CN106887328B - 消除反常自旋重取向的非晶CoSiB厚膜及其制备方法 - Google Patents
消除反常自旋重取向的非晶CoSiB厚膜及其制备方法 Download PDFInfo
- Publication number
- CN106887328B CN106887328B CN201710044602.0A CN201710044602A CN106887328B CN 106887328 B CN106887328 B CN 106887328B CN 201710044602 A CN201710044602 A CN 201710044602A CN 106887328 B CN106887328 B CN 106887328B
- Authority
- CN
- China
- Prior art keywords
- cosib
- amorphous
- sputtering
- film
- films
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/18—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0027—Thick magnetic films
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/18—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
- H01F41/183—Sputtering targets therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/30—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
- H01F41/302—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Thin Magnetic Films (AREA)
- Hall/Mr Elements (AREA)
Abstract
本发明涉及磁性薄膜制备技术领域,公开了一种消除反常自旋重取向的非晶CoSiB厚膜及其制备方法。本发明非晶CoSiB厚膜为(CoSiB/Ti)n/CoSiB纳米周期结构,每层CoSiB薄膜的厚度为100nm‑300nm,每层Ti薄膜的厚度为2‑8nm。本发明采用CoSiB强磁靶为溅射靶材,以射频磁控溅射的方式制备CoSiB薄膜;然后采用Ti靶材为溅射靶材,以直流磁控溅射的方式,在制得的CoSiB薄膜表面镀制Ti薄膜;反复交替生长,制备n>1的纳米周期结构。
Description
技术领域
本发明涉及磁性薄膜制备技术领域,特别是涉及一种消除反常自旋重取向的非晶CoSiB厚膜及其制备方法。
背景技术
Co基的非晶合金具有较高的磁导率,低的饱和场,以及接近于零的磁致伸缩系数,优良的机械性能、软磁特性以及抗氧化腐蚀的能力,因此被广泛应用于磁传感器、磁头磁芯、变压器、薄膜电感器和垂直记录的软磁底层等领域。
现有研究表明,基于Co-Si-B非晶薄膜制备的多层膜体系,其巨磁阻抗效应非常显著,具有非常高的阻抗变化率,并且激励电流的频率非常低,为100KHz~10MHz,这样会降低基于巨磁阻抗效应的磁传感器件在电路信号方面处理的难度,提高了磁传感器的灵敏度。但是,随着薄膜厚度增加,Co-Si-B非晶薄膜体系会呈现一种反常的磁化行为,称之为自旋重取向现象,即在磁化过程中,磁化方向由面内向面外方向偏转。该现象的出现导致的后果是恶化了薄膜的软磁特性,使得Co-Si-B非晶厚膜的巨磁阻抗特性消失。因而对于Co-Si-非晶合金而言,在薄膜厚度达到临界尺度后,自旋相关的磁化取向问题对于巨磁阻抗效应的抑制非常的严重。
出现自旋重取向现象的磁性材料的磁滞回线呈现颇好的矩形,其矫顽场增大,但其剩磁较低,磁化强度增加很慢,饱和场很大。磁畴观察说明迷宫畴的存在是导致这种难磁化的原因。而这种迷宫畴被认为是由垂直磁各向异性造成的。对于非晶体系而言,广泛的研究认为,垂直各向异性的来源是由于磁致伸缩-应力耦合效应造成的。所以一直以来应力效应导致的垂直各项异性的出现被认为是非晶体系自旋重取向现象发生的原因。因而,消除薄膜应力,通过热生长或者退火的方式消除微观应力是实现对于自旋重取向现象的可控调制的有效方法。
但是对于Co-Si-B材料体系,采用热生长方式并不能有效控制自旋重取向现象,试验表明,在很宽的温度范围内,并没有观察到磁特性的改变,仍保留几乎与原有相同的磁各向异性。除此之外,在延续很宽的温度范围内,从低温5K直到居里温度,探测厚膜的Co-Si-B非晶合金的磁滞回线,其形状仍然延续为低剩磁状态下的矩形曲线,表明了垂直各向异性仍然存在,没有发现反向的自旋重取向现象。换言之,温度效应诱发的应力释放或者原子弛豫现象不是形成自旋重取向的诱因。寻找有效的方法来控制垂直各向异性的产生对于Co-Si-B非晶合金尤为重要。
发明内容
本发明提供一种可有效消除非晶CoSiB厚膜的反常自旋重取向的多层结构膜及其制备方法。
解决的技术问题是:现有Co-Si-B材料体系不能有效控制自旋重取向现象。
为解决上述技术问题,本发明采用如下技术方案:
本发明消除反常自旋重取向的非晶CoSiB厚膜,所述非晶CoSiB厚膜为(CoSiB/Ti)n/CoSiB纳米周期结构,每层CoSiB薄膜的厚度为100nm-300nm,每层Ti薄膜的厚度为2-8nm。
本发明消除反常自旋重取向的非晶CoSiB厚膜,进一步的,所述CoSiB薄膜和Ti薄膜之间的界面粗糙度不大于2nm。
本发明消除反常自旋重取向的非晶CoSiB厚膜的制备方法,包括以下步骤:
步骤一、CoSiB薄膜制备:采用CoSiB强磁靶为溅射靶材,以射频磁控溅射的方式制备CoSiB薄膜,溅射功率为250w,溅射时间为4-6min;
步骤二、Ti薄膜制备:采用Ti靶材为溅射靶材,以直流磁控溅射的方式,在步骤一制得的CoSiB薄膜表面镀制Ti薄膜,溅射功率为80w,溅射时间为14-28s;
步骤三、纳米周期结构制备:在步骤二制得的薄膜表面重复步骤一和步骤二,制备n>1的周期结构;
步骤四、CoSiB厚膜完成:重复步骤一,将步骤三制得的(CoSiB/Ti)n周期结构厚膜的Ti薄膜表面镀制CoSiB薄膜。
本发明消除反常自旋重取向的非晶CoSiB厚膜的制备方法,进一步的,所述非晶CoSiB厚膜使用磁控溅射仪进行制备,磁控溅射腔室内通入氩气,氩气压为0.4Pa,生长温度为室温,背底真空度小于2×10-5Pa。
本发明消除反常自旋重取向的非晶CoSiB厚膜的制备方法,进一步的,步骤一按照以下方法制备CoSiB薄膜:
将衬底旋转至CoSiB靶材下方,控制磁控溅射腔室内的气压为2-6Pa,起辉后将气压调制0.4Pa,打开靶材与衬底中间的挡板,通过调节溅射时间控制薄膜厚度;溅射完毕后,停止射频电源工作,关闭靶材与衬底中间的挡板。
本发明消除反常自旋重取向的非晶CoSiB厚膜的制备方法,进一步的,步骤二具体按照以下方法制备Ti薄膜:
将步骤一生长完成的CoSiB薄膜旋转至Ti靶材下方,控制磁控溅射腔室内的气压为0.4Pa,打开靶材与衬底中间的挡板,通过调节溅射时间控制薄膜厚度;溅射完毕后,停止射频电源工作,关闭靶材与衬底中间的挡板。
本发明消除反常自旋重取向的非晶CoSiB厚膜的制备方法,进一步的,所述磁控溅射腔室内的气压通过调节流量计数值与分子泵下方的插板阀开启的数值来控制。
本发明消除反常自旋重取向的非晶CoSiB厚膜的制备方法,进一步的,步骤二和步骤三中Ti层的生长速率控制在0.16nm/s以下。
本发明消除反常自旋重取向的非晶CoSiB厚膜及其制备方法与现有技术相比,具有如下有益效果:
本发明消除反常自旋重取向的非晶CoSiB厚膜引入了缓冲层Ti薄膜插入到磁性层CoSiB薄膜之间,交替堆叠生长,形成了(CoSiB/Ti)n/CoSiB纳米周期结构的多层膜,实现磁性层的面内磁性原子的有序排列,消除向面外有序排列的状态,结合界面的有效磁耦合效应来消除厚膜Co-Si-B非晶合金容易出现的垂直各项异性,保存厚膜的软磁特性。
本发明CoSiB磁性层与Ti薄膜采用不同的溅射方式,设置不同的溅射功率,通过调节溅射时间来控制薄膜层的厚度,制得的多层膜具有很好的软磁特性,很好的消除了Co-Si-B非晶薄膜体系因其膜厚度增加会出现的自旋重取向现象。
下面结合附图对本发明的消除反常自旋重取向的非晶CoSiB厚膜及其制备方法作进一步说明。
附图说明
图1为制备实施例与对比实施例制得的非晶合金膜的磁滞回线;
图2为制备实施例与对比实施例制得的非晶合金膜的巨磁阻抗图谱。
具体实施方式
本发明消除反常自旋重取向的非晶CoSiB厚膜,为(CoSiB/Ti)n/CoSiB纳米周期结构,每层CoSiB薄膜的厚度为100nm-300nm,每层Ti薄膜的厚度为2-8nm;CoSiB薄膜和Ti薄膜之间的界面粗糙度不大于2nm。
制备实施例
本发明消除反常自旋重取向的非晶CoSiB厚膜的制备,在磁控溅射仪的真空室内进行,具体按照以下方式制备:
步骤一、CoSiB薄膜制备:采用CoSiB强磁靶为溅射靶材,以射频磁控溅射的方式制备CoSiB薄膜;
磁控溅射腔室内通入氩气,氩气压为0.4Pa,生长温度为室温,背底真空度小于2×10-5Pa,将衬底旋转至CoSiB靶材下方,设置溅射功率为250w,通过调节流量计数值与分子泵下方的插板阀开启的数值来控制磁控溅射腔室内的气压,将其控制在2-6Pa,起辉后将气压调制0.4Pa,打开靶材与衬底中间的挡板,通过调节溅射时间控制薄膜厚度,溅射时间为4-6min;溅射完毕后,停止射频电源工作,关闭靶材与衬底中间的挡板;
步骤二、Ti薄膜制备:采用Ti靶材为溅射靶材,以直流磁控溅射的方式,在步骤一制得的CoSiB薄膜表面镀制Ti薄膜:
将步骤一生长完成的CoSiB薄膜旋转至Ti靶材下方,设置溅射功率为80w,通过调节流量计数值与分子泵下方的插板阀开启的数值来控制磁控溅射腔室内的气压,将其控制在0.4Pa,打开靶材与衬底中间的挡板,通过调节溅射时间控制薄膜厚度,溅射时间为14-28s;溅射完毕后,停止射频电源工作,关闭靶材与衬底中间的挡板。
步骤三、纳米周期结构制备:在步骤二制得的薄膜表面重复步骤一和步骤二,制备n>1的周期结构;
步骤四、CoSiB厚膜完成:重复步骤一,将步骤三制得的(CoSiB/Ti)n周期结构厚膜的Ti薄膜表面镀制CoSiB薄膜。
通过调节溅射生长的时间来制备不同调制比的(CoSiB/Ti)n/CoSiB纳米周期结构的多层膜,调制比即为单层CoSiB和单层Ti的厚度比。采用上述方法制备的非晶CoSiB厚膜的控制参数如表1所述。
表1 制备实施例的调制比
制备例1 | 制备例2 | 制备例3 | |
调制比 | 100:2 | 100:4 | 100:8 |
n | 3 | 3 | 3 |
(CoSiB/Ti)n/CoSiB多层膜厚度nm | 400 | 400 | 400 |
对比实施例
按照制备实施例中步骤一所述方法,制备CoSiB薄膜,调控制得的CoSiB膜的厚度为400nm。
将上述制备实施例制得的(CoSiB/Ti)n/CoSiB纳米周期结构的多层膜与对比实施例1制得的CoSiB膜进行磁化测试,采用振动磁强计测试各膜的磁化曲线,如图1所示。
由图1可知,加入Ti层之后,多层膜体系呈现出较窄的矩形磁化曲线,薄膜的矫顽力场的磁场值Hc小于2Oe,饱和磁场Hs很小,剩磁比大,软磁性能好。而不加入Ti层的CoSiB磁性薄膜,其磁化曲线较宽,薄膜的矫顽力场Hc变大,饱和磁场Hs也相应增加,剩磁比低,软磁性恶化,薄膜面外取向的磁化特征明显。
将上述制备实施例制得的(CoSiB/Ti)n/CoSiB纳米周期结构的多层膜与对比实施例1制得的CoSiB膜进行抗阻分析,使用HP4294A型阻抗分析仪,测试得到各膜的巨磁阻抗谱,如图2所示。
抗阻分析的测试方法如下:
阻抗分析仪输出频率为40Hz-110MHz,交流激励电流I cosωt,幅值设置为恒定值10mA,无直流偏置。在样品两端设置电极,用银线接入阻抗分析仪,样品位于直径为100cm亥姆霍兹线圈线圈均匀场Hext之中,Hext与地磁场方向垂直。在样品纵向施加直流外磁场Hext,外磁场方向与薄膜样品内电流方向同向,此时获得样品的纵向巨磁阻抗效应强度。
由图2可知,不加入Ti层的CoSiB磁性薄膜的巨磁阻抗效应不存在,说明此薄膜的软磁特性已经恶化,磁化方向已由面内向面外方向偏转,已经出现了反常的自旋重取向磁化现象。而本发明制备实施例制得的多层膜体系则呈现巨磁阻抗效应,很好的消除了自旋重取向磁化现象。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
Claims (8)
1.消除反常自旋重取向的非晶CoSiB厚膜的制备方法,其特征在于:包括以下步骤:
步骤一、CoSiB薄膜制备:采用CoSiB为溅射靶材,以射频磁控溅射的方式制备CoSiB薄膜,溅射功率为250w,溅射时间为4-6min;
步骤二、Ti薄膜制备:采用Ti靶材为溅射靶材,以直流磁控溅射的方式,在步骤一制得的CoSiB薄膜表面镀制Ti薄膜,溅射功率为80w,溅射时间为14-28s;
步骤三、纳米周期结构制备:在步骤二制得的薄膜表面重复步骤一和步骤二,制备n>1的周期结构;
步骤四、CoSiB厚膜完成:重复步骤一,将步骤三制得的(CoSiB/Ti)n周期结构厚膜的Ti薄膜表面镀制CoSiB薄膜,其中:
所述非晶CoSiB厚膜为(CoSiB/Ti)n/CoSiB纳米周期结构,每层CoSiB薄膜的厚度为100nm-300nm,每层Ti薄膜的厚度为2-8nm。
2.根据权利要求1所述的消除反常自旋重取向的非晶CoSiB厚膜的制备方法,其特征在于:所述CoSiB薄膜和Ti薄膜之间的界面粗糙度不大于2nm。
3.根据权利要求1或2所述的消除反常自旋重取向的非晶CoSiB厚膜的制备方法,其特征在于:所述非晶CoSiB厚膜使用磁控溅射仪进行制备,磁控溅射腔室内通入氩气,氩气压为0.4Pa,生长温度为室温,背底真空度小于2×10-5Pa。
4.根据权利要求3所述的消除反常自旋重取向的非晶CoSiB厚膜的制备方法,其特征在于:步骤一按照以下方法制备CoSiB薄膜:
将衬底旋转至CoSiB靶材下方,控制磁控溅射腔室内的气压为2-6Pa,起辉后将气压调制0.4Pa,打开靶材与衬底中间的挡板,通过调节溅射时间控制薄膜厚度;溅射完毕后,停止射频电源工作,关闭靶材与衬底中间的挡板。
5.根据权利要求1或2所述的消除反常自旋重取向的非晶CoSiB厚膜的制备方法,其特征在于:步骤二具体按照以下方法制备Ti薄膜:
将步骤一生长完成的CoSiB薄膜旋转至Ti靶材下方,控制磁控溅射腔室内的气压为0.4Pa,打开靶材与衬底中间的挡板,通过调节溅射时间控制薄膜厚度;溅射完毕后,停止射频电源工作,关闭靶材与衬底中间的挡板。
6.根据权利要求4所述的消除反常自旋重取向的非晶CoSiB厚膜的制备方法,其特征在于:所述磁控溅射腔室内的气压通过调节流量计数值与分子泵下方的插板阀开启的数值来控制。
7.根据权利要求5所述的消除反常自旋重取向的非晶CoSiB厚膜的制备方法,其特征在于:所述磁控溅射腔室内的气压通过调节流量计数值与分子泵下方的插板阀开启的数值来控制。
8.根据权利要求1或2所述的消除反常自旋重取向的非晶CoSiB厚膜的制备方法,其特征在于:步骤二和步骤三中Ti层的生长速率控制在0.16nm/s以下。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710044602.0A CN106887328B (zh) | 2017-01-19 | 2017-01-19 | 消除反常自旋重取向的非晶CoSiB厚膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710044602.0A CN106887328B (zh) | 2017-01-19 | 2017-01-19 | 消除反常自旋重取向的非晶CoSiB厚膜及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106887328A CN106887328A (zh) | 2017-06-23 |
CN106887328B true CN106887328B (zh) | 2018-06-19 |
Family
ID=59175912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710044602.0A Active CN106887328B (zh) | 2017-01-19 | 2017-01-19 | 消除反常自旋重取向的非晶CoSiB厚膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106887328B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110568380A (zh) * | 2019-09-17 | 2019-12-13 | 哈尔滨工业大学 | 一种提高Co基非晶纤维巨磁阻抗性能的方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS586522A (ja) * | 1981-07-04 | 1983-01-14 | Sony Corp | 磁気ヘツドの製造方法 |
JP2005347688A (ja) * | 2004-06-07 | 2005-12-15 | Fujitsu Ltd | 磁気デバイス用磁性膜 |
CN101526590A (zh) * | 2008-03-06 | 2009-09-09 | 安徽大学 | 一种基于巨磁阻技术的高精度弱磁场传感器及其制备方法 |
US20130001717A1 (en) * | 2011-07-01 | 2013-01-03 | Yuchen Zhou | Perpendicular mram with mtj including laminated magnetic layers |
US10953319B2 (en) * | 2013-01-28 | 2021-03-23 | Yimin Guo | Spin transfer MRAM element having a voltage bias control |
-
2017
- 2017-01-19 CN CN201710044602.0A patent/CN106887328B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN106887328A (zh) | 2017-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106207364B (zh) | 基于硬磁材料的自旋微波振荡器 | |
Leitao et al. | Field detection in spin valve sensors using CoFeB/Ru synthetic-antiferromagnetic multilayers as magnetic flux concentrators | |
Zi et al. | Magnetic properties of c-axis oriented Sr0. 8La0. 2Fe11. 8Co0. 2O19 ferrite film prepared by chemical solution deposition | |
CN106887328B (zh) | 消除反常自旋重取向的非晶CoSiB厚膜及其制备方法 | |
Svalov et al. | Modification of the “Transcritical” state in Ni 75 Fe 16 Cu 5 Mo 4 films produced by RF sputtering | |
Kawaguchi et al. | Electric field effect on magnetization of an Fe ultrathin film | |
Song et al. | Completely inverted hysteresis loops: Inhomogeneity effects or experimental artifacts | |
CN1921168A (zh) | 一种铁合金氮化物纳米巨磁阻抗薄膜材料及制备方法 | |
CN104465017A (zh) | 一种Nd掺杂CoZr基高频软磁薄膜及其制备 | |
JP2013535094A (ja) | 磁性ナノクラスター | |
Mansilla et al. | Ferromagnetic resonance of disordered FePt thin films | |
Yang et al. | Anomalous inverse spin Hall effect in perpendicularly magnetized Co/Pd multilayers | |
Xu et al. | High-frequency permeability spectra of FeCoSiN/Al2O3 laminated films: Tuning of damping by magnetic couplings dependent on the thickness of each ferromagnetic layer | |
Perumal et al. | Perpendicular thin films of carbon-doped FePt for ultrahigh-density magnetic recording media | |
Sarıtaş et al. | Analysis of magnesium ferrite and nickel doped magnesium ferrite thin films grown by spray pyrolysis | |
Hai et al. | Magnetic properties of hard magnetic FePt prepared by cold deformation | |
JP2701557B2 (ja) | 磁気抵抗効果素子およびその製造方法 | |
Mendes et al. | Anisotropic magnetoresistance in sputtered Co 48 Ag 52 granular films | |
Xu et al. | Influence of interlayer thickness on high-frequency magnetic properties of FeCoSiN/AlO/FeCoSiN trilayers | |
Lu et al. | Influence of Cu underlayer on the high-frequency magnetic properties of FeCoSiO thin films | |
Haeiwa et al. | (Fe, Co)-P thin films prepared with a reactive evaporation method | |
Xu et al. | Tuning of the microwave magnetization dynamics in Dy-doped Fe 65 Co 35-based thin films | |
Jordan et al. | Stochastic magnetic resonance of absorption effects of surface morphology in thin film magnetics | |
Borge | Giant magneto-impedance effect in thin film layered structures | |
CN110021481B (zh) | 一种制备人工反铁磁体复合材料的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |