CN106887039B - 一种基于医学影像的器官和病灶的三维成像方法及系统 - Google Patents

一种基于医学影像的器官和病灶的三维成像方法及系统 Download PDF

Info

Publication number
CN106887039B
CN106887039B CN201710110872.7A CN201710110872A CN106887039B CN 106887039 B CN106887039 B CN 106887039B CN 201710110872 A CN201710110872 A CN 201710110872A CN 106887039 B CN106887039 B CN 106887039B
Authority
CN
China
Prior art keywords
image
organ
split
focus
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710110872.7A
Other languages
English (en)
Other versions
CN106887039A (zh
Inventor
曲建明
蒲立新
曲飞寰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHENGDU GOLDISC UESTC MULTIMEDIA TECHNOLOGY CO LTD
Original Assignee
CHENGDU GOLDISC UESTC MULTIMEDIA TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHENGDU GOLDISC UESTC MULTIMEDIA TECHNOLOGY CO LTD filed Critical CHENGDU GOLDISC UESTC MULTIMEDIA TECHNOLOGY CO LTD
Priority to CN201710110872.7A priority Critical patent/CN106887039B/zh
Publication of CN106887039A publication Critical patent/CN106887039A/zh
Application granted granted Critical
Publication of CN106887039B publication Critical patent/CN106887039B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30056Liver; Hepatic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30092Stomach; Gastric

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开了一种基于医学影像的器官和病灶的三维成像方法及系统,方法包括以下步骤:S1:获取待拆分器官的薄层扫描图像;S2:对其中一幅图像的病灶/靶区的外轮廓进行勾画;S3:对包括病灶/靶区的待拆分器官进行三维建模;S4:对三维建模得到的待拆分器官的模型进行多区域拆分。本发明将医学图像分割不仅停留在对整个器官与外部非器官部分进行分割,还进一步的对器官的各个区域进行分割以及对病灶/靶区的分割,方便后期对患者可能患病器官的观察,以及对于病灶/靶区(肿瘤)位置的分析。

Description

一种基于医学影像的器官和病灶的三维成像方法及系统
技术领域
本发明涉及一种基于医学影像的器官和病灶的三维成像方法及系统。
背景技术
医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。它包含以下两个相对独立的研究方向:医学成像系统(medical imaging system)和医学图像处理(medical image processing)。前者是指图像形成的过程,包括对成像机理、成像设备、成像系统分析等问题的研究;后者是指对已经获得的图像作进一步的处理,其目的是或者是使原来不够清晰的图像复原,或者是为了突出图像中的某些特征信息,或者是对图像做模式分类等等。
现有技术的医学影像的形成方式包括CT(Computed Tomography),即电子计算机断层扫描;MR〔Magnetic Resonance〕,即磁共振;DSA(Digital subtractionangiography),即数字血管造影。上述方式均会先采集多幅图像而后进行处理。在本申请中均称为薄层扫描图像。
医学图像分割,指的是一个根据区域间的相似或不同把图像分割成若干区域的过程。目前,主要以各种细胞、组织与器官的图像作为处理的对象。例如磁共振颅脑图像的分割,其目的就在于清晰地描绘出颅脑各个解剖结构的边界,如灰质、白质、脑脊液以及 MR图像中的其它组织,从而提高图像的可读性,为医生诊断和治疗疾病提供更直观的影像信息。
然而现有技术对医学图像分割仅仅停留在对整个器官与外部非器官部分进行分割:比如申请号为CN201510729150.0的发明专利,该发明公开了一种医学图像中器官的识别与分割方法,识别方法包括:获取待处理的医学图像,将所述医学图像分别在X、Y 和Z 轴方向拆分成若干二维图像,并根据目标器官的大小设定检测窗口;利用所述检测窗口按照设定的检测步长分别对所述二维图像进行遍历检测,获取在X、Y 和Z 轴方向的检测结果;将所述检测结果进行结果融合,保留在X、Y和Z 轴三个方向上都检测为阳性的像素点,从而确定所述目标器官边界。又比如申请号为CN201510672278.8的发明专利,该发明公开了一种人体解剖结构模型、植入物快速成型方法,其中公开了该方法首先利用医疗成像系统、三维扫描仪、摄像摄影设备获取目标结构的图像数据;然后通过软件处理图像得到植入物、解剖结构或解剖结构各个部分、各个层次的三维数字模型。并不对某个器官的各个区域进行分割,比如,脑部就包括额叶、颞叶、顶叶、枕叶及小脑等部分,肝脏包括肝左叶和肝右叶等部分。同时,现有技术在分割期间也并不对病灶/靶区部分做特殊处理,使得后期难以对病灶/靶区部分做区别性观察。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于医学影像的器官和病灶的三维成像方法及系统,将医学图像分割不仅停留在对整个器官与外部非器官部分进行分割,还进一步的对器官的各个区域进行分割,同时在分割时通过医生的协助对病灶/靶区做相应的处理,方便后期对病灶/靶区(肿瘤)位置的分析。
本发明的目的是通过以下技术方案来实现的:一种基于医学影像的器官和病灶的三维成像方法,包括以下步骤:
S1:获取待拆分器官的薄层扫描图像;
S2:对其中一幅图像的病灶/靶区的外轮廓进行勾画;
S3:分别对包括病灶/靶区和待拆分器官进行三维建模;
S4:对三维建模得到的待拆分器官的模型进行多区域拆分。
步骤S3中对于待拆分器官的三维建模包括以下子步骤:
S311:识别器官,将器官周围的非器官部分进行分离;
S312:与多种该器官的标准模板进行比较,判断器官形态,并匹配该形态的标准模板;
S313:对该器官进行三维建模。
当器官形态为坍塌或者萎缩或者不完全,则手动对坍塌或者萎缩或者不完全的器官边界进行划分。
所述的待拆分器官为脑叶,所述的多区域为额叶、颞叶、顶叶、枕叶及小脑;所述的方法包括以下子步骤:
S11:获取脑叶的薄层扫描图像;
S12:对其中一幅图像的病灶/靶区的外轮廓进行勾画;
S13:分别对病灶/靶区和待拆分器官进行三维建模,其中对于病灶/靶区的三维建模采用相同阈值的区域增长算法确定边界实现,所述的阈值为灰度值;对于待拆分器官的三维建模为对脑叶的薄层扫描图像进行去头皮去骨处理,构建头部模型;所述的构建头部模型采用图像特征子步骤和定位子步骤实现;所述的图像特征子步骤包括对扫描图像的脑部沟壑进行判断,根据灰度的不同得到脑叶的边界;所述的定位子步骤包括根据对器官的标准模板进行十字交叉定位确认脑叶的边界;
S14:对构建的头部模型进行多区域拆分,包括以下子步骤:
S141:针对任意一个图像,将标准模板对应的模板图像的各区域与个体图像进行空间匹配变形处理,把模板空间的各个脑叶分区图像对应变形到个体脑空间,完成大脑区域分割;
S142:将个体空间脑叶图像和病灶/靶区进行二值化处理,形成mask矩阵;
S143:将mask矩阵转化为系统可识别的区域。
所述的待拆分器官为肝脏,所述的多区域为肝左叶和肝右叶;所述的方法包括以下子步骤:
S21:使用DCMTK读取肝脏的DICOM序列图像;
S22:对其中一幅图像的病灶/靶区的外轮廓进行勾画;
S23:分别对病灶/靶区和待拆分器官进行三维建模,对于病灶/靶区的三维建模采用相同阈值的区域增长算法确定边界实现,所述的阈值为灰度值;对待拆分器官的三维建模包括以下子步骤:
S231:采用各向异性扩散滤波算法去掉噪声,强化图像边缘;
S232:采用OTSU算法强化图像特征;
S233:采用形态学算法、或者水平集分割算法、或者自适应区域生长算法和BP神经网络算法的结合,提取肝脏区域;
S234:腐蚀提取后的图像,并采用漫水填充法对图像进行后处理;
S235:将步骤S234得到的图像与原始图像相与,得到最终的肝脏区域;
S24:对得到的肝脏区域进行多区域拆分,包括以下子步骤:
S241:针对任意一个图像,将标准模板对应的模板图像的各区域与个体图像进行空间匹配变形处理,把模板空间的各个肝脏分区图像对应变形到个体肝脏空间,完成肝脏区域分割;
S242:将个体空间肝脏图像和靶区/病灶进行二值化处理,形成mask矩阵;
S243:将mask矩阵转化为系统可识别的区域。
所述的薄层扫描图像包括CT图像、磁共振图像和DSA图像。
采用所述方法的系统,包括:
医生用终端:用于获取待拆分器官的薄层扫描图像、查看待拆分器官的薄层扫描图像、对其中一幅薄层扫描图像的病灶/靶区的外轮廓进行勾画、上传勾画过的薄层扫描图像、接收三维建模以及多区域拆分的器官模型;
数据中心:通过网络与医生用终端连接,用于接收并保存来自医生用终端上传的进行勾画过的待拆分器官的薄层扫描图像、对包括病灶/靶区的待拆分器官进行三维建模、对三维建模得到的待拆分器官的模型进行多区域拆分、对完成多区域拆分的模型进行保存、向医生用终端发送完成三维建模以及多区域拆分的器官模型。
所述的系统还包括薄层扫描仪器:与医生用终端连接,用于对人体进行薄层扫描、将薄层扫描的图像发送至医生用终端。
所述的数据中心设置于医院内,与医院内的多个医生用终端通过内网连接。
所述的系统还包括一个云中心,所述的云中心分别与数据中心连接,用于获取数据中心保存的数据、在有权限的医生用终端发出查看请求时向医生用终端发送数据。
本发明的有益效果是:本发明提供了一种基于医学影像的器官和病灶的三维成像方法及系统,将医学图像分割不仅停留在对整个器官与外部非器官部分进行分割,还进一步的对器官的各个区域进行分割以及对病灶/靶区的分割,方便后期对患者可能患病器官的观察,以及对于病灶/靶区(肿瘤)位置的分析。
附图说明
图1为本发明方法流程图。
具体实施方式
下面结合附图进一步详细描述本发明的技术方案:如图1所示,一种基于医学影像的器官和病灶的三维成像方法,包括以下步骤:
S1:获取待拆分器官的薄层扫描图像;
S2:对其中一幅图像的病灶/靶区的外轮廓进行勾画;
S3:对包括病灶/靶区的待拆分器官进行三维建模;
S4:对三维建模得到的待拆分器官的模型进行多区域拆分。
在下述任意一个实施例中,所述的薄层扫描图像包括CT图像、磁共振图像和DSA图像。
在下述任意一个实施例中,步骤S2为医生进行勾画。由于对于同一个被扫描人员,具有多个薄层扫描图像(多张水平图像或者多张角度图像),当医生对病灶/靶区的外轮廓进行勾画时,只需选择其中一张带有病灶/靶区的图像进行勾画,方便后期建模。
其中,由于待拆分器官不一定是通常意义下完整的器官,会与标准模板的器官具有一定差异,因此会有一个预先判断的步骤,具体地:
步骤S3中对于待拆分器官的三维建模包括以下子步骤:
S311:识别器官,将器官周围的非器官部分进行分离;
S312:与多种该器官的标准模板进行比较,判断器官形态,并匹配该形态的标准模板;
S313:对该器官进行三维建模。
并且进一步地,当器官形态为坍塌或者萎缩或者不完全,则手动对坍塌或者萎缩或者不完全的器官边界进行划分。比如当判断出为颞叶萎缩的脑部,则选择颞叶萎缩的标准模板完成三维建模以及区域划分,对于颞叶的边界则采用手动划分的方式实现。
另外,标准模板的器官为已经划分了区域的模板,便于后期的对照。
实施例1为对脑叶的拆分;在本实施例中,所述的待拆分器官为脑叶,所述的多区域为额叶、颞叶、顶叶、枕叶及小脑。所述的方法包括以下子步骤:
S11:获取T1加权成像的脑叶的薄层扫描图像;
T1加权成像(T1-weighted imaging,T1WI)是指这种成像方法重点突出组织纵向弛豫差别,而尽量减少组织其他特性如横向弛豫等对图像的影响。
S12:对其中一幅图像的病灶/靶区的外轮廓进行勾画;
S13:分别对病灶/靶区和待拆分器官进行三维建模,其中对于病灶/靶区的三维建模采用相同阈值的区域增长算法确定边界实现,所述的阈值为灰度值;对于待拆分器官的三维建模为对脑叶的薄层扫描图像进行去头皮去骨处理,构建头部模型;所述的构建头部模型采用图像特征子步骤和定位子步骤实现;所述的图像特征子步骤包括对扫描图像的脑部沟壑进行判断,根据灰度的不同得到脑叶的边界;所述的定位子步骤包括根据对器官的标准模板进行十字交叉定位确认脑叶的边界;
采用两种方式共同对脑叶边界进行划分,得到的效果更好。
S14:对构建的头部模型进行多区域拆分,包括以下子步骤:
S141:针对任意一个图像,将标准模板对应的模板图像的各区域与个体图像进行空间匹配变形处理,把模板空间的各个脑叶分区图像对应变形到个体脑空间,完成大脑区域分割;
S142:将个体空间脑叶图像和病灶/靶区进行二值化处理,形成mask矩阵;
S143:将mask矩阵转化为系统可识别的区域。
在本实施例中,所述的系统可识别的区域为可以通过VR设备或者PC设备识别的区域。其中,对于VR设备,采用Unreal Engine或Unity引擎对模型赋予有物理属性的物体,并添加如拾取、拆分等功能程序模块,实现其可VR内操作的特性。方便后期的操作。
实施例2为对肝脏的拆分。在本实施例中,所述的待拆分器官为肝脏,所述的多区域为肝左叶和肝右叶;所述的方法包括以下子步骤:
S21:使用DCMTK读取肝脏的DICOM序列图像;
由于现在的医学影像设备的图像存储和传输正在逐渐向DICOM标准靠拢,在我们进行医学图像处理的过程中,经常需要自己编写和DICOM格式的图像相关的各种程序模块,以完成自己处理功能。如果从头开始理解DICOM的协议,然后完全自己编写这些代码来实现这些协议,是一件工程浩大的事情。德国offis公司开发的DCMTK,为我们提供了实现DICOM协议的一个平台,使得我们可以在它的基础上轻松的完成自己的主要工作,而不必把太多的精力放在实现DICOM协议的细节问题上。
S22:对其中一幅图像的病灶/靶区的外轮廓进行勾画;
S23:分别对病灶/靶区和待拆分器官进行三维建模,对于病灶/靶区的三维建模采用相同阈值的区域增长算法确定边界实现,所述的阈值为灰度值;对待拆分器官的三维建模包括以下子步骤:
S231:采用各向异性扩散滤波算法去掉噪声,强化图像边缘;
S232:采用OTSU算法强化图像特征,包括增强所增强部位的特征形态,防止在后续分割中待分割区域与其它区域混淆;
S233:采用形态学算法、或者水平集分割算法、或者自适应区域生长算法和BP神经网络算法的结合,提取肝脏区域;
S234:腐蚀提取后的图像,并采用漫水填充法对图像进行后处理;
S235:将步骤S234得到的图像与原始图像相与,得到最终的肝脏区域;
S24:对得到的肝脏区域进行多区域拆分,包括以下子步骤:
S241:针对任意一个图像,将标准模板对应的模板图像的各区域与个体图像进行空间匹配变形处理,把模板空间的各个肝脏分区图像对应变形到个体肝脏空间,完成肝脏区域分割;
S242:将个体空间肝脏图像和靶区/病灶进行二值化处理,形成mask矩阵;
S243:将mask矩阵转化为系统可识别的区域。
基于上述方法的实现,本实施例还提供了一种采用所述方法的系统,包括:
医生用终端:用于获取待拆分器官的薄层扫描图像、查看待拆分器官的薄层扫描图像、对其中一幅薄层扫描图像的病灶/靶区的外轮廓进行勾画、上传勾画过的薄层扫描图像、接收三维建模以及多区域拆分的器官模型;
数据中心:通过网络与医生用终端连接,用于接收并保存来自医生用终端上传的进行勾画过的待拆分器官的薄层扫描图像、对包括病灶/靶区的待拆分器官进行三维建模、对三维建模得到的待拆分器官的模型进行多区域拆分、对完成多区域拆分的模型进行保存、向医生用终端发送完成三维建模以及多区域拆分的器官模型。
进一步地,所述的系统还包括薄层扫描仪器:与医生用终端连接,用于对人体进行薄层扫描、将薄层扫描的图像发送至医生用终端。
实施例3为医院设置有自己的内部数据库以及数据处理中心,具体地:所述的数据中心设置于医院内,与医院内的多个医生用终端通过内网连接。每个与薄层扫描仪器的连接的医生用终端,均通过内网与医院内部的数据中心连接;医院内部的数据中心对医院内部的数据进行处理与保存,当医生需要模型的时候,直接下发。采用内网连接,提高安全性能。
实施例4为一个大的系统,每个医院的数据中心均与云中心的云服务器连接,具体地,所述的系统还包括一个云中心,所述的云中心分别与数据中心连接,用于获取数据中心保存的数据、在有权限的医生用终端发出查看请求时向医生用终端发送数据。在本实施例中,云服务器对所有医院的数据进行保存,在有权限的情况下,所有医院的医生用终端可以互相查看其他医院的病例情况,方便可靠。
并且,进一步地,在上述实施例中,所述的医生用终端可以是PC机或者移动终端,均需配置对应的客户端(C/S)或者通过浏览器进行服务(B/S)。

Claims (9)

1.一种基于医学影像的器官和病灶的三维成像方法,其特征在于:包括以下步骤:
S1:获取待拆分器官的薄层扫描图像;
S2:对其中一幅图像的病灶/靶区的外轮廓进行勾画;
S3:分别对包括病灶/靶区和待拆分器官进行三维建模;
步骤S3中对于待拆分器官的三维建模包括以下子步骤:
S311:识别器官,将器官周围的非器官部分进行分离;
S312:与多种该器官的标准模板进行比较,判断器官形态,并匹配该形态的标准模板;
S313:对该器官进行三维建模;
S4:对三维建模得到的待拆分器官的模型进行多区域拆分。
2.根据权利要求1所述的一种基于医学影像的器官和病灶的三维成像方法,其特征在于:当器官形态为坍塌或者萎缩或者不完全,则手动对坍塌或者萎缩或者不完全的器官边界进行划分。
3.根据权利要求1或2所述的一种基于医学影像的器官和病灶的三维成像方法,其特征在于:所述的待拆分器官为脑叶,所述的多区域为额叶、颞叶、顶叶、枕叶及小脑;所述的方法包括以下子步骤:
S11:获取脑叶的薄层扫描图像;
S12:对其中一幅图像的病灶/靶区的外轮廓进行勾画;
S13:分别对病灶/靶区和待拆分器官进行三维建模,其中对于病灶/靶区的三维建模采用相同阈值的区域增长算法确定边界实现,所述的阈值为灰度值;对于待拆分器官的三维建模为对脑叶的薄层扫描图像进行去头皮去骨处理,构建头部模型;所述的构建头部模型采用图像特征子步骤和定位子步骤实现;所述的图像特征子步骤包括对扫描图像的脑部沟壑进行判断,根据灰度的不同得到脑叶的边界;所述的定位子步骤包括根据对器官的标准模板进行十字交叉定位确认脑叶的边界;
S14:对构建的头部模型进行多区域拆分,包括以下子步骤:
S141:针对任意一个图像,将标准模板对应的模板图像的各区域与个体图像进行空间匹配变形处理,把模板空间的各个脑叶分区图像对应变形到个体脑空间,完成大脑区域分割;
S142:将个体空间脑叶图像和病灶/靶区进行二值化处理,形成mask矩阵;
S143:将mask矩阵转化为系统可识别的区域。
4.根据权利要求1或2所述的一种基于医学影像的器官和病灶的三维成像方法,其特征在于:所述的待拆分器官为肝脏,所述的多区域为肝左叶和肝右叶;所述的方法包括以下子步骤:
S21:使用DCMTK读取肝脏的DICOM序列图像;
S22:对其中一幅图像的病灶/靶区的外轮廓进行勾画;
S23:分别对病灶/靶区和待拆分器官进行三维建模,对于病灶/靶区的三维建模采用相同阈值的区域增长算法确定边界实现,所述的阈值为灰度值;对待拆分器官的三维建模包括以下子步骤:
S231:采用各向异性扩散滤波算法去掉噪声,强化图像边缘;
S232:采用OTSU算法强化图像特征;
S233:采用形态学算法、或者水平集分割算法、或者自适应区域生长算法和BP神经网络算法的结合,提取肝脏区域;
S234:腐蚀提取后的图像,并采用漫水填充法对图像进行后处理;
S235:将步骤S234得到的图像与原始图像相与,得到最终的肝脏区域;
S24:对得到的肝脏区域进行多区域拆分,包括以下子步骤:
S241:针对任意一个图像,将标准模板对应的模板图像的各区域与个体图像进行空间匹配变形处理,把模板空间的各个肝脏分区图像对应变形到个体肝脏空间,完成肝脏区域分割;
S242:将个体空间肝脏图像和靶区/病灶进行二值化处理,形成mask矩阵;
S243:将mask矩阵转化为系统可识别的区域。
5.根据权利要求1所述的一种基于医学影像的器官和病灶的三维成像方法,其特征在于:所述的薄层扫描图像包括CT图像、磁共振图像和DSA图像。
6.采用权利要求1~5中任意一项所述方法的系统,其特征在于:包括:
医生用终端:用于获取待拆分器官的薄层扫描图像、查看待拆分器官的薄层扫描图像、对其中一幅薄层扫描图像的病灶/靶区的外轮廓进行勾画、上传勾画过的薄层扫描图像、接收三维建模以及多区域拆分的器官模型;
数据中心:通过网络与医生用终端连接,用于接收并保存来自医生用终端上传的进行勾画过的待拆分器官的薄层扫描图像、对包括病灶/靶区的待拆分器官进行三维建模、对三维建模得到的待拆分器官的模型进行多区域拆分、对完成多区域拆分的模型进行保存、向医生用终端发送完成三维建模以及多区域拆分的器官模型。
7.根据权利要求6所述的系统,其特征在于:所述的系统还包括薄层扫描仪器:与医生用终端连接,用于对人体进行薄层扫描、将薄层扫描的图像发送至医生用终端。
8.根据权利要求6所述的系统,其特征在于:所述的数据中心设置于医院内,与医院内的多个医生用终端通过内网连接。
9.根据权利要求6或8所述的系统,其特征在于:所述的系统还包括一个云中心,所述的云中心分别与数据中心连接,用于获取数据中心保存的数据、在有权限的医生用终端发出查看请求时向医生用终端发送数据。
CN201710110872.7A 2017-02-28 2017-02-28 一种基于医学影像的器官和病灶的三维成像方法及系统 Active CN106887039B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710110872.7A CN106887039B (zh) 2017-02-28 2017-02-28 一种基于医学影像的器官和病灶的三维成像方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710110872.7A CN106887039B (zh) 2017-02-28 2017-02-28 一种基于医学影像的器官和病灶的三维成像方法及系统

Publications (2)

Publication Number Publication Date
CN106887039A CN106887039A (zh) 2017-06-23
CN106887039B true CN106887039B (zh) 2021-03-02

Family

ID=59179979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710110872.7A Active CN106887039B (zh) 2017-02-28 2017-02-28 一种基于医学影像的器官和病灶的三维成像方法及系统

Country Status (1)

Country Link
CN (1) CN106887039B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107599412A (zh) * 2017-09-14 2018-01-19 深圳市艾科赛龙科技股份有限公司 一种基于组织结构的三维建模方法、系统及三维模型
CN108447046B (zh) * 2018-02-05 2019-07-26 龙马智芯(珠海横琴)科技有限公司 病灶的检测方法和装置、计算机可读存储介质
CN108538370B (zh) * 2018-03-30 2019-08-02 北京灵医灵科技有限公司 一种光照体绘制输出方法及装置
CN108460783B (zh) * 2018-05-09 2019-03-12 电子科技大学 一种脑部核磁共振图像组织分割方法
CN109300088B (zh) * 2018-09-17 2022-12-20 青岛海信医疗设备股份有限公司 一种确定器官与肿瘤接触面积的方法和装置
CN109741441A (zh) * 2018-12-19 2019-05-10 中惠医疗科技(上海)有限公司 子宫肌瘤三维模型重建方法和系统
CN109949307B (zh) * 2019-02-27 2024-01-12 昆明理工大学 一种基于主成分分析的图像分割的方法
CN109949352A (zh) * 2019-03-22 2019-06-28 邃蓝智能科技(上海)有限公司 一种基于深度学习的放疗影像靶区勾画方法及勾画系统
CN110148113A (zh) * 2019-04-02 2019-08-20 成都真实维度科技有限公司 一种基于断层扫描图数据的病灶靶区信息标注方法
CN110120052B (zh) * 2019-05-13 2021-05-07 上海联影医疗科技股份有限公司 一种靶区图像分割系统及装置
CN111445451B (zh) * 2020-03-20 2023-04-25 上海联影智能医疗科技有限公司 脑图像处理方法、系统、计算机设备和存储介质
CN111507978A (zh) * 2020-05-08 2020-08-07 延安大学 一种泌尿外科用智能数字影像处理系统
CN111640126B (zh) * 2020-05-29 2023-08-22 成都金盘电子科大多媒体技术有限公司 基于医学影像的人工智能诊断辅助方法
CN111588467B (zh) * 2020-07-24 2020-10-23 成都金盘电子科大多媒体技术有限公司 基于医学影像的三维空间坐标转换为影像二维坐标的方法
CN116344001B (zh) * 2023-03-10 2023-10-24 中南大学湘雅三医院 一种基于人工智能的医疗信息可视化管理系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050048438A (ko) * 2003-11-19 2005-05-24 주식회사 휴민텍 3차원 정형외과 가이드 방법
CN101971213A (zh) * 2008-02-29 2011-02-09 新加坡科技研究局 图像中解剖结构分割与建模的方法及系统
CN102509286A (zh) * 2011-09-28 2012-06-20 清华大学深圳研究生院 一种医学图像目标区域勾画方法
CN102895031A (zh) * 2012-09-19 2013-01-30 深圳市旭东数字医学影像技术有限公司 肾脏虚拟手术方法及其系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7796790B2 (en) * 2003-10-17 2010-09-14 Koninklijke Philips Electronics N.V. Manual tools for model based image segmentation
US8160345B2 (en) * 2008-04-30 2012-04-17 Otismed Corporation System and method for image segmentation in generating computer models of a joint to undergo arthroplasty

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050048438A (ko) * 2003-11-19 2005-05-24 주식회사 휴민텍 3차원 정형외과 가이드 방법
CN101971213A (zh) * 2008-02-29 2011-02-09 新加坡科技研究局 图像中解剖结构分割与建模的方法及系统
CN102509286A (zh) * 2011-09-28 2012-06-20 清华大学深圳研究生院 一种医学图像目标区域勾画方法
CN102895031A (zh) * 2012-09-19 2013-01-30 深圳市旭东数字医学影像技术有限公司 肾脏虚拟手术方法及其系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《基于活动轮廓模型的肝脏分割算法研究》;吴珊;《中国优秀硕士学位论文全文数据库 信息科技辑》;20150515(第5期);摘要、正文第1-60页 *
《数字人脑切片图像自动分割算法的初步研究》;李敏;《中国优秀硕士学位论文全文数据库 信息科技辑》;20110315(第3期);摘要、正文第1-57页 *

Also Published As

Publication number Publication date
CN106887039A (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
CN106887039B (zh) 一种基于医学影像的器官和病灶的三维成像方法及系统
CN106898044B (zh) 一种基于医学影像并利用vr技术的器官拆分和操作方法及系统
Blum et al. Multi-sensor image fusion and its applications
CN106780728B (zh) 一种基于医学影像的单个器官拆分方法及系统
CN110326024B (zh) 用于处理由医学成像装置捕获的组织学图像的方法和装置
US20200090350A1 (en) Medical image generation, localizaton, registration system
CN107909622B (zh) 模型生成方法、医学成像的扫描规划方法及医学成像系统
US8527244B2 (en) Generating model data representing a biological body section
KR102053527B1 (ko) 이미지 처리 방법
CN110570426A (zh) 使用深度学习的图像联合配准和分割
CN110717905B (zh) 脑部图像检测方法、计算机设备和存储介质
KR20200092489A (ko) 딥러닝을 이용한 3차원 전신 골격 모델 생성 장치 및 방법
CN106897564B (zh) 一种基于医学影像的病案图像建模系统
WO2023088275A1 (zh) Roi自动定位方法、装置、手术机器人系统、设备及介质
Ramana Alzheimer disease detection and classification on magnetic resonance imaging (MRI) brain images using improved expectation maximization (IEM) and convolutional neural network (CNN)
CN112200780B (zh) 骨组织定位方法、装置、计算机设备和存储介质
CN106887180B (zh) 一种基于医学影像经典病案库的教学系统
CN112102327B (zh) 一种图像处理方法、装置及计算机可读存储介质
CN112562070A (zh) 基于模板匹配的颅缝早闭手术切割坐标生成系统
Devi et al. Automated dental identification system: An aid to forensic odontology
CN116433976A (zh) 图像处理方法、装置、设备和存储介质
CN116168097A (zh) 构建cbct勾画模型和勾画cbct图像的方法、装置、设备及介质
Al-Fahdawi et al. An automatic corneal subbasal nerve registration system using FFT and phase correlation techniques for an accurate DPN diagnosis
KR20220012406A (ko) 모델 트레이닝 방법, 이미지 처리 및 정합 방법, 장치, 기기, 매체
CN114494132A (zh) 基于深度学习和纤维束空间统计分析的疾病分类系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant