B true CN106896105B (zh) 2019-07-23

Family

ID=59198309

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710004551.9A Active CN106896105B (zh) 2017-01-04 2017-01-04 一种检测单晶叶片小角度晶界取向差的方法

Country Status (1)

Country Link
CN (1) CN106896105B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109238107A (zh) * 2018-10-10 2019-01-18 成都航宇超合金技术有限公司 用于镍基单晶高温合金叶片取向偏离角度的测量方法
CN110487788B (zh) * 2019-07-12 2021-08-20 中国科学院金属研究所 一种单晶高温合金小角度晶界形成倾向性的评定方法
CN111104641B (zh) * 2019-12-10 2023-07-21 重庆大学 一种三维空间内的计算机识别晶粒方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0202239A4 (en) * 1984-09-28 1988-06-27 Demetron Inc CONTINUOUS CASTING PROCESS AND LINGOT PRODUCED BY THIS PROCESS.
CN107614718A (zh) * 2015-06-16 2018-01-19 株式会社神户制钢所 高强度铝合金热锻材

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0202239A4 (en) * 1984-09-28 1988-06-27 Demetron Inc CONTINUOUS CASTING PROCESS AND LINGOT PRODUCED BY THIS PROCESS.
CN107614718A (zh) * 2015-06-16 2018-01-19 株式会社神户制钢所 高强度铝合金热锻材

Also Published As

Publication number Publication date
CN106896105A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
Kulawik et al. Imaging and characterization of γ′ and γ ″nanoparticles in Inconel 718 by EDX elemental mapping and FIB–SEM tomography
CN106896105B (zh) 一种检测单晶叶片小角度晶界取向差的方法
Liu et al. The effects of microstructure and microtexture generated during solidification on deformation micromechanism in IN713C nickel-based superalloy
Herbig et al. Atomic-scale quantification of grain boundary segregation in nanocrystalline material
Chen et al. In-situ study of adjacent grains slip transfer of Inconel 718 during tensile process at high temperature
Xu et al. Sliver defect formation in single crystal Ni-based superalloy castings
Li et al. Quantitative analysis of withdrawal rate on stray grain formation in the platforms of a Ni-Based single crystal dummy blade
D’Souza et al. Accuracy of composition measurement using X-ray spectroscopy in precipitate-strengthened alloys: Application to Ni-base superalloys
Keinan et al. Integrated imaging in three dimensions: providing a new lens on grain boundaries, particles, and their correlations in polycrystalline silicon
Pierret et al. Combining neutron diffraction and imaging for residual strain measurements in a single crystal turbine blade
Gupta et al. Orientation anisotropy and strain localization during elevated temperature tensile deformation of single crystal and bi-crystal Ni-based GTD444 superalloy
Albrecht et al. High-resolution diffraction imaging of misorientation in Ni-based single crystal superalloys
CN116735060A (zh) 一种航空铝合金t形锻件残余应力的测试方法
Saukkonen et al. Plastic strain and residual stress distributions in an AISI 304 stainless steel BWR pipe weld
Speidel et al. Ambient grain orientation imaging on complex surfaces
Gilles et al. Neutron-, X-ray-and electron-diffraction measurements for the determination of γ/γ′ lattice misfit in Ni-base superalloys
Samothrakitis et al. The FALCON double-detector Laue diffractometer add-on for grain mapping at POLDI
Nowakowski et al. Elastic and plastic strain measurement using electron backscatter diffraction technique: The influence of sample preparation
Judge et al. Adopting Transmission Kikuchi Diffraction to Characterize Grain Structure and Texture of Zr-2.5 Nb CANDU Pressure Tubes
Wang et al. Comparison of residual stress before and after shot peening on the surface of a Ti-6Al-4V titanium alloy by μ-X360n equipment
Onyszko Gamma Prime Crystal Lattice Orientation of Turbine Blades of the Single Crystal Nickel Based CMSX-4 Superalloy
Liang et al. Effect of section size on the microstructure of thin-walled specimen of DD6 single crystal superalloy
Strunz et al. In situ observation of morphological changes of γ′ precipitates in a pre-deformed single-crystal Ni-base superalloy
Napolitano et al. Array ordering in dendritic crystals and the influence on crystal perfection
Piazolo et al. Optical grain size measurements: What is being measured? Comparative study of optical and EBSD grain sizes determination in 2D Al foil

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 100095 box 81, Haidian District, Beijing

Patentee after: AECC BEIJING INSTITUTE OF AERONAUTICAL MATERIALS

Address before: 100095 Beijing 81 mailbox in Haidian District, Beijing

Patentee before: AVIC BEIJING INSTITUTE OF AERONAUTICAL MATERIALS

CP03 Change of name, title or address
TR01 Transfer of patent right

Effective date of registration: 20220112

Address after: 550014 shawen ecological science and Technology Industrial Park, Baiyun District, Guiyang City, Guizhou Province

Patentee after: GUIYANG HANGFA PRECISION CASTING Co.,Ltd.

Address before: 100095 box 81, Haidian District, Beijing

Patentee before: AECC BEIJING INSTITUTE OF AERONAUTICAL MATERIALS

TR01 Transfer of patent right